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Proof and proving is largely unsuccessful in school 
mathematics (Reid 1995). "This lack of success seems 
to be related to an incompatibility between the picture 
of proving portrayed in schools, and the role of deduc
tive reasoning in professional mathematics and in 
students' lives" (PhD diss). Based on our reading of 
the high school program of studies and support ma
terials, there is certainly a narrow view of what con
stitutes proof and reasoning, and little, if any, advice 
on how to teach and assess it. For example, the As
sessment Standards for Pure Mathematics 20 rele
gates reasoning to a set of seven seemingly simple 
outcomes 1 (Alberta Learning 2002), which some 
teachers choose to cover in a short take-home pack
age.2 Further, proof and reasoning is addressed in one 
of the two approved mathematics textbooks (Addison
Wesley) as formal and deductive geometric proofs 
that are based on a set of given and well-established 
geometric truths rather than based on and emergent 
from student meaning making. The teacher is left to 
develop instruction that engages students in mathe
matical reasoning. Interestingly, the current focus on 
proof as formal verification has been shown to be a 
poor motivator for students, since it does not address 
their needs when doing mathematics (Reid 1995). In 
this study, we explored possibilities for more mean
ingful and engaging experiences for high school 
students with mathematical proof by being attentive 
to their meaning making, their need for proof and 
their actions toward proving. 

We investigated what happens when a teacher 
broadens her vision of proof and proving in mathe
matics. Reid's work points to a variety of possibilities 
for proving in mathematics; yet the reasoning in high 
school mathematics classrooms is often limited to 
proof as verification, reasoning as deductive, proving 
as mechanical and formulaic (a� illustrated by algebraic 
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proofs in trigonometry) and proofs as formal (eg, 
two-column proofs in Euclidian geometry). Specifi
cally, we asked 

• what is the nature of the questions/tasks offered
to students that encourage proof and proving
actions?

• how might a teacher recognize features of proving
and proof in student conversation and in the ques
tions students pose?

• how would valuing student need for proof and
proving change current evaluation practices and
rubrics for assessing student work?

• how much room is there in the cutTiculum for ana
logical reasoning, unformulated proving, and
preformal proof?'

Using Action Research 
to Prompt the Growth of 
Pedagogical Understanding 

Over the last decade, Sookochoff has found herself 
doing action research "by accident." She describes 
her pattern of professional improvement in the fol
lowing passage. 

First, I have to face some truths that are uncom
fortable to some: I do not know everything about 
the mathematics I teach and even what I do know 
is worth reconsideration; nor do I know everything 
about the students I teach; nor do I have the time 
to keep abreast of research literature that might 
inform and shape my practice. What I do have is 
a sincere curiosity about mathematics and about 
knowing it-so much so that I am compelled to 
engage in an intense process of action research, 
despite the constraints of time I face as a practising 
classroom teacher. Here is what I have done. 
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First, I identify a central theme around which I 
want to grow. I have used polynomials, irrational 
numbers, rational expressions, linear algebra and, 
in the case of this paper, reasoning and proving. 
All of these explorations started with a great dis
satisfaction with the way my teaching and knowing 
mathematics were playing out in the classroom. 
My irritation was motivated sometimes by student 
frustration, sometimes it was by a sense of confu
sion. as though the curriculum were not supporting 
me. or as though the topic were fractured and rid
dled with unimportant details that I could not 
possibly make relevant to students. Once, as in the 
case of linear algebra, I just wanted to expose 
myself to hard ideas and feel what it was like to 
learn outside my area of comfort. 

Then (and I only see this pattern now) I summon 
my math friends, people I've taken courses with 
or from. teachers and mathematicians I have met 
at conferences. Mostly, I do this through e-mails. 
written late at night. when my own kids arc asleep, 
and when my mind is burning with a question from 
the day's activity. I fire out the e-mail and I wait. 
And the miracle is that I don't wait long. It is 
amazing to me how fellow teachers and mathema
ticians are eager to engage in thinking about the 
work we love. 

Things move quickly and somewhat chaotically 
after that. Letters go back and forth about the re
search that might relate or about some mathematics 
that could enrich what I am working on. My teach
ing and mathematics evolve daily. My students 
become part of the process, empowered by the fact 
that I take their questions and utterances to my 
network of internet colleagues. And I end up feel
ing so charged with the energy of all these 
interactions. 

There are results I can see right away. But, as 
years pass, at least two, I seem to enter a new phase. 
The excitement fades and I can more calmly select 
from the sea of ideas that were generated in that 
recursive chaos. It is in this phase that I am able 
to edit out the mathematics that might have fasci
nated me. but that obscured something for my 
students. It is in this phase that I see the curriculum 
clearly and with ownership. I know I've accom
plished something important in my teaching when 
that feeling of irritation and confusion is gone. 
Instead, I am steady. 

This paper is a record of some of my working 
through of the proving outcomes in Mathemat
ics 20 Pure. The impulse started out of a feeling 
of irritation (that in this case is not quite resolved) 
with the way the resources. the curriculum, my 

background and my students were interacting. T 
found myself complaining about the unit. The 
complaints led me to my friend, Elaine Simmt, 
who suggested I talk to David Reid, whose research 
has centred on student proof and reasoning for 
some l O years now. From there, the process 
evolved just as I described above-with one excep
tion: after about a year of infonnal chat on the 
matter of proving, we applied for and received a 
research grant from the Alberta Advisory Commit
tee for Educational Studies. This allowed us to 
document some of what happened i n  the 
classroom. 

Sookochoff initiated an action research project in 
which she incorporated outcomes for formal reason
ing in a number of units of instruction, rather than 
only in the unit typically used to teach proof and 
reasoning. The study involved two Pure Mathemat
ics 20 classes and one Mathematics 20 International 
Baccalaureate class over the course of one semester. 
With her coresearchers. Sookochoff worked on her 
practice through conversations about proof, proving, 
reasoning, tasks and assessment. In the spirit of action 
research, she began with a question about practice 
and worked on it through cycles of planning, imple
menting, evaluating and questioning. With three 
classes each working on the same content and pro
cesses, she was able to try out tasks and strategies 
with one class, develop the tasks and strategies further 
and use them with another class. Because the research 
took place over a whole term she also was able to 
work through the cycle in the context of differing 
content. 

All unit planning documents, student handouts and 
assessment tools, as well as student work, were col
lected. So, too, were e-mail messages among the re
search team and notes based on their face-to-face 
conversations. Approximately 20 per cent of the les
sons were observed by one of the coresearchers. In 
those classes, observation notes were taken and audio 
tapes of selected student groups were made. 

In summary, Sookochoff, in consultation with 
Simmt and Reid. developed lessons and units to 
promote proving. She taught the lessons and then 
reflected on them through further discussion; those 
discussions informed subsequent lessons. In this pa
per we elaborate on the action research project 
through the presentation and discussion of one par
ticular lesson. We include records of e-mail corre
spondence. a transcript from the lesson, and an analy
sis of the relationship between those two things and 
Sookochoff's evolving understanding of teaching and 
mathematics.� 
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A Lesson in Definitions 

The following section is intended to illustrate the 
action research process and a particular pedagogical 
concern that arose in Sookochoff's lesson (includes 
the planning, implementation and reflection of the 
lesson). The section begins with an e-mail message 
from Sookochoff to her collaborators prior to her 
planned lesson and continues with their responses. A 
short transcript taken from the lesson as it played out 
in the classroom prompts further reflection by 
Sookochoff. 

On Monday, September 06, 2004, at 6:40 PM 

Shannon Sookochoff wrote: 

Hi again, 
I have asked my 1B students (they are running 
ahead of the others) to think about the following 
for homework: 

x + Sv = 10 
3x + I Sy= 30 
What values for (x, y) satisfy both equations? 

Then, when they are confronted with an infinite 
set, I will ask: Given x/3=20, how do we solve?" 
Students will respond. "What mathematics do _,·ou 
know that makes vou able to ______ _ 
______ ? ( Perhaps they will say "multiply 
borh sides of the equarion by 3. ") My idea is that 
we will come face to face with properties of 
equivalence relations that we need to build on in 
order to make solving by elimination work. 
How might I explain why I can multiply both sides 
of an equation by a constant without changing the 
solution? Well, I think that I would draw an anal
ogy: Do you accept that an equivalence relation 
is like a balance scale? If so, then let's put one 
third of an object on one side, and 20 units on the 
other. They balance. But we don't like only knowing 
what one third of the object weighs. We reason that 
we could triple each of these equal sides. making 
the unknown object whole and making the other 
side of the scale 20 x 3, or 60. So we see that the 
unknown object weighs 60. And we can \'er(fy that 
one third of60 is 20. 

Is this analogical reasoning sound? How might 
you demonstrate the reasoning behind what ends 
up being a property of equivalence relations? 
Shannon 

Sookochoff, in planning for her lesson, is doing a 
thought experiment as to how the lesson might play 
out. She draws from her understanding of linear equa
tions and linear systems, as well as from her under
standing of equivalence. David Reid responds to her 
inquiry by suggesting she use the notion of an axiom-
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something that ties directly to proof and proving. 
Sookochoff is excited by this possibility and searches 
for meaning and ways to include the notion of axiom 
into the class discussion. This tone of inquiry is at the 
heart of action research. 

On Tuesday, September 07, 2004, at 4:32 AM, 

David A Reid wrote: 

The analogy is a fine analogy, but why not try to 
make reference to something they might accept as 
an axiom/postulate? 
If a = b, then ka = kb. 

An equation is a statement that two things are 
equal. If they are equal, then the above axiom/pos
tulate lets us multiply both sides by anything we 
want. I suspect IB students can cope with that. 

One tricky thing is the inequality. It is not true that: 
If a < > b, then ku < > kb 
because k might be 0. 

This is the basis for some nice proofs that I = 2. 
David 

On Tuesday, September 07, 2004, at 6:54 AM, 

Shannon Sookochoff wrote: 

Excellent I So, what is it about this truth that makes 
it an axiom/postulate? What tells me that I cannot 
prove it? What are the signs to the thinker that an 
idea is axiomatic? I think that this will need to 
become explicit today when the IBs come back 
with their explanations. So, if you are at your 
computer, David, do tell! Hey. I just thought of an 
answer to my question. Could it be that something 
is axiomatic in a particular community if no one 
in the community can prove it but everyone agrees 
that it is true? 
Shannon 

The conversation with Reid is important to her 
pedagogical understanding. Just writing to him is 
enough to trigger responses to her own questions. 

On Tuesday, September 07, 2004 7:52 AM, David 
A Reid wrote: 

> Hey. I just thought of an answer to my question. 
Could it be that something is axiomatic in a par
ticular community if no one in the community can 
prove it but everyone agrees that it is tme? 

Exactly! I paused for a moment about what to call 
the thing. First I put only axiom but then I decided 
it might not be so se(f-el'ident. Then I thought about 
how to prove it. I suspect I would have to go back 
to the definition of multiplication. I also suspect 
that what I am calling an axiom might be part of 
the definition. 
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> Excellent! So, what is it about this truth that 
makes it an axiom/postulate? What tells me that I 
cannot prove it? What are the signs to the thinker 
that an idea is axiomatic? I think that this will need 
to become explicit today when the IBs come back 
with their explanations. So, if you are at your 
computer, David, do tell! 

Just now I checked to see if it is part of the defini
tion based on Peano's axioms, which are a popular 
starting point for number theory. This is what I 
found: www.cut-the-knot .org/do_you_know/ 
mul_num.shtml 

Now I THINK I can prove IF a= b THEN 
ka = kb. 
But I have to go now. 
David 

After these fast-paced exchanges Sookochoff 
teaches the lesson. She w1ites to her research collabo
rators immediately after teaching the lesson to her 
three classes. 
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On Tuesday, September 07, 2004 9: 19 PM, Shannon 
Sookochoff wrote: 
Zowee! 
Even though my intent was to move from an in
consistent system, ie, no solution, ie, parallel lines, 
on to deriving elimination, instead, J was able to 
bring our entire conversation to bear. Here is 
how. 
Having asked students to consider why we can 
multiply both sides of an equation by a constant, 
they came back perplexed. I sensed a tension. ''This 
is easy but it is puzzling." Nicolai said just about 
that exact phrase. We noticed that in our various 
explanations, we ended up using the fact to explain 
the fact. It felt circular, yet we all agreed that the 
fact was true. I then defined the tension we were 
noticing as characteristic of an axiom. We gener
ated one for addition and two corollaries (usage?) 
dealing with division and subtraction. 
Then, I put four cases (A-D) on the board. 
A) What is the solution to 3x + 2y = 104 (related 

to but not limited by "three shirts and two 
sweaters cost SI 04")? I have an infinite 
solution set of all points (x, y) where y = 
(-3/2) x + 52. I have a line ifl think geometri
cally. Or I have a table of values with lots of 
possibilities. In fact I can see a pattern (the 
slope) in the integral points that I can generate. 
I use the following string of deductions: 1) Us
ing axioms of equivalence relations to isolate 
y, I recognize y ::: mx + b. 2) When I graph an 
equation of this form, I generate a line. (Would 
we call this an axiom for now?) 3) Lines are 

made of a set of infinite points, the slope of 
which is consistent (a definition). 4) If the 
equation generates a line, then the solution is 
the line, which is an infinite set of points. 

Other cases we considered: 
B) 3x+2y= l04and2x+y=60. 
C) x+3y=-10 and3x+9y=-30. 
D) x + 2y = 4 and 2x + 4y = 3. 
With each system, the entire class worked to describe 
the solution set using a string of deductions. 
This we got to with the IBs. (Then developed solv
ing by elimination.) 
The regulars are still thinking about cases C and D 
above. Their homework is to consider how they 
would describe the solutions sets for C and D. And 
your questions, Elaine rwhat does it mean to find 
a solution?], have been so powerful for me. The 
students really need time to see that a linear equa
tion in x and y ( especially where y is not isolated) 
generates a straight line and thus has infinite solu
tions. They will benetit from the discussion we had 
today in IB. 
I was surprised that all th is came together today 
and that I was able to say axiom without feeling 
too much like an impostor. 
I just looked at that Peano stuff and found it really 
hard to read. On the other hand, the stuff I read 
about in Lyn English's book was more lived rea
soning, I think. Am I pointing to a distinction that 
you two have noticed? One where Mason, English, 
Johnson and Lakoff are on one side of the contin
uum, and Peano (and others I don't know) are on 
the other? Is one considered more rigorous? 
Shannon 

As exciting and rewarding as the lesson was for 
Sookochoff, her desire to deeply understand proof 
and reasoning is growing. She takes Peano and Eng
lish, a mathematician and an educational researcher 
respectively, and asks how they are helping her make 
sense of proof and proving. 

On Wednesday, September 08, 2004 2:27 AM, 

David A Reid wrote: 

All seems to be working out well. 
There is ce11ainly a tension between Peano and 
English et al.' It is a tension that has caused trouble 
for mathematics education from the start. There 
are two different starting points: mathematics and 
minds. Or if you like, logic and psychology. To an 
expert mathematician, an axiomatic system seems 
really easy. You start with things that everyone 
recognizes as true, and then you deduce everything 
else according to ways of thinking that everyone 
accepts. This was the basis for most of the New 
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Math movements. It turned out not to work very 
well. What Lakoff, English, Varela, etc, tell us is 
that the ways of thinking that mathematicians as
sume everyone accepts are in fact not all that ap
plicable outside mathematics, and so naturally 
most people don't use them all that much. The 
trouble is that nature doesn't give babies the axi
oms at birth. They have to figure stuff out other 
ways: by analogies, metaphors, abductions, gen
eralizations (there are a lot of words for this think
ing, but none of it is well defined). And having 
figured out their whole world in this way, they 
figure out mathematics in the same way. In fact, 
something that is a fascinating (but hard) question 
for me is how those of us who have figured out 
how to reason mathematically when all we had to 
use were nonmathematical ways of reasoning. 
I haven't looked hard at the Peano stuff yet, but I 
will now. 
David 

As her conversation with Reid continues, so do 
her mathematics classes. She keeps her collaborators 
informed of pedagogical moments from her class. 

On Wednesday, September 8, 2004, at 3:02 PM, 

Shannon Sookochoff wrote: 

Must write fast: 
Phillip: Why is it that a pair of intersecting lines 
have only one solution? 
Me: (with somefiustercmd some panic thinking of 
the word axiom) Maybe this is an axiom. (Write 
on the board AXIOM, having never mentioned it 
before.) 1 think it comes down to a decision by 
some mathematicians. We agree to consider a line 
to be a blah, blah, and we agree that when two lines 
intersect, they intersect at one point. 
Phillip: Kind of a definition, then. I see. 
Kelsey: So what is an axiom? A system of two in
tersecting lines? 
Me: No, it is truth that we know to be true but are 
unable to explain why. Like ... I don't know. We 
will be talking about this more today though. 
Blaine: 1 know an axiom. (Holds up Mo fingers.) 
How many fingers am I holding up ... 

Gotta go get Jack. I' II send this home and pick up 
on it tonight. 

That night Sookochoff elaborated on the events of 
the September 8 Math 20 Pure class on systems of 
equations. 

Phillip: Why is it that a pair of intersecting lines 
have only one solution? 
Me: (with some fluster and some panic thinking of 
the word axiom) Maybe this is an axiom. (Write 
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on the board AXIOM having never mentioned it 
before.) I think it comes down to a decision by 
some mathematicians. We agree to consider a line 
to be an infinite array of points (each of which is 
a solution to an equation that we recognize to be 
y = mx + b). And we agree that when two lines 
intersect, they intersect at one point. 
Phillip: Kind of a definition, then. I see. 
Kelsey: So what is an axiom? A system of two in
tersecting lines? 
Me: No, it is a truth that we know to be true 
but are unable to explain why. Like ... I don't 
know. We will be talking about this more today 
though. 
Blai11e: I know an axiom. (He holds up two fingers.) 
How many fingers am I holding up? 
Me:Two. 
Blaine: How do you know? Which one is one? 
Which one is two? 
Me: (smiling without wz_vthing to say) Let's make 
it even simpler. I'll hold up one finger. How many 
fingers am 1 holding up? 
Many: One. 
Me: How do you know? (Students are pleased.) 
Phillip: Because you have five fingers, you are 
holding 4 down, which leaves one standing. (The 
class is happy to have proven what I suggesred 
was unprol'able.) 
Later in the class, after groups of four worked on 
explaining why we can multiply both sides of an 
equation by 3 ( or any number). Their explanarions 
ranged from a concrete example: 2 x 3 = 6, 
(2 x 3) x 3 = 6 x 3, 18 = 18, so it works, to "each 
side of the equal sign is in direct proportion to 
itself"; lots of mention of balance; one student 
related the equality to a basketball game in which, 
1,t•hen subbing in a11d out, each side must always 
hal'e five players on the court at one time. After 
sharing all of this I drew their attention to the 
difficulty of the task; they seemed to need to state 
the truth within the truth. Yet. we all u11derstood. 
"Thar," I said, "makes this idea an axiom. No 011e 
in this room can explain it. We accept all of the 
examples and comparisons. We agree that we can 
multiply both sides of an equation by a constant 
and not change the equality. So it is our axiom. " 
Kelsey: So something like "cookies are sweet" is 
an axiom? 
Me: I don't know; can anyone in here point to an 
explanation of cookies are sweet? 
Phillip: Yes, it has something to do with taste buds 
and biology. 
Me: So, Kelsey, Phillip thinks he could get to an 
explanation about that, so no, it is not an axiom. 
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And then I gave them notes stating rhe axiom in 
the form "ifm = n, then km= kn" and expanded 
from here TO division, addition, and subtraction. 
Note: Earlier in the day (period I) a student, I 

can't recall who, said rhar "we can multiply both 
sides of an equation (she was thinking about an 
equation in two variables) by a constant because 
when we do, the new line generate.1· a new point 
on top of the original point in the original line." 
She was referring to coincident lines and I think 
she said it berter. I'll ask wmorrow.' 
Shannon 

The e-mails and transcript above could be analyzed 
in number of ways. But, because this is action research, 
and Sookochoff is reAecting on her own teaching, the 
analysis here examines how the above exchanges 
have transformed her thoughts and opened new pos
sibilities for future teaching. Sookochoff writes: 
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Phillip's first question asking how we are sure that 
there is only one point of intersection has me play
ing out some of the other options that I had in 
forming my response. 

1. Probe Phillip's question more to determine 
whether it was grounded in the graph or the 
solution set for the system. If Phillip was think
ing completely graphically, then I might have 
asked him to visualize two intersecting lines. 
two coincident lines and two parallel lines. But 
he may have been asking for my help to make 
the leap from two different solution sets from 
two different linear equations to the solution 
set for the system of equations. Or he may have 
been constructing the link between the solution 
set and the graphical representation of the 
system and its solution. 

2. Move toward a group explanation of why two 
distinct and nonparallel lines in a plane inter
sect in exactly one point. I don't think I had 
thought of an explanation at the time, so I 
could not have led such a discussion until these 
last few weeks. 

3. Call the knowledge axiomatic and explain 
what that means. This is what I chose to do 
and I am convinced that my choice, although 
tine, was influenced by my not having an ex
planation at the time and my then current 
struggle with the meaning of axiom. It worked 
well to engage students in meaning making 
and group discussion. Students seemed to like 
talking about the explainabil ity of an idea and 
were intrigued with the idea that definitions 
and axioms stand outside the assertions that 
we can reason out. 

4. Or I could have offered something that com
bined my response to Phillip with my response 
to Kelsey. I could have said, "I don't have an 
explanation right now. Does anyone else? Do 
we all accept that it is true? Can anyone think 
of an example? How about a counterexample? 
Well, IF we do not have an explanation AND 
we accept the idea to be true, THEN in our 
classroom at this moment we will call the idea 
an axiom. If we are able to find a convincing 
explanation in the next while, we will move it 
from the axiom board and onto the theorem 
board." 

I like #4 the best right now, because it brings all 
sorts of reasoning to bear. Had I used that response, 
I would have been asking kids to sort types of truth, 
the proven versus the axiomatic. In the few ques
tions I have listed in response #4, I have referred 
to all of the reasoning outcomes from the curricu
lum.6 The call for a specific example or counter
example builds toward an inductive approach to 
testing the idea, alluding to outcomes 4.1 and 4.3. 
By using the connecting word and and structuring 
the definition of axiom as an if-then statement, I 
embed outcomes 4.2 and 4.4 into a student
initiated conversation. And last, in the sorting of 
mathematical truths into axioms and theorems, we 
create a space and community-specific need for 
what 1 see as the most difficult of the reasoning 
outcomes: proving an assertion (outcome 4.5). 
Teaching in this way elevates mathematical reason
ing from a discrete unit to an ongoing process and 
the connective syntax of the mathematical concepts 
we study. 

I think, too, that #4-let's call it "Attempt/postpone 
the explanation and sort the assertion"---can live 
in many contexts in the mathematics classroom. 
Students are remarkable in their ability to question 
why an assertion is true; they ask their teacher, 
'"Why does the discriminant tell us how many roots 
we can expect for a quadratic?"; "Why do we 
switch the inequality sign when we multiply both 
sides of the inequality by a negative number?"; 
"Why do the roots of an equation have so much to 
do with the factors when the equation is set to 
zero?".7 Their questions point, I think, to our stu
dents' inherent need for proof. Recognizing the 
students' questions as evidence of their need for 
proof allows the teacher to feed that need and thus 
brings students into the culture of proving in 
mathematics. 

This brings me to focus on the two categories of 
truth I mentioned above: proven and axiomatic. 
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I suggest that much of teaching explores the ten
sion between these two ways of viewing assertions. 
I also suggest that one problem in our mathematics 
classrooms (and maybe in many other classrooms, 
as well) is our treatment of most knowledge as 
axiomatic-"Itjust is!" My own jump to label "two 
distinct and nonparallel lines in space intersect in 
exactly one point" as axiomatic is a case in point. 
In asking me why, Phillip challenged my mathe
matics ability. To answer him, I needed to honestly 
ask myself why. I needed to resist panic in the face 
of public uncertainty. I needed to make transparent 
a vital mathematical task, one in which I ask why 
something I take to be true is indeed true. And I 
needed to know, in both an emotional and an intel
lectual way, that not knowing why is legitimate. 
In exposing the struggle to explain why and enter
taining the possibility that we cannot, teachers can 
underscore the nature of the mathematical asser
tions brought forth in the classroom. It should be 
noted, too, that the explainability of a given asser
tion can be decided in each specific classroom
what is an axiom for me and my students today 
may not be for my colleague down the hall. And 
six months from now, my students and I may find 
that we can indeed explain what we thought was 
an axiom. 

Proof, Proving and Reasoning 
Through Action Research 

With the illustration above we are able to respond 
to the research questions we posed when we began 
this study. But in the true nature of action research, 
these questions are not answered once and for all. 
Rather, we are able to identify additional questions 
to work on. 

There are some things, Sookochoff believes, that 
worked to promote proving and reasoning activity 
among her students in those Grade 11 mathematics 
classes. We did well to 
• integrate reasoning and proof into all content areas; 
• put students into groups for proving together in 

discussion with one another; 
• post theorems, colour-coded as to proven or ac

cepted as true and identified as Grade 11 or pre
Grade 11 theorems, so as to have them available 
in the public domain; 

• deal with theorems and vocabulary as needed; 
• publish a collection of all that we know to be true 

for the class members; and 
• ask the question, "We seem stuck; can anyone offer 

something that might get us unstuck?" 
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Of course, there are the things that Sookochoff will 
further develop the next time she teaches. Her notes 
to herself include the following advice: 
• Keep expectations for student proving focused.8 (To 

some extent, Sookochoff found that the specific 
standards for circle geometry,9 which require stu
dents to prove two particular theorems from circle 
geometry, did not encourage this focused approach.) 

• Go back and forth between specifying, proving and 
applying. (In Sookochoff's reaching of geometry, 
it was tempting to separate these proving activities, 
which she thinks obscured the connections be
tween them.) 

• Engage students in the issues of proof. The conver
sations would ideally come out of student ques
tions and comments. However, some topics that a 
teacher might consider and could deliberately 
initiate, perhaps in a daily I 0-minute group con
versation, are listed below. 
., When can we name a proof as " __ Theorem" 

and never again prove it? (We can make this 
happen by clearly titling and posting the assertions 
that our community accepts or proves to be true.) 

., Who decides how much is enough explanation? 
,, Which truths have converses and contraposi

tives that are true? Which do not') 
What does shifting from "Is this true?" to "What 
makes you sure this is true?" signify? 

,, Is proof beautiful? (This could be a chance to 
share some particularly beautiful proofs from 
our canon-perhaps the Pythagorean Theorem, 
with its many proofs and unquestionable fame, 
could highlight the desire to explain why we 
know over ,vhether we know.) 

., What is the difference between a definition, an 
axiom, a theorem and a postulate? (This relates 
nicely to the sample lesson discussed earlier.) 

., What is the nature and structure of a legal argu
ment? Forensic evidence? Literary essay? 
Opinion paper? And how do they compare to a 
mathematical proof? 

In terms of a teacher's practice we have addressed 
the questions that focused our study. We leave the 
reader with some more pointed responses to those 
same questions. 

We asked, "What is the nature of the questions/ 
tasks offered to students that encourage proof and 
proving actions?" Every high school teacher has 
asked some version of the question Sookochoff posed 
to her IB students: 

x +Sy= 10 

3x + 15v = 30 

What values for (x, y) satisfy both equations? 
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There is nothing remarkable in the question. The differ
ence lives in the context in which the questions were 
posed. From our work we have seen that it is essential 
to create space for responding to questions that arise 
from the desire for meaning making. (This works at 
the level of both teacher and student meaning mak
ing.) For the students, those spaces emerged in large 
group discussions that invited conjectures, challenged 
ideas and demanded reasoning. For the teacher, the 
space was created by having colleagues interested in 
the conversation of proof and proving. Our research 
suggests to us that the questions teachers ask must be 
accompanied by an inquiring stance, intense curiosity 
and a desire for things mathematical. 

Also of interest to us was how a teacher might 
recognize features of proving and proof in student 
conversation and in the questions students pose. ln 
this case, it was evident that the conversation between 
Sookochoff and Reid was key in Sookochoff's mean
ing making. However, it was close listening-that is, 
listening for student meaning making rather than 
listening for an expected particular response-that 
led to opportunities for Sookochoff to recognize proof 
and proving in student responses. 

We asked how valuing student need for proof and 
proving would change current evaluation practices 
and rubrics for student work. Clearly, asking students 
to reason is key to any assessment. Finding ways to 
evaluate their responses is the challenge, and we will 
address it in a future paper. 

Finally, we wondered how much room there is in 
the curriculum for analogical reasoning, unformulated 
proving and preformal proof. We purposely used an 
illustration from a nontraditional topic for addressing 
proof and proving in our high school mathematics 
curriculum. The wonderful pm1 of this action research 
study was the deliberate intention to integrate proof, 
proving and reasoning throughout all the topics in the 
curriculum. Further evidence that there is plenty of 
room for reasoning in school mathematics will be 
offered in future papers. 

In this paper we have illustrated how a teacher, 
engaged in action research in collaboration with col
leagues, worked on her own understanding of math
ematics, mathematics pedagogy and mathematics 
curriculum. We hope that classroom teachers benefit 
from our research in two ways: (I) as a strategy for 
working on their own teaching questions, and (2) for 
working on proof, proving and reasoning in high 
school mathematics. Further, we hope that university
based and school-based researchers find in our study 
some inspiration to work towards truly collaborative 
approaches to educational research that creates deeper 
understanding of mathematics teaching and learning. 
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Notes 

I. Formal reasoning outcomes: 
4.1 Differentiate between inductive and deductive rea

soning. 
4.2 Explain and apply connecting words, such as and, or 

and not, to solve problems. 
4.3 Use examples and counterexamples to analyze con

jectures. 
4.4 Distinguish between an if-1he11 proposition, its con

verse and its contrapositive. 
4.5 Prove assertions in a variety of settings, using direct 

reasoning. 
Circle geometry outcomes: 
5.2 Prove the following general properties, using estab

lished com:epts and theorems: 
• The perpendicular bisector of a chord contains the 

centre of the circle. 
• The angle inscribed in a semicircle is a right angle. 
• The tangent segments to a circle from any external 

point are congruent. 

5.5 Verify and prove assertions in plane geometry, us
ing: coordinate geometry and trigonometric ratios as 
necessary 

2. During the marking of the June 2005 diploma exams, 
teachers talked with (>ne another about getting better results on the 
exam. One strategy was to reduce the time spent on the Math 20 
Pure unib that had no follow-through in Math 30 Pure to give 
them more time to spend on items that relate directly to Math 30 
Pure. They specifically talked of reducing the item on reasoning 
to a take-home booklet. 

:i. This last question requires some clarifications. The impor
tance of analogical reasoning in mathematics has hcen described 
at length by P61ya ( I 968). It involves m:iking a conjecture based 
on similarities between two situations. Formulation of proving 
refers to the reasoners' knowledge or aw::ireness of their own 
reasonin!,!. U11fim1111/med pm1·i11!! refers to deductive reasoning 
of which the n:asoner is mostly or complerely unaware. Prefor

mal proofs (Blum and Kirsch 199 I) are ,1 step in the direction 
of accept,1ble mathematical proofs. They might involve hidden 
assumptions and use informal language and notation, and might 
also include references to analogical or inductive evidence for 
a conjecture. 

4. We chose not to elaborate on the evolution of the co
researchcrs' understanding. 

5. This tensilin is related to another thilt also c::iuses difficulty 
for mathematics educators. Pr(){f has different meanings in 
diffrrent institutional contexts (Recio ilnd Godino 2001 ). Most 
imp()rt::int here. pm1!f'has one meaning in logic ,rnd the foundn
tions or mathcmalil·s. and another meuning in the practice of 
professional mathematicians. In logic and foundations of math
ematics. proof is connected to deductive argument;itions that 
take place in axiom.Hie and formal systems. In the prc1ctice of 
prof.:ssional mathematicians. however, while "'deductive proof is 
the prowtypic:il pancrn of mathematkal proof ... this formalist 
rigor decreases in practice•· (p 94). Similarly, words like axiom 
ha\'e different meanings in these two institutional contexts. 
The Pc�rno axioms discus.sed in the e-mails are not the formal 
versions. but rather the less formal ones used by professional 
mathematicians in their practice, and as Shannon is a teacher of 
mathematics, not of foundutions or logic, her meanings for proof 
and axiom ure based in the practices of mathematicians, not in 
the form.ii isms of logicians. 
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6. Formal reasoning outcomes: 

4.1 Differentiate between inductive and deductive 
reasoning. 

4.2 Explain and apply connecting words, such as and, or 
and ,wr, to solve problems. 

4.3 Use examples and counterexamples to analyze 
conjectures. 

4.4 Distinguish between an if-then proposition. its con
verse and its contrapositive. 

4.5 Prove assertions in a variety of settings, using direct 
reasoning. 

7. I deliberately did not list a question from geometry because 
students did not tend to offer their 1rhy questions there. Perhaps 
they needed no convincing when they could see the: truth appar
ent in a visual illustration. It is ironic. then. that we often situate 
the task of proving wirhin geometry, where students do not seem 
to need proof. 

8. The task of writing proof.� where algebra, plane geometry, 
coordinate geom..:try and trigonometry come 10 bear is highly 
complex. Students must bring together many years of their edu
cation in mathematics. And they must form a logical sequence 
of statements and reasons in a way that satisfies their teacher's 
idea of whar proof looks like. Most Grade 11 students find this 
ovc:rwhelming. Instead of proving these particular a.,scnions from 
circ:le geometry, perhaps the Grade 11 students would he better 
served by engaging in more narrowly defined proving tasks, 
,uch as discussing why they are sure of a particular property of 
equivalence relations. Alternatively, the theorem to be proven 
could have a greater cultural/historical importance (and thus be 
a better motivator for students) than the theorems from circle 
geometry. Examples here could be ••interior angles in a triangle 
a<ld up to 180 degrees" or the Pythagorean Theorem. However, a 
small canon of finely crafted and estahlished proofs could make 
excellent class reading. As currently written, the curriculum 
seems to encourage students to memorize the two 11;1med proofs. 
And memorization is not a proving task. 

9. Circle geometry outcomes: 
5.2 Prove rhc following general properties, using e,tab

lished rnncepts and theorems: 
• The perpendicular bisector of a chord contains the 

centre of the circle. 
• The angle insc1·ihed in a semicircle is a right 

angle. 
• The tangent segments to a circle from any external 

point are congruent. 
5.5 Yt:rify and prove assertions in plane geometry, us

ing coordinate geometry and trigonometric ratio, a., 
necessary. 
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