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GUIDELINES FOR MANUSCRIPTS 
--------- ------

delta-K is a professional journal for mathematics teachers in Alberta. It is published twice a year to 

• promote the professional development of mathematics educators, and 
• stimulate thinking, explore new ideas and offer various viewpoints. 

Submissions are requested that have a classroom as well as a scholarly focus. They may include 

• personal explorations of significant classroom experiences; 
• descriptions of innovative classroom and school practices; 
• reviews or evaluations of instrnctional and curricular methods, programs or materials; 
• discussions of trends, issues or policies; 
• a specific focus on technology in the classroom; or 
• a focus on the curriculum, professional and assessment standards of the NCTM. 

Suggestions for Writers 

1. delta-K is a refereed journal. Manuscripts submitted to delta-K should be original material. Articles cur
rently under consideration by other journals will not be reviewed. 

2. All manusc1ipts should be typewritten, double-spaced and properly referenced. All pages should be numbered. 
3. The author's name and full address should be provided on a separate page. If an article has more than one 

author, the contact author must be clearly identified. Authors should avoid all other references that may 
reveal their identities to the reviewers. 

4. All manuscripts should be submitted electronically, using Microsoft Word format. 
5. Pictures or illustrations should be clearly labelled and placed where you want them to appear in the article. 

Please also include all graphics as separate files (JPEG, GIF, TlF). A caption and photo credit should ac
company each photograph. 

6. References should be formatted using The Chicago Manual of Style's author-date system. 
7. If any student work is included, please provide a release Jetter from the student's parent/guardian allowing 

publication in the journal. 
8. Limit your manusc1ipt to no more than eight pages double-spaced. 
9. Letters to the editor and reviews of curriculum materials are welcome. 
I 0. Send manuscripts and inquiries to the editor: Gladys Sterenberg, 195 Sheep River Cove, Okotoks, ABT l S 2L4; 

e-mail gladys.sterenberg@uleth.ca. 

MCATA Mission Statement 

Providing leadership to encourage the continuing enhancement 
of teaching, learning and understanding mathematics. 
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EDITORIAL ______________ _ 

As the school year draws to a close, I am looking forward to some deserved relaxation. However, I know 
that many of us use the summer break as an opportunity to reflect on our teaching practice and to search for 
new ideas for engaging students in mathematical inquiry. This issue presents such opportunities. 

Our annual convention of the Mathematics Council of the Alberta Teachers' Association (MCATA) in October 
was very successful. rm continually impressed by our teachers' level of commitment to professional develop
ment in mathematics education. The photographs. Martina's report and this invitation to the next conference 
remind us that these events are important professional and social occasions. Please consider joining us for the 
2007 MCATA convention, "Mathematical Tapestries: Weaving the Connections." at the Fantasyland Hotel in 
Edmonton, October 18 to 20, 2007. 

I am thankful to the authors and reviewers who work di Ii gently to provide us with thought-provoking ideas 
and suggestions for teaching. I encourage those of you who have created learning opportunities for your students 
to share these ideas with the community. Lesson plans. teaching ideas, and research papers related to teaching 
arc all welcome. The summer presents an opportunity for you to write an article for de!ta-K. Please contact me 
if you want more information or help with this process. 

In past issues I have invited your responses to articles in delra-K, but they have not been forthcoming. This 
publication offers an excellent opportunity for you to respond to ideas being presented here. If you have ex
perimented with a teaching idea or have reflected on the content of an article, please write an editorial or reader's 
re�ponse and forward this to me for inclusion in the next issue. Also. if you are encountering challenges or joys 
in the planning or implementation of the new curriculum, please share them. Your responses can provoke ad
ditional thought and can initiate a professional conversation in our community. 

Glad_vs SterenberR 

2 delra-K. Volume 44, Number 2, June 2007 



FROM YOUR COUNCIL 
--------- - - -----------

From the President's Pen 

Algebra has become the new Latin. In the past, the 
ability to master the classic languages of Latin and 
Greek was seen as an indication that a person had the 
intellectual ability to deal with higher education. Of 
course, knowledge of Latin and Greek also meant 
that a person had money and had been educated in 
the finest fashion. 

In the new age of technology, Calculus and Geek 
have replaced the old classics. Postsecondary institu
tions, particularly those in Alberta, are using a certain 
kind of mathematics as their filter to decide whom to 
admit to their institutions. It is a little known fact that 
you can be admitted to university in Alberta with a 
second language (perhaps Latin, but more likely 
French) and without mathematics. This of course 
limits your options. If, however, you wish to be able 
to select from a wider range of possibilities then only 
algebra and calculus will do. 

Reality says that in any situation where there is a 
need to limit access to a scarce resource (in this case, 
postsecondary education) a mechanism will be found 
to decide who does and does not fit. 1 have no desire 
to argue whether or not mathematics should be that 
limiting factor. In some cases the mathematics itself 
is essential; in others the ability to think logically and 
analytically is what is needed. In some cases it is 
difficult to understand why mathematics is the chosen 
filter. 

As a teacher and principal of students in elemen
tary school, I see that the effects of "mathematics as 
gatekeeper'' are reaching downward. The proposed 
new cuniculum for K-9 mathematics in Alberta has 
a much more explicit emphasis on representing alge
braic expressions. 
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Recently I have been engaged in discussions about 
the development of algebraic thinking in elementary 
students. There are those who think that if students 
have difficulty with algebra in junior and senior high 
school, then starting algebra earlier is the solution. 
They seem to think that substituting letters for unknowns 
in simple equations prepares children for quadratics. 

I would argue that extensive experience with al
gebraic thinking rather than algebra would better 
serve our elementary students. When children extend 
patterns beyond what can easily be listed and when 
they argue the reasons behind their conjectures, they 
are engaging in algebraic thinking. When students 
state pattern mies in words, they are thinking alge
braically. Moving flexibly between pattern represen
tations, stating the relationships that underlie those 
patterns and detecting regularities in the world all 
prepare children for later algebra. 

Young children are context dependent. A relevant 
problem that is set in a meaningful context is easily 
solved. A problem in an unfamiliar or unspecific 
context is much more difficult for them. By providing 
extensive and deep experience with patterns in con
text we provide a strong foundation for the later work 
of abstract algebra. Those who confuse algebraic 
thinking with the use of algebraic notation and who 
focus on the latter will confuse students and cause 
them to avoid algebra. 

This is my last "From the President's Pen" for 
deltu-K. It has been a challenging two-year term and 
l have appreciated the oppc.munity to express my ideas
in writing. I look forward to reading many more issues
of delw-K.

Janis Kristjansson 
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MCATA Conference 2006 

Message from the 
Conference Chair 

Jasper Park Lodge provided a beautiful setting for 
Conference 2006: Pathways to Understanding. It was 
a long trip for most who attended, but we (eceived 
very positive feedback about the venue. 

Dr Anne Watson (Oxford University, UK) led 
Thursday's leadership symposium. Participants en
gaged in many mathematical activities that both 
challenged conventional ways of thinking imd al
lowed them to experience how their own examples 
can be used to open up new levels of understanding 
and new possibilities for investigation. Anne invented 
a new verb when she announced that "I can see you've 
all been Torn Kierened," a nice tribute to Alberta's 
mathematical community. 

Professor John Mason from the Open University 
in the United Kingdom officially kicked off the con
ference with a thought-provoking talk about how we 
might direct attention in the mathematics classroom. 
Rumour has it he was up a good part of the night in
corporating new ideas into his talk to address common 
concerns that he became aware of through many con
versations during the week prior to the conference. 
Even with a crowd of over 300, he was able to stimulate 
thought-provoking conversations about mathematics. 
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John and Anne have generously provided copies 
of all of their talks, and they are available on the 
MCATA website at www.mathteachers.ab.ca. 

We hosted 63 sessions on Ftiday and Saturday, and 
we received a great deal of positive feedback on their 
quality. We offer a huge thank you to the speakers 
who shared so much of their passion, time, and energy 
in presenting their ideas and engaging in the meaning
ful conversation that emerged from them. 

Dr Edward Burger's after-dinner talk was both 
inspiring and entertaining. I have heard his reminder 
to ask, "What will they remember 20 years from 
now?" repeated several times since the conference. 
For those who are interested, his ''Top Ten Life Les
sons" are also posted on the MCATA website. 

On behalf of MCATA, I would like to extend con
gratulations to Nicole Patrie. this year's Dr Arthur 
Jorgensen Chair Award winner, and to Gerald Krabbe. 
the 2006 Mathematics Educator of the Year. Also, a 
big thank you to this year's Friends ofMCATA, Geri 
Lorway and Len Bonifacio. 

On behalf of the conference committee, I would 
like once again to thank the speakers, displayers, and 
participants who came together to share their common 
interest in mathematics education at the 2006 
conference. 

Martina Mer:. 
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The Right Angle: 
Report from Alberta Education 

Jennifer Dolecki 

In the last instalment of "The Right Angle'' we 
looked at the curriculum development and implemen
tation cycle. 

Review 

Consult, 

Collaborate 

and 

Communicate 

Develop 

Initiate 

In this instalment we will take a closer look at 
where the mathematics programs of study fit in this 
cycle. The math curriculum has undergone revisions 
approximately every IO to 15 years over the past 25 
to 35 years. 

Currently two courses are in the maintain phase: 
Mathematics 3 l and Mathematics Preparation I 0. 
The remainder of the K-12 mathematics program is 
in either the development or the implementation 
phase. 

For K-12 mathematics, Alberta Education works 
with the Western and Northern Canadian Protocol 
(WNCPJ to develop a common curriculum frnmework 
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(CCF) that can be used by all of the WNCP jurisdic
tions to develop their own programs of studies. The 
WNCP CCF for K-9 Mathematics was completed in 
May 2006. 

Since the CCF was completed, Alberta Education 
has worked to modify it to ensure that the specific 
needs of Alberta students are met. The Albert.a Pro
gram of Studies for K-9 Mathematics will be com
pleted by January 2007 and will be posted on the 
Alberta Education website. 

The implementation schedule of the new program 
is shown below. 

2007 2008 2009 2010 

Optional K, I, 
2.5,8 3,6,9 

Implementation 4, 7 

Provincial K, I, 
2,5,8 

3, 6, 

Implementation 4, 7 9, 10 

Planning for the implementation of kindergarten 
and Grades 1, 4 and 7 is already under way. Regional 
consortia offered junior high workshops during the 
2005/06 school year, and in the 2006/07 school year 
they are offering Division I and II workshops. These 
workshops will continue into the 2007/08 school year. 
Work has started on an online guide to implementa
tion, which will be ready for the optional implementa
tion year. The online guide will use the same platform 
as the social studies online guide so that teachers will 
be familiar with how to navigate in that environment. 
Plans are also underway for a mathematics institute 
in July 2007 to focus on kindergarten and Grades l, 
4 and 7. 
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FEATURE ARTICLES 
-- ---------------------

The Teacher/Researcher and Proving in 
High School Mathematics 

Shannon Sookochoff, Elaine Simmt and David Reid 

Proof and proving is largely unsuccessful in school 
mathematics (Reid 1995). "This lack of success seems 
to be related to an incompatibility between the picture 
of proving portrayed in schools, and the role of deduc
tive reasoning in professional mathematics and in 
students' lives" (PhD diss). Based on our reading of 
the high school program of studies and support ma
terials, there is certainly a narrow view of what con
stitutes proof and reasoning, and little, if any, advice 
on how to teach and assess it. For example, the As
sessment Standards for Pure Mathematics 20 rele
gates reasoning to a set of seven seemingly simple 
outcomes 1 (Alberta Learning 2002), which some 
teachers choose to cover in a short take-home pack
age.2 Further, proof and reasoning is addressed in one 
of the two approved mathematics textbooks (Addison
Wesley) as formal and deductive geometric proofs 
that are based on a set of given and well-established 
geometric truths rather than based on and emergent 
from student meaning making. The teacher is left to 
develop instruction that engages students in mathe
matical reasoning. Interestingly, the current focus on 
proof as formal verification has been shown to be a 
poor motivator for students, since it does not address 
their needs when doing mathematics (Reid 1995). In 
this study, we explored possibilities for more mean
ingful and engaging experiences for high school 
students with mathematical proof by being attentive 
to their meaning making, their need for proof and 
their actions toward proving. 

We investigated what happens when a teacher 
broadens her vision of proof and proving in mathe
matics. Reid's work points to a variety of possibilities 
for proving in mathematics; yet the reasoning in high 
school mathematics classrooms is often limited to 
proof as verification, reasoning as deductive, proving 
as mechanical and formulaic (a� illustrated by algebraic 
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proofs in trigonometry) and proofs as formal (eg, 
two-column proofs in Euclidian geometry). Specifi
cally, we asked 

• what is the nature of the questions/tasks offered
to students that encourage proof and proving
actions?

• how might a teacher recognize features of proving
and proof in student conversation and in the ques
tions students pose?

• how would valuing student need for proof and
proving change current evaluation practices and
rubrics for assessing student work?

• how much room is there in the cutTiculum for ana
logical reasoning, unformulated proving, and
preformal proof?'

Using Action Research 
to Prompt the Growth of 
Pedagogical Understanding 

Over the last decade, Sookochoff has found herself 
doing action research "by accident." She describes 
her pattern of professional improvement in the fol
lowing passage. 

First, I have to face some truths that are uncom
fortable to some: I do not know everything about 
the mathematics I teach and even what I do know 
is worth reconsideration; nor do I know everything 
about the students I teach; nor do I have the time 
to keep abreast of research literature that might 
inform and shape my practice. What I do have is 
a sincere curiosity about mathematics and about 
knowing it-so much so that I am compelled to 
engage in an intense process of action research, 
despite the constraints of time I face as a practising 
classroom teacher. Here is what I have done. 
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First, I identify a central theme around which I 
want to grow. I have used polynomials, irrational 
numbers, rational expressions, linear algebra and, 
in the case of this paper, reasoning and proving. 
All of these explorations started with a great dis
satisfaction with the way my teaching and knowing 
mathematics were playing out in the classroom. 
My irritation was motivated sometimes by student 
frustration, sometimes it was by a sense of confu
sion. as though the curriculum were not supporting 
me. or as though the topic were fractured and rid
dled with unimportant details that I could not 
possibly make relevant to students. Once, as in the 
case of linear algebra, I just wanted to expose 
myself to hard ideas and feel what it was like to 
learn outside my area of comfort. 

Then (and I only see this pattern now) I summon 
my math friends, people I've taken courses with 
or from. teachers and mathematicians I have met 
at conferences. Mostly, I do this through e-mails. 
written late at night. when my own kids arc asleep, 
and when my mind is burning with a question from 
the day's activity. I fire out the e-mail and I wait. 
And the miracle is that I don't wait long. It is 
amazing to me how fellow teachers and mathema
ticians are eager to engage in thinking about the 
work we love. 

Things move quickly and somewhat chaotically 
after that. Letters go back and forth about the re
search that might relate or about some mathematics 
that could enrich what I am working on. My teach
ing and mathematics evolve daily. My students 
become part of the process, empowered by the fact 
that I take their questions and utterances to my 
network of internet colleagues. And I end up feel
ing so charged with the energy of all these 
interactions. 

There are results I can see right away. But, as 
years pass, at least two, I seem to enter a new phase. 
The excitement fades and I can more calmly select 
from the sea of ideas that were generated in that 
recursive chaos. It is in this phase that I am able 
to edit out the mathematics that might have fasci
nated me. but that obscured something for my 
students. It is in this phase that I see the curriculum 
clearly and with ownership. I know I've accom
plished something important in my teaching when 
that feeling of irritation and confusion is gone. 
Instead, I am steady. 

This paper is a record of some of my working 
through of the proving outcomes in Mathemat
ics 20 Pure. The impulse started out of a feeling 
of irritation (that in this case is not quite resolved) 
with the way the resources. the curriculum, my 

background and my students were interacting. T 
found myself complaining about the unit. The 
complaints led me to my friend, Elaine Simmt, 
who suggested I talk to David Reid, whose research 
has centred on student proof and reasoning for 
some l O years now. From there, the process 
evolved just as I described above-with one excep
tion: after about a year of infonnal chat on the 
matter of proving, we applied for and received a 
research grant from the Alberta Advisory Commit
tee for Educational Studies. This allowed us to 
document some of what happened i n  the 
classroom. 

Sookochoff initiated an action research project in 
which she incorporated outcomes for formal reason
ing in a number of units of instruction, rather than 
only in the unit typically used to teach proof and 
reasoning. The study involved two Pure Mathemat
ics 20 classes and one Mathematics 20 International 
Baccalaureate class over the course of one semester. 
With her coresearchers. Sookochoff worked on her 
practice through conversations about proof, proving, 
reasoning, tasks and assessment. In the spirit of action 
research, she began with a question about practice 
and worked on it through cycles of planning, imple
menting, evaluating and questioning. With three 
classes each working on the same content and pro
cesses, she was able to try out tasks and strategies 
with one class, develop the tasks and strategies further 
and use them with another class. Because the research 
took place over a whole term she also was able to 
work through the cycle in the context of differing 
content. 

All unit planning documents, student handouts and 
assessment tools, as well as student work, were col
lected. So, too, were e-mail messages among the re
search team and notes based on their face-to-face 
conversations. Approximately 20 per cent of the les
sons were observed by one of the coresearchers. In 
those classes, observation notes were taken and audio 
tapes of selected student groups were made. 

In summary, Sookochoff, in consultation with 
Simmt and Reid. developed lessons and units to 
promote proving. She taught the lessons and then 
reflected on them through further discussion; those 
discussions informed subsequent lessons. In this pa
per we elaborate on the action research project 
through the presentation and discussion of one par
ticular lesson. We include records of e-mail corre
spondence. a transcript from the lesson, and an analy
sis of the relationship between those two things and 
Sookochoff's evolving understanding of teaching and 
mathematics.� 
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A Lesson in Definitions 

The following section is intended to illustrate the 
action research process and a particular pedagogical 
concern that arose in Sookochoff's lesson (includes 
the planning, implementation and reflection of the 
lesson). The section begins with an e-mail message 
from Sookochoff to her collaborators prior to her 
planned lesson and continues with their responses. A 
short transcript taken from the lesson as it played out 
in the classroom prompts further reflection by 
Sookochoff. 

On Monday, September 06, 2004, at 6:40 PM 

Shannon Sookochoff wrote: 

Hi again, 
I have asked my 1B students (they are running 
ahead of the others) to think about the following 
for homework: 

x + Sv = 10 
3x + I Sy= 30 
What values for (x, y) satisfy both equations? 

Then, when they are confronted with an infinite 
set, I will ask: Given x/3=20, how do we solve?" 
Students will respond. "What mathematics do _,·ou 
know that makes vou able to ______ _ 
______ ? ( Perhaps they will say "multiply 
borh sides of the equarion by 3. ") My idea is that 
we will come face to face with properties of 
equivalence relations that we need to build on in 
order to make solving by elimination work. 
How might I explain why I can multiply both sides 
of an equation by a constant without changing the 
solution? Well, I think that I would draw an anal
ogy: Do you accept that an equivalence relation 
is like a balance scale? If so, then let's put one 
third of an object on one side, and 20 units on the 
other. They balance. But we don't like only knowing 
what one third of the object weighs. We reason that 
we could triple each of these equal sides. making 
the unknown object whole and making the other 
side of the scale 20 x 3, or 60. So we see that the 
unknown object weighs 60. And we can \'er(fy that 
one third of60 is 20. 

Is this analogical reasoning sound? How might 
you demonstrate the reasoning behind what ends 
up being a property of equivalence relations? 
Shannon 

Sookochoff, in planning for her lesson, is doing a 
thought experiment as to how the lesson might play 
out. She draws from her understanding of linear equa
tions and linear systems, as well as from her under
standing of equivalence. David Reid responds to her 
inquiry by suggesting she use the notion of an axiom-
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something that ties directly to proof and proving. 
Sookochoff is excited by this possibility and searches 
for meaning and ways to include the notion of axiom 
into the class discussion. This tone of inquiry is at the 
heart of action research. 

On Tuesday, September 07, 2004, at 4:32 AM, 

David A Reid wrote: 

The analogy is a fine analogy, but why not try to 
make reference to something they might accept as 
an axiom/postulate? 
If a = b, then ka = kb. 

An equation is a statement that two things are 
equal. If they are equal, then the above axiom/pos
tulate lets us multiply both sides by anything we 
want. I suspect IB students can cope with that. 

One tricky thing is the inequality. It is not true that: 
If a < > b, then ku < > kb 
because k might be 0. 

This is the basis for some nice proofs that I = 2. 
David 

On Tuesday, September 07, 2004, at 6:54 AM, 

Shannon Sookochoff wrote: 

Excellent I So, what is it about this truth that makes 
it an axiom/postulate? What tells me that I cannot 
prove it? What are the signs to the thinker that an 
idea is axiomatic? I think that this will need to 
become explicit today when the IBs come back 
with their explanations. So, if you are at your 
computer, David, do tell! Hey. I just thought of an 
answer to my question. Could it be that something 
is axiomatic in a particular community if no one 
in the community can prove it but everyone agrees 
that it is true? 
Shannon 

The conversation with Reid is important to her 
pedagogical understanding. Just writing to him is 
enough to trigger responses to her own questions. 

On Tuesday, September 07, 2004 7:52 AM, David 
A Reid wrote: 

> Hey. I just thought of an answer to my question. 
Could it be that something is axiomatic in a par
ticular community if no one in the community can 
prove it but everyone agrees that it is tme? 

Exactly! I paused for a moment about what to call 
the thing. First I put only axiom but then I decided 
it might not be so se(f-el'ident. Then I thought about 
how to prove it. I suspect I would have to go back 
to the definition of multiplication. I also suspect 
that what I am calling an axiom might be part of 
the definition. 
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> Excellent! So, what is it about this truth that 
makes it an axiom/postulate? What tells me that I 
cannot prove it? What are the signs to the thinker 
that an idea is axiomatic? I think that this will need 
to become explicit today when the IBs come back 
with their explanations. So, if you are at your 
computer, David, do tell! 

Just now I checked to see if it is part of the defini
tion based on Peano's axioms, which are a popular 
starting point for number theory. This is what I 
found: www.cut-the-knot .org/do_you_know/ 
mul_num.shtml 

Now I THINK I can prove IF a= b THEN 
ka = kb. 
But I have to go now. 
David 

After these fast-paced exchanges Sookochoff 
teaches the lesson. She w1ites to her research collabo
rators immediately after teaching the lesson to her 
three classes. 
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On Tuesday, September 07, 2004 9: 19 PM, Shannon 
Sookochoff wrote: 
Zowee! 
Even though my intent was to move from an in
consistent system, ie, no solution, ie, parallel lines, 
on to deriving elimination, instead, J was able to 
bring our entire conversation to bear. Here is 
how. 
Having asked students to consider why we can 
multiply both sides of an equation by a constant, 
they came back perplexed. I sensed a tension. ''This 
is easy but it is puzzling." Nicolai said just about 
that exact phrase. We noticed that in our various 
explanations, we ended up using the fact to explain 
the fact. It felt circular, yet we all agreed that the 
fact was true. I then defined the tension we were 
noticing as characteristic of an axiom. We gener
ated one for addition and two corollaries (usage?) 
dealing with division and subtraction. 
Then, I put four cases (A-D) on the board. 
A) What is the solution to 3x + 2y = 104 (related 

to but not limited by "three shirts and two 
sweaters cost SI 04")? I have an infinite 
solution set of all points (x, y) where y = 
(-3/2) x + 52. I have a line ifl think geometri
cally. Or I have a table of values with lots of 
possibilities. In fact I can see a pattern (the 
slope) in the integral points that I can generate. 
I use the following string of deductions: 1) Us
ing axioms of equivalence relations to isolate 
y, I recognize y ::: mx + b. 2) When I graph an 
equation of this form, I generate a line. (Would 
we call this an axiom for now?) 3) Lines are 

made of a set of infinite points, the slope of 
which is consistent (a definition). 4) If the 
equation generates a line, then the solution is 
the line, which is an infinite set of points. 

Other cases we considered: 
B) 3x+2y= l04and2x+y=60. 
C) x+3y=-10 and3x+9y=-30. 
D) x + 2y = 4 and 2x + 4y = 3. 
With each system, the entire class worked to describe 
the solution set using a string of deductions. 
This we got to with the IBs. (Then developed solv
ing by elimination.) 
The regulars are still thinking about cases C and D 
above. Their homework is to consider how they 
would describe the solutions sets for C and D. And 
your questions, Elaine rwhat does it mean to find 
a solution?], have been so powerful for me. The 
students really need time to see that a linear equa
tion in x and y ( especially where y is not isolated) 
generates a straight line and thus has infinite solu
tions. They will benetit from the discussion we had 
today in IB. 
I was surprised that all th is came together today 
and that I was able to say axiom without feeling 
too much like an impostor. 
I just looked at that Peano stuff and found it really 
hard to read. On the other hand, the stuff I read 
about in Lyn English's book was more lived rea
soning, I think. Am I pointing to a distinction that 
you two have noticed? One where Mason, English, 
Johnson and Lakoff are on one side of the contin
uum, and Peano (and others I don't know) are on 
the other? Is one considered more rigorous? 
Shannon 

As exciting and rewarding as the lesson was for 
Sookochoff, her desire to deeply understand proof 
and reasoning is growing. She takes Peano and Eng
lish, a mathematician and an educational researcher 
respectively, and asks how they are helping her make 
sense of proof and proving. 

On Wednesday, September 08, 2004 2:27 AM, 

David A Reid wrote: 

All seems to be working out well. 
There is ce11ainly a tension between Peano and 
English et al.' It is a tension that has caused trouble 
for mathematics education from the start. There 
are two different starting points: mathematics and 
minds. Or if you like, logic and psychology. To an 
expert mathematician, an axiomatic system seems 
really easy. You start with things that everyone 
recognizes as true, and then you deduce everything 
else according to ways of thinking that everyone 
accepts. This was the basis for most of the New 
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Math movements. It turned out not to work very 
well. What Lakoff, English, Varela, etc, tell us is 
that the ways of thinking that mathematicians as
sume everyone accepts are in fact not all that ap
plicable outside mathematics, and so naturally 
most people don't use them all that much. The 
trouble is that nature doesn't give babies the axi
oms at birth. They have to figure stuff out other 
ways: by analogies, metaphors, abductions, gen
eralizations (there are a lot of words for this think
ing, but none of it is well defined). And having 
figured out their whole world in this way, they 
figure out mathematics in the same way. In fact, 
something that is a fascinating (but hard) question 
for me is how those of us who have figured out 
how to reason mathematically when all we had to 
use were nonmathematical ways of reasoning. 
I haven't looked hard at the Peano stuff yet, but I 
will now. 
David 

As her conversation with Reid continues, so do 
her mathematics classes. She keeps her collaborators 
informed of pedagogical moments from her class. 

On Wednesday, September 8, 2004, at 3:02 PM, 

Shannon Sookochoff wrote: 

Must write fast: 
Phillip: Why is it that a pair of intersecting lines 
have only one solution? 
Me: (with somefiustercmd some panic thinking of 
the word axiom) Maybe this is an axiom. (Write 
on the board AXIOM, having never mentioned it 
before.) 1 think it comes down to a decision by 
some mathematicians. We agree to consider a line 
to be a blah, blah, and we agree that when two lines 
intersect, they intersect at one point. 
Phillip: Kind of a definition, then. I see. 
Kelsey: So what is an axiom? A system of two in
tersecting lines? 
Me: No, it is truth that we know to be true but are 
unable to explain why. Like ... I don't know. We 
will be talking about this more today though. 
Blaine: 1 know an axiom. (Holds up Mo fingers.) 
How many fingers am I holding up ... 

Gotta go get Jack. I' II send this home and pick up 
on it tonight. 

That night Sookochoff elaborated on the events of 
the September 8 Math 20 Pure class on systems of 
equations. 

Phillip: Why is it that a pair of intersecting lines 
have only one solution? 
Me: (with some fluster and some panic thinking of 
the word axiom) Maybe this is an axiom. (Write 
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on the board AXIOM having never mentioned it 
before.) I think it comes down to a decision by 
some mathematicians. We agree to consider a line 
to be an infinite array of points (each of which is 
a solution to an equation that we recognize to be 
y = mx + b). And we agree that when two lines 
intersect, they intersect at one point. 
Phillip: Kind of a definition, then. I see. 
Kelsey: So what is an axiom? A system of two in
tersecting lines? 
Me: No, it is a truth that we know to be true 
but are unable to explain why. Like ... I don't 
know. We will be talking about this more today 
though. 
Blai11e: I know an axiom. (He holds up two fingers.) 
How many fingers am I holding up? 
Me:Two. 
Blaine: How do you know? Which one is one? 
Which one is two? 
Me: (smiling without wz_vthing to say) Let's make 
it even simpler. I'll hold up one finger. How many 
fingers am 1 holding up? 
Many: One. 
Me: How do you know? (Students are pleased.) 
Phillip: Because you have five fingers, you are 
holding 4 down, which leaves one standing. (The 
class is happy to have proven what I suggesred 
was unprol'able.) 
Later in the class, after groups of four worked on 
explaining why we can multiply both sides of an 
equation by 3 ( or any number). Their explanarions 
ranged from a concrete example: 2 x 3 = 6, 
(2 x 3) x 3 = 6 x 3, 18 = 18, so it works, to "each 
side of the equal sign is in direct proportion to 
itself"; lots of mention of balance; one student 
related the equality to a basketball game in which, 
1,t•hen subbing in a11d out, each side must always 
hal'e five players on the court at one time. After 
sharing all of this I drew their attention to the 
difficulty of the task; they seemed to need to state 
the truth within the truth. Yet. we all u11derstood. 
"Thar," I said, "makes this idea an axiom. No 011e 
in this room can explain it. We accept all of the 
examples and comparisons. We agree that we can 
multiply both sides of an equation by a constant 
and not change the equality. So it is our axiom. " 
Kelsey: So something like "cookies are sweet" is 
an axiom? 
Me: I don't know; can anyone in here point to an 
explanation of cookies are sweet? 
Phillip: Yes, it has something to do with taste buds 
and biology. 
Me: So, Kelsey, Phillip thinks he could get to an 
explanation about that, so no, it is not an axiom. 
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And then I gave them notes stating rhe axiom in 
the form "ifm = n, then km= kn" and expanded 
from here TO division, addition, and subtraction. 
Note: Earlier in the day (period I) a student, I 

can't recall who, said rhar "we can multiply both 
sides of an equation (she was thinking about an 
equation in two variables) by a constant because 
when we do, the new line generate.1· a new point 
on top of the original point in the original line." 
She was referring to coincident lines and I think 
she said it berter. I'll ask wmorrow.' 
Shannon 

The e-mails and transcript above could be analyzed 
in number of ways. But, because this is action research, 
and Sookochoff is reAecting on her own teaching, the 
analysis here examines how the above exchanges 
have transformed her thoughts and opened new pos
sibilities for future teaching. Sookochoff writes: 
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Phillip's first question asking how we are sure that 
there is only one point of intersection has me play
ing out some of the other options that I had in 
forming my response. 

1. Probe Phillip's question more to determine 
whether it was grounded in the graph or the 
solution set for the system. If Phillip was think
ing completely graphically, then I might have 
asked him to visualize two intersecting lines. 
two coincident lines and two parallel lines. But 
he may have been asking for my help to make 
the leap from two different solution sets from 
two different linear equations to the solution 
set for the system of equations. Or he may have 
been constructing the link between the solution 
set and the graphical representation of the 
system and its solution. 

2. Move toward a group explanation of why two 
distinct and nonparallel lines in a plane inter
sect in exactly one point. I don't think I had 
thought of an explanation at the time, so I 
could not have led such a discussion until these 
last few weeks. 

3. Call the knowledge axiomatic and explain 
what that means. This is what I chose to do 
and I am convinced that my choice, although 
tine, was influenced by my not having an ex
planation at the time and my then current 
struggle with the meaning of axiom. It worked 
well to engage students in meaning making 
and group discussion. Students seemed to like 
talking about the explainabil ity of an idea and 
were intrigued with the idea that definitions 
and axioms stand outside the assertions that 
we can reason out. 

4. Or I could have offered something that com
bined my response to Phillip with my response 
to Kelsey. I could have said, "I don't have an 
explanation right now. Does anyone else? Do 
we all accept that it is true? Can anyone think 
of an example? How about a counterexample? 
Well, IF we do not have an explanation AND 
we accept the idea to be true, THEN in our 
classroom at this moment we will call the idea 
an axiom. If we are able to find a convincing 
explanation in the next while, we will move it 
from the axiom board and onto the theorem 
board." 

I like #4 the best right now, because it brings all 
sorts of reasoning to bear. Had I used that response, 
I would have been asking kids to sort types of truth, 
the proven versus the axiomatic. In the few ques
tions I have listed in response #4, I have referred 
to all of the reasoning outcomes from the curricu
lum.6 The call for a specific example or counter
example builds toward an inductive approach to 
testing the idea, alluding to outcomes 4.1 and 4.3. 
By using the connecting word and and structuring 
the definition of axiom as an if-then statement, I 
embed outcomes 4.2 and 4.4 into a student
initiated conversation. And last, in the sorting of 
mathematical truths into axioms and theorems, we 
create a space and community-specific need for 
what 1 see as the most difficult of the reasoning 
outcomes: proving an assertion (outcome 4.5). 
Teaching in this way elevates mathematical reason
ing from a discrete unit to an ongoing process and 
the connective syntax of the mathematical concepts 
we study. 

I think, too, that #4-let's call it "Attempt/postpone 
the explanation and sort the assertion"---can live 
in many contexts in the mathematics classroom. 
Students are remarkable in their ability to question 
why an assertion is true; they ask their teacher, 
'"Why does the discriminant tell us how many roots 
we can expect for a quadratic?"; "Why do we 
switch the inequality sign when we multiply both 
sides of the inequality by a negative number?"; 
"Why do the roots of an equation have so much to 
do with the factors when the equation is set to 
zero?".7 Their questions point, I think, to our stu
dents' inherent need for proof. Recognizing the 
students' questions as evidence of their need for 
proof allows the teacher to feed that need and thus 
brings students into the culture of proving in 
mathematics. 

This brings me to focus on the two categories of 
truth I mentioned above: proven and axiomatic. 
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I suggest that much of teaching explores the ten
sion between these two ways of viewing assertions. 
I also suggest that one problem in our mathematics 
classrooms (and maybe in many other classrooms, 
as well) is our treatment of most knowledge as 
axiomatic-"Itjust is!" My own jump to label "two 
distinct and nonparallel lines in space intersect in 
exactly one point" as axiomatic is a case in point. 
In asking me why, Phillip challenged my mathe
matics ability. To answer him, I needed to honestly 
ask myself why. I needed to resist panic in the face 
of public uncertainty. I needed to make transparent 
a vital mathematical task, one in which I ask why 
something I take to be true is indeed true. And I 
needed to know, in both an emotional and an intel
lectual way, that not knowing why is legitimate. 
In exposing the struggle to explain why and enter
taining the possibility that we cannot, teachers can 
underscore the nature of the mathematical asser
tions brought forth in the classroom. It should be 
noted, too, that the explainability of a given asser
tion can be decided in each specific classroom
what is an axiom for me and my students today 
may not be for my colleague down the hall. And 
six months from now, my students and I may find 
that we can indeed explain what we thought was 
an axiom. 

Proof, Proving and Reasoning 
Through Action Research 

With the illustration above we are able to respond 
to the research questions we posed when we began 
this study. But in the true nature of action research, 
these questions are not answered once and for all. 
Rather, we are able to identify additional questions 
to work on. 

There are some things, Sookochoff believes, that 
worked to promote proving and reasoning activity 
among her students in those Grade 11 mathematics 
classes. We did well to 
• integrate reasoning and proof into all content areas; 
• put students into groups for proving together in 

discussion with one another; 
• post theorems, colour-coded as to proven or ac

cepted as true and identified as Grade 11 or pre
Grade 11 theorems, so as to have them available 
in the public domain; 

• deal with theorems and vocabulary as needed; 
• publish a collection of all that we know to be true 

for the class members; and 
• ask the question, "We seem stuck; can anyone offer 

something that might get us unstuck?" 
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Of course, there are the things that Sookochoff will 
further develop the next time she teaches. Her notes 
to herself include the following advice: 
• Keep expectations for student proving focused.8 (To 

some extent, Sookochoff found that the specific 
standards for circle geometry,9 which require stu
dents to prove two particular theorems from circle 
geometry, did not encourage this focused approach.) 

• Go back and forth between specifying, proving and 
applying. (In Sookochoff's reaching of geometry, 
it was tempting to separate these proving activities, 
which she thinks obscured the connections be
tween them.) 

• Engage students in the issues of proof. The conver
sations would ideally come out of student ques
tions and comments. However, some topics that a 
teacher might consider and could deliberately 
initiate, perhaps in a daily I 0-minute group con
versation, are listed below. 
., When can we name a proof as " __ Theorem" 

and never again prove it? (We can make this 
happen by clearly titling and posting the assertions 
that our community accepts or proves to be true.) 

., Who decides how much is enough explanation? 
,, Which truths have converses and contraposi

tives that are true? Which do not') 
What does shifting from "Is this true?" to "What 
makes you sure this is true?" signify? 

,, Is proof beautiful? (This could be a chance to 
share some particularly beautiful proofs from 
our canon-perhaps the Pythagorean Theorem, 
with its many proofs and unquestionable fame, 
could highlight the desire to explain why we 
know over ,vhether we know.) 

., What is the difference between a definition, an 
axiom, a theorem and a postulate? (This relates 
nicely to the sample lesson discussed earlier.) 

., What is the nature and structure of a legal argu
ment? Forensic evidence? Literary essay? 
Opinion paper? And how do they compare to a 
mathematical proof? 

In terms of a teacher's practice we have addressed 
the questions that focused our study. We leave the 
reader with some more pointed responses to those 
same questions. 

We asked, "What is the nature of the questions/ 
tasks offered to students that encourage proof and 
proving actions?" Every high school teacher has 
asked some version of the question Sookochoff posed 
to her IB students: 

x +Sy= 10 

3x + 15v = 30 

What values for (x, y) satisfy both equations? 
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There is nothing remarkable in the question. The differ
ence lives in the context in which the questions were 
posed. From our work we have seen that it is essential 
to create space for responding to questions that arise 
from the desire for meaning making. (This works at 
the level of both teacher and student meaning mak
ing.) For the students, those spaces emerged in large 
group discussions that invited conjectures, challenged 
ideas and demanded reasoning. For the teacher, the 
space was created by having colleagues interested in 
the conversation of proof and proving. Our research 
suggests to us that the questions teachers ask must be 
accompanied by an inquiring stance, intense curiosity 
and a desire for things mathematical. 

Also of interest to us was how a teacher might 
recognize features of proving and proof in student 
conversation and in the questions students pose. ln 
this case, it was evident that the conversation between 
Sookochoff and Reid was key in Sookochoff's mean
ing making. However, it was close listening-that is, 
listening for student meaning making rather than 
listening for an expected particular response-that 
led to opportunities for Sookochoff to recognize proof 
and proving in student responses. 

We asked how valuing student need for proof and 
proving would change current evaluation practices 
and rubrics for student work. Clearly, asking students 
to reason is key to any assessment. Finding ways to 
evaluate their responses is the challenge, and we will 
address it in a future paper. 

Finally, we wondered how much room there is in 
the curriculum for analogical reasoning, unformulated 
proving and preformal proof. We purposely used an 
illustration from a nontraditional topic for addressing 
proof and proving in our high school mathematics 
curriculum. The wonderful pm1 of this action research 
study was the deliberate intention to integrate proof, 
proving and reasoning throughout all the topics in the 
curriculum. Further evidence that there is plenty of 
room for reasoning in school mathematics will be 
offered in future papers. 

In this paper we have illustrated how a teacher, 
engaged in action research in collaboration with col
leagues, worked on her own understanding of math
ematics, mathematics pedagogy and mathematics 
curriculum. We hope that classroom teachers benefit 
from our research in two ways: (I) as a strategy for 
working on their own teaching questions, and (2) for 
working on proof, proving and reasoning in high 
school mathematics. Further, we hope that university
based and school-based researchers find in our study 
some inspiration to work towards truly collaborative 
approaches to educational research that creates deeper 
understanding of mathematics teaching and learning. 
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Notes 

I. Formal reasoning outcomes: 
4.1 Differentiate between inductive and deductive rea

soning. 
4.2 Explain and apply connecting words, such as and, or 

and not, to solve problems. 
4.3 Use examples and counterexamples to analyze con

jectures. 
4.4 Distinguish between an if-1he11 proposition, its con

verse and its contrapositive. 
4.5 Prove assertions in a variety of settings, using direct 

reasoning. 
Circle geometry outcomes: 
5.2 Prove the following general properties, using estab

lished com:epts and theorems: 
• The perpendicular bisector of a chord contains the 

centre of the circle. 
• The angle inscribed in a semicircle is a right angle. 
• The tangent segments to a circle from any external 

point are congruent. 

5.5 Verify and prove assertions in plane geometry, us
ing: coordinate geometry and trigonometric ratios as 
necessary 

2. During the marking of the June 2005 diploma exams, 
teachers talked with (>ne another about getting better results on the 
exam. One strategy was to reduce the time spent on the Math 20 
Pure unib that had no follow-through in Math 30 Pure to give 
them more time to spend on items that relate directly to Math 30 
Pure. They specifically talked of reducing the item on reasoning 
to a take-home booklet. 

:i. This last question requires some clarifications. The impor
tance of analogical reasoning in mathematics has hcen described 
at length by P61ya ( I 968). It involves m:iking a conjecture based 
on similarities between two situations. Formulation of proving 
refers to the reasoners' knowledge or aw::ireness of their own 
reasonin!,!. U11fim1111/med pm1·i11!! refers to deductive reasoning 
of which the n:asoner is mostly or complerely unaware. Prefor

mal proofs (Blum and Kirsch 199 I) are ,1 step in the direction 
of accept,1ble mathematical proofs. They might involve hidden 
assumptions and use informal language and notation, and might 
also include references to analogical or inductive evidence for 
a conjecture. 

4. We chose not to elaborate on the evolution of the co
researchcrs' understanding. 

5. This tensilin is related to another thilt also c::iuses difficulty 
for mathematics educators. Pr(){f has different meanings in 
diffrrent institutional contexts (Recio ilnd Godino 2001 ). Most 
imp()rt::int here. pm1!f'has one meaning in logic ,rnd the foundn
tions or mathcmalil·s. and another meuning in the practice of 
professional mathematicians. In logic and foundations of math
ematics. proof is connected to deductive argument;itions that 
take place in axiom.Hie and formal systems. In the prc1ctice of 
prof.:ssional mathematicians. however, while "'deductive proof is 
the prowtypic:il pancrn of mathematkal proof ... this formalist 
rigor decreases in practice•· (p 94). Similarly, words like axiom 
ha\'e different meanings in these two institutional contexts. 
The Pc�rno axioms discus.sed in the e-mails are not the formal 
versions. but rather the less formal ones used by professional 
mathematicians in their practice, and as Shannon is a teacher of 
mathematics, not of foundutions or logic, her meanings for proof 
and axiom ure based in the practices of mathematicians, not in 
the form.ii isms of logicians. 
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6. Formal reasoning outcomes: 

4.1 Differentiate between inductive and deductive 
reasoning. 

4.2 Explain and apply connecting words, such as and, or 
and ,wr, to solve problems. 

4.3 Use examples and counterexamples to analyze 
conjectures. 

4.4 Distinguish between an if-then proposition. its con
verse and its contrapositive. 

4.5 Prove assertions in a variety of settings, using direct 
reasoning. 

7. I deliberately did not list a question from geometry because 
students did not tend to offer their 1rhy questions there. Perhaps 
they needed no convincing when they could see the: truth appar
ent in a visual illustration. It is ironic. then. that we often situate 
the task of proving wirhin geometry, where students do not seem 
to need proof. 

8. The task of writing proof.� where algebra, plane geometry, 
coordinate geom..:try and trigonometry come 10 bear is highly 
complex. Students must bring together many years of their edu
cation in mathematics. And they must form a logical sequence 
of statements and reasons in a way that satisfies their teacher's 
idea of whar proof looks like. Most Grade 11 students find this 
ovc:rwhelming. Instead of proving these particular a.,scnions from 
circ:le geometry, perhaps the Grade 11 students would he better 
served by engaging in more narrowly defined proving tasks, 
,uch as discussing why they are sure of a particular property of 
equivalence relations. Alternatively, the theorem to be proven 
could have a greater cultural/historical importance (and thus be 
a better motivator for students) than the theorems from circle 
geometry. Examples here could be ••interior angles in a triangle 
a<ld up to 180 degrees" or the Pythagorean Theorem. However, a 
small canon of finely crafted and estahlished proofs could make 
excellent class reading. As currently written, the curriculum 
seems to encourage students to memorize the two 11;1med proofs. 
And memorization is not a proving task. 

9. Circle geometry outcomes: 
5.2 Prove rhc following general properties, using e,tab

lished rnncepts and theorems: 
• The perpendicular bisector of a chord contains the 

centre of the circle. 
• The angle insc1·ihed in a semicircle is a right 

angle. 
• The tangent segments to a circle from any external 

point are congruent. 
5.5 Yt:rify and prove assertions in plane geometry, us

ing coordinate geometry and trigonometric ratio, a., 
necessary. 
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Looking at the Algorithm of 
Division of Fractions Differently: 

A Mathematics Educator Reflects on a 
Student's Insightful Procedure 

Jerome Proulx 

Introducing the Procedure 

A colleague of mine, upon return from China, re
ported to me this procedure to divide fractions used 
by an I I -year-old 1: 

26 2 26+ 2 13 
-+-=--= -

20 5 20 + 5 4 

My first reaction was to doubt the correctness of 
the procedure and solution, but then I realized that it 
was indeed mathematically correct and also that many 
interesting connections could be established with 
other operations on fractions ( +, - and x ). 

This article is in the spirit of, and takes its insights 
from, articles by Robert Davis ( I 973) and Stephen 
Brown ( 1981 ). Each had observed an interesting 
and nonstandard mathematics procedure carried out 
by a student and decided to report on it to bring 
forth the insights and the underpinning connections 
and concepts. This endeavour appears to be quite 
rich on many points, as Brown explained some 
25 years ago: 

One incident with one child, seen in all its richness, 
frequently has more to convey to us than a thou
sand replications of an experiment conducted with 
hundreds of children. Our preoccupation with 
replicability and generalizability frequently dulls 
our senses to what we may see in the unique un
anticipated event that has never occurred before 
and may never happen again. That event can, 
however, act as a peephole through which we get 
a better glimpse at a world that surrounds us but 
that we may never have seen in quite that way be
fore. (Brown 1981, 11) 

Now let's have a deeper look into this intriguing 
division procedure. 
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First Question: Is That 
Procedure Correct? 

The first questions that come to mind concerning 
that procedure are "ls this corrcct'1 Jf so, how does it 
work?" Then, when we answer these questions, we 
ask "Why weren't we taught that in schools?" or 
"Why don ·1 we teach that in schools?" 

One first way of being convinced of its correctness 
is to solve it ourselves, for example, by using the invert 

. . 26 2 26 5 1 30 1 3 
and multiply algonthm: -+- = -x- = - = -. 

20 5 20 2 40 4 

However, arriving at the same answer in a particular 
instance can leave some doubt that it would always 
work. even if it seems so. A more interesting question 
is '"Why does it work?" 

Looking closely at the multiplication algorithm, 
one realizes that it is mostly the same procedure, 
which is-in a very dry manner-to multiply the 
numerators together and multiply the denominators 
together. In this case. it is dividing the numerators 
and dividing the denominators. Hence, because divi
sion is also a multiplicative instance,� this procedure 
is indeed correct. From this, the following generaliza
tion can be deduced: 

(I C (l+C 
-7-=--

b d h+d 

And by playing with the multiplication algorithm, 
we can arrive at it directly, since 

a d axd axd a d d 1 
-x-=-=-=-X-=(a+c)X-=(a+c)x--
b C bxc cxb C b b (tr

1 
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Second Question: Why Don't 
We Teach This in Schools? 

The answer to this second question lies in the fact 
that this procedure is only helpful in a limited number 
of cases. For example, if the fractions to be divided 
are ½ and ½ , this procedure does not bring us very 
far toward the answer: 

2 3 2-d 
-+- = --
5 7 5+ 7 

2 3 2 +3 
And so, even though -

5 
+-7 = -- is correct, it is 

5+7 

simply not very helpful in finding an answer. However 
general in the sense that it is applicable in all cases, 
it cannot be considered a good algorithm since it sheds 
some light on the answer for only a small number of 
cases for which the numerators and the denominators 
are respectively divisible. Because this algorithm 
(dividing numerators together and dividing denomi
nators together) helps in only a specific number of 
cases, it can be seen as a "particular" procedure. 

Bringing This Procedure to 
Mathematics Teachers 

In my research, I brought this interesting procedure 
to the secondary-level mathematics teachers with 
whom I work in professional development sessions. 
As predicted, they were amazed and curious about 
the correctness of this procedure to calculate with 
fractions. (Of course, I brought one that worked and 
produced results!) 

A comment was made, however, that it could be 
interesting to work toward a generative way or an 
overall procedure of computing with all types of op
erations on fractions, because the teachers said that 
students have a hard time making sense of all four 
operations and their algorithms.-1 Thinking about what 
is normally done in addition and subtraction-that 
is, to write the fractions with a common denomina
tor--one teacher wondered if we could not do this for 
the multiplication of fractions also, which would be 

a c ad cb adch ac · bd ac 
-X-=-X-=--=--=-. 

b d bd db (hd)
2 

bd-bd /}{/ 

As I explained that this was unnecessary and could 
complicate the calculations for no reason, we realized 
that maybe that was what was needed in the previous 
division algorithm to make it work. Indeