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Having the privilege of teaching many mathemat­
ics strands has allowed me to make connections be­
tween concepts that on the surface seem unrelated. 
High school and undergraduate math students have 
this opportunity but may not have the time or the in­
timate knowledge of the subject matter to form such 
connections. A reward of repeatedly teaching the 
same math courses is that one's knowledge of the 
subject matter deepens to the point where, with some 
exploration, such connections can become apparent. 
Additional rewards are modelling such exploration 
for students and encouraging them to explore on 
their own. 

This article describes the fundamental connection 
between the concept of the correlation coefficient 
from statistics and that of the angle between two vec­
tors from linear algebra. That connection became 
apparent to me over a few years while teaching vec­
tors in linear algebra and, at the same time, some 
elementary statistics in a precalculus course. It 
initially sprouted from a concept that had incubated 
when I was a student in a statistics course many 
years earlier. In the chapter of the course textbook 
pertaining to the correlation coefficient, Ferguson 
( 1981, 132) describes how the correlation coefficient 
is related to the angular separation between two re­
gression lines. The ensuing discussion is general 
enough to leave room for questions and to invite ex­
ploration. In fact, Ferguson's observations seemed 
inaccurate because a full mathematical explanation 
was not given. At the least, they lodged in the 
back of my mind as a kind of healthy dissonance. 
They were not completely resolved until I taught a 
linear algebra course where the concept of the angle 
between two n-dimcnsional vectors was fully devel­
oped as the generalization of the geometrical angle 
between two 2- or 3-dimensional vectors. The angle 
between a pair of 2- or 3-dimensional vectors can 
be visualized intuitively and is easily calculated 
using simple trigonometry. The angle between two 
n-dimensional vectors is then defined as a general­
ization of the intuitive notions applying to 2- or
3-dimensional vectors.
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What follows is the full development of a geo­
metrical meaning for the correlation coefficient based 
on the notions of the previous paragraph. It is related 
to Ferguson's observations but, given an understand­
ing of some basic concepts of vectors, seems more 
elegant in its simplicity. 

The Correlation Coefficient­

A Brief Review 

The peripheral correlation coefficient is a precise 
comparison of two sets of scores that measures the 
degree to which corresponding scores deviate from 
their respective means. Do the sizes and directions 
of the deviations of corresponding data elements from 
their respective means tend to correspond? If so, the 
correlation coefficient will be high ( close to 1 ). Does 
there appear to be little relationship between how 
corresponding data elements deviate from their 
respective means in the two sets of scores9 If so, 
the correlation coefficient will be low (close to 0). 
Do the deviations from their respective means for 
corresponding clements tend to be in opposite direc­
tions (scores above the mean for the one data set 
correspond to scores below the mean for the other 
set, and vise versa)? If so, the correlation coefficient 
will be negative (perhaps as negative as- I). Consider 
the following simple example for two sets of scores, 
x andy. 

± X 

I 2 

2 4 

3 6 

4 8 [l] 

Intuitively, these two sets of data are as closely related 
as any two distinct sets of data can be; therefore, the 
correlation coefficient should be I. This will be dem­
onstrated shortly. 

The correlation coefficient may be defined as the 
ratio of the average of the sum of products of the 
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deviations of corresponding elements from their re­
spective means to the product of the standard devia­
tions of the two sets of scores. Consider the following 
two sets of scores 1

• 

x = (x1, x2, . . .  , x), y = (yl' Yy . . .  , Y) 
The correlation coefficient r between these two sets 
of scores is defined formulaically as follows: 

r = (x
1 
-x)(v 1 - y) + (x, -x)(v2 - y) + .. . (x,, -x)(vn -y) 

ns s 
or r = I(x -x)(y-y) 

ns s 
,\' y 

In this fonnulation: 

,\' y 

xis the mean for the set x
_v is the mean for the set y 
s is the standard deviation for the set x 

3 

s' is the standard deviation for the sety 
,;' is the number of scores in each data set 

[2] 

Definition [2] readily shows that the numerator 
will be large and positive if corresponding scores 
from x and y deviate proportionately in the same di­
rection from their respective means. On the other 
hand, it will be large and negative if corresponding 
scores from x and y deviate proportionately in oppo­
site directions from their respective means. And it 
will be small if there is little connection between how 
corresponding scores from x andy deviate from their 
respective means. The numerator alone, though, 
would not adequately define any measure of com­
parison between two sets of scores. We would be left 
with the questions, "How large is large?'' and "How 
small is small?" But definition [2] taken altogether is 
ingenious in that dividing by ns,s, ensures that the 
value of r is between -I and I for any two sets of 
scores with I representing the highest possible posi­
tive correlation and -I representing the lowest pos­
sible negative correlation. The proof is not included 
here but can be formed using the definitions of s, s 
and r.

·' ..

By way of illustration, Table A shows the 
calculations used in determining r for example [ l]. 

Recall that we had already anticipated that the 
value of r for this case should be l. Note here that 
x = 2.5, y = 5 and n = 4. From Table A, we have 

s = /2)x-xJ = ✓5 
s = /IG,-yy = ✓5

·' n 2 ' r n 

Then r 
= I.Cr - xX\' - y) = 10 = I

4( �f')
This is as we expected. 

Correlation Coefficients from 

Standard Scores 

When comparing two data sets, it often helps to 
first convert the raw scores into standard scores or 
z-scores. The .:-score of a particular score in a set of
raw scores is the measure of how many standard de­
viations the raw score is above or below the mean.
Suppose, for example, that for a set of scores x, the
mean and standard deviation are x = IO and s = 2,
respectively. Then a raw score of 12 would h�ve a
.:-score of I because it is exactly one standard devia­
tion above the mean. In general, the z-score, ::: , of
a particular raw score x from the set of scor�s x

where the mean is i and the standard deviation is s 

is defined as
.,

x-x

s ., 

The formulaic representation for the correlation 
coefficient r is simpler when standard scores are used. 
Recall that 

r = L(X -x)(v- _v)

x-x v-v Since.: =-- and z =·--· we have 
., s ... s ' 

X ,I
' 

13] 

(4] 

Table A 

X y x-x y-y (x-x)2 (v-_f)2 (x -x)Cv-y) 
I 2 -1.5 -3 2.25 9 4.5 
2 4 -0.5 -I .25 I .5 
3 6 0.5 I .25 l .5 
4 8 1.5 3 2.25 9 4.5 

Icx-W == 5 ICv-ff = 20 I(x-x)(v-y)= 10 
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This formula for r will be revisited after the con­
cept of the angle between two vectors has been fully 
developed. It is most useful as a theoretical tool for 
developing other relationships. However, by way of 
illustration, it is applied to example [ 1] in Table B 
below. Recall that in this example, x = 2.5, y = 5, 

sr = �,ands_.,= -Js. By way of illustration, the values 
of z_,, z,, and zxz, in the first row were computed as 
follows. 

-1.5 -3 -3 (-3r-3J 9 zx = .Js;; = 
✓

5 . z, = ✓5, and zl
., 

= 
✓

5 ✓5 = 5 

Table B 

X y x-x y-y z z � -'-
\' .r .r 

1 2 -1.5 -3 -3v'5 -3v'5 915 

2 4 -0.5 -1 -Iv's -Iv's 1/5 

3 6 0.5 I IVS Iv's 1/5 

4 8 1.5 3 3v'5 3v'5 9/5 

Izz =4 
.f y 

Using the results from the table, r = I,z,�, = � = 1. 
II 4 

One other concept pertaining to z-scores will be 
needed to show the relationship between the correla­
tion coefficient and the angle between two vectors. 
It is that of the magnitude of the vector formed by 
the z-scores of a data set. This notion will be easy to 
fonnulate but must await some basic concepts pertain­
ing to vectors. 

Vectors and Their Relevant 
Properties 

What Is a Vector? 

A vector is a directed line segment. A vector in 
the Cartesian plane is called a 2-dimensional geo­
metric vector; a vector in Cartesian 3-space is called 
a 3-dimensional geometric vector. ff the vector's 
initial point is at the origin of the Cartesian coordinate 
system, then the vector is in standard form. A vector 
not in standard form with initial point A and terminal 
point Bis denoted AB (in bold case). For convenience 
a vector may also be denoted as a single letter in bold 
case; for example, v. ff a 2- or 3-dimensional vector 
is in standard fonn, then it is determined by its ter­
minal point. This leads to the following algebraic 
definitions for these vectors: a 2-dimensional vector is 
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an ordered pair ofreal numbers (a, b); a 3-dimensional 
vector is an ordered triple of real numbers (a, b, c). 
Two- and 3-dimensional vectors can be represented 
geometrically. For example, the vector v = (4, 3) is 
illustrated in Figure 1. 

Figure l 

(4, 3) 

Although we cannot picture more than three di­
mensions, the notions pertaining to algebraic vectors 
can be extended to any number of dimensions. An 

n-dimensional vector is defined as an ordered n-tuple 
(x,. x

.:,
, ... , x) of real numbers. Ann-dimensional 

vector is said to have n components. The i'h compo­
nent is x;. 

The Length or Magnitude of a Vector 

The length of a 2- or 3-dimensional vector can be 
detennined easily using the fonnulas for the distance 
between a pair of points in 2- or 3-space, respectively. 
For example, the length of the vector v == (4, 3) in 
Figure 1 isllvll= ✓4'+31 =5· The magnitude ofan 
algebraic vector is defined as being equal to the length of 
its corresponding geometric vector. So the terms length 
and magnitude are interchangeable. If v = (a, b) a, b E R, 
where R is the set of real numbers, then the magnitude 
ofv, I/ vii, is defined by 11 vii=�; if v = (a. b, c), 
a. b, c E R, then 11 vii= .Ja1 +b1 +c'. These no­
tions can be extended to n-dimensional vectors: if 
v = (x,. x

_, 
. ... ,x,,), then 

11 V 11 = .Jx, � + x,' + ... + x,,' [5] 
Of course, one cannot picture ( at least in a sober state) 
the length of an n-dimensional vector if n > 3, but 
this definition is a reasonable abstraction consistent 
with our intuitive understanding of the lengths of 
2- and 3-dimensional vectors. 

The Inner (Dot Product) of Two Vectors 

A number of operations are defined on vectors. 
Among them are two important products that involve 
pairs of vectors: the inner product and the cross 
product. Both have important applications as well as 
theoretical value. The one of relevance here is the 
inner product because it is useful in defining the 
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angle between two vectors. If x = (x
1
,x

1
, ... ,x) and 

y = (Y 
1
,y 

1
, ... ,Y,,), then the inner product xy of x and 

y is 
xy = x, y

1
+ x

2 y2
+ ... + x,,)\ = Ixy (6] 

For example, if x= (4, 3) and y= (5, 6), then xy = 

4·5 + 3-6 = 38. 

The Angle Between Two Vectors 

Consider the vectorsx = (4, 3) andy = (5, 6) as il­
lustrated in Figure 2. One can use the law of cosines 
to determine the angle 0 between x and y: 

IIABjj 2 = llxll 2 + IIYll�-2llx ll 11Yll cos0
⇒ (5 - 4)2 + (6 - 3)2 = {42 + Y) + (52 + 62) -

2 ✓4�+Y ✓5�+6'cos0
⇒ 10 = 8 6- 2·5 ✓61 r.:us/:1

76 
⇒ cos 0= 1O✓6i
⇒ 0 � 13.3 2° 

Figure 2 
8(5. 6) 

A(4. 3) 

Consider the general case for the angle between a pair 
of 2-dimensional vectors x = (a,b) and y = (c,d) in 
standard position as illustrated in Figure 3. Then, as 
in the previous example, II AB 11 2 = II x II 2 + IIY II 2 -
2 11 x II 11 y I I cos 0 

20 

⇒cos0=(11x11 L r llyll 2 - IIABll 2)1(2llxll ll YII)
⇒ cos 0 = ( a2 + b2 + c2 + a--( ( c - a )2 + ( d - b )2)) I

(2 llxll llYII)
⇒ cos 0 = (a2 + li + c2 + a-- c2 + 2ac - a2 - a-+

2bd- b2) I (2 llx II IIY II)
⇒ cos 0 = (ac + bd) I ( II x II IIY II)
⇒cos0=(x-y)!(llx ll IIYII) (71 

Figure 3 

The result [7] provides a simple way of thinking 
about the angle 0 between a pair of 2-dimensional 
vectors: the cosine of 0 is just the inner product of 
the two vectors divided by the product of their mag­
nitudes. Consider again the two vectorsx = (4, 3) and 
y = (5, 6). Using [7] the angle 0 between the two 
vectors is given by 

cos0= (xy)/(I lxll llYII) =(4·5 + 3-6)/(✓4' + 3' ✓s' + 6') 
= 38 / ( 5J6j). 

This is the same value as that obtained earlier by more 
laborious methods. 

The result [7] applies to 3-dimensional vectors as 
well. This can be seen by applying the law of cosines 
to a pair of 3-dirnensional vectors x = (a, b, c) and 
y = (d, e, /). The steps are the same as those used 
above for 2-dimensional vectors. Verification of this 
result is left to the reader. 

Although one cannot visualize the angle between 
two n-dimensional vectors for n > 3, it is reasonable 
to think of the angle between such a pair of vectors 
as a generalization of the angle between 2- or 3-di­
mensional vectors. This leads to the following defini­
tion. Ifx = (x 1 ,xr .... x) andy = (vryT ... ,y) are any 
pair of n-dimensional vectors, then the angle 0 
between them is defined by 

cos0=(x-y)/( llx ll llYII) [8]
Consider a simple example of a pair of 5-dimen­

sional vectors x = (I, 2, 3, 4, 5) and y = (2, 4, 6, 8, 
I 0). The vectors x and y have an obvious intuitive 
relationship to each other. In the precise language of 
vector alg!!bra, y is said to be a scalar multiple of x. 
In general, a vector y is said to be a scalar multiple 
of vector x if each component of y is obtained from 
the corresponding component ofx by multiplying by 
the same constant or scalar. In this case the constant 
is 2 and we writey = 2l". It is easy to appreciate why 
two n-dimensional vectors that are positive scalar 
multiples of each other are defined to have the same 
direction. Thus, in the above example, the vectors x 
and y should have the same direction and the angle 
between them should be 0°. Using definition [8] as 
follows yields a result that is consistent with this. 

cos 0 = (xy) I ( II x II II Y I I ) 
⇒ cos 0 = (1 ·2 + 2·4 + 3·6 + 4·8 + 5·10) /

(✓I: + '2 1 + ... + S' ✓ 2' + 4 1 + ... + I 02 )
⇒ cos0= = I IO/(.jss.J220)= 1101(.JI!o:)= I
⇒ 0 = 0"

Data Sets as Vectors 

With this framework, it is easy to see that a set of 
data can be represented as a vector. Consider the two 
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data sets x = (x
1
,x

2
, • • •  ,x) and y = (y

1
,y

2' ... ,y) repre­
sented as vectors. Then it should be possible to formu­
late the correlation coefficient in terms of the vector 
concepts outlined in section 4 above. It turns out that 
the formulation is simpler if each set of scores is first 
converted to standard form; that is, each x. and y. is first 
converted to a z-score. We will refer to these {ectors 
as the standard score vectors of x and y and denote them 
Z

x 
= (zx 'z

x 
. .. 'z

x 
) and Zy, = (z,. 'Z). ..,, z,. ), respectively, 

I 2· n . I 2, · 11 Using [8] the angle 0 between z .. and z)' is given by 
cos0=(z,,, z,

l
+zx

z
z_,., + ... +z ... n z'n )/(llz.,.11 llzJ

II) 
::;. cos0 =zx ·z/(llzJ llz,.11) 
::;. cos 0 = I z,z,I ( II zj II z,.11) 191

We encountered the numerator of the right side of[9] 
earlier: it is also the numerator of the correlation co­
efficient in [ 4]. Let us examine the denominator 
II z.,.11 11 z,.11- It can be shown that for the standard score 
vector z.,. ·of any n-dimensional vector x, 11 z .. 11 = ✓n as 
follows. Note that 

llz .. 11 = .Jz,, 2 +z,, 2 + ... +::, .. 1 = .JI,;:, 1 

B t x _x d ✓I(�-xJu z . = -' - an s = 
·', 

s_, 
·' 

n 

So • _ x, -x _ (x, -x'},✓ri 
�,. 

-
✓I,(x

n
-xJ 

-
✓I.(x-xJ

�-----------
Then from [5], II zxll = (x, -x�", + 

(x, -x�''. + .+ i"(-., ��.,:''j'.l(r-.r'j l(x-x J L, , 

::;. I I zJI = L (r-xf ,n = ✓n
I,(r-xJ 

1101 

Since z and z are both standard score vectors, 
X )' 

llz)l=✓nand llz)I =..[;,.Thus [9] becomes cos0 

= 
L z,:.:_, [ 11 ) 

n 

The right side of[ I I] is the correlation coefficient 
between the set of scores x and y shown in formula 
[4]. Thus we have the result that has been the object 
of this article: the correlation coefficient between two 
sets of scores is just the cosine of the angle between 
their standard form vectors. 

Applying fonnula [ 11] to the special cases where 
0 = 0", 90° and 180" and noting that cos 0° 

= 1, 
cos 90° 

= 0 and cos 180" = -1 yields the following 
intriguing results about the value of the correlation 
coefficient r between the standard score vectors of 
two sets of scores: 

* r = 1 if and only if the standard score vectors 
have the same direction. 
* r = -1 if and only if the standard score vectors
are in opposite directions. 
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* r = 0 if and only if the standard score vectors are 
perpendicular. 
* r has a value between O and 1 if and only if the
standard score vectors are somewhere between
perpendicular and in the same direction.
* r has a value between O and -I if and only if the
standard score vectors are somewhere between
perpendicular and in opposite directions.

Conclusion 

This article demonstrates the relationship between 
correlation coefficient and the angle between two vec­
tors. The beauty of this relationship is that it provides 
a simple geometrical meaning for the correlation coef­
ficient that appeal to the intuition. There is also beauty 
and satisfaction in the processes underlying the dis­
covery and development of this relationship. The ex­
ploratory and deductive methods used illustrate how 
mathematical connections are discovered and verified. 
Mathematics teachers who look for connections are in 
a good position to uncover such connections by virtue 
of the intimate knowledge of the subject matter that 
accompanies teaching. Further, they can mode� both 
the excitement and the discipline that is involved in 
carrying the discovery process to its conclusion. Teach­
ers who are captivated by the exploration process will 
find ways to allow students to be captivated as well. 

Notes 

I. The two sets of data arc presented here in vector notation;
that is. as ordered 11-tuples. This is a convenient notation and 
appropriate for the purposes of this article. 

2. The fonnulations for standard deviation and the correlation
coefficient used in this article arc those pertaining to ,1 whole 
population rather than a sample. Using n rather than the usual 
11-l makes the demonstration of the relationship between the
correlation coefficient and the angle between two vectors more
transparent. But it is possible to demonstrate the relationship
using n-1 as well.

3. The reader will recall that the standard deviations for the
data sctx = (x,. x .. ... , x) is a measure of how the data is.•distrib­
uted about the mean x. It is defined as follows.

,, =JI�<- .,'j and can be described as the root of the mean of the
" 

squares of the deviations of the individual scores from the mean. 
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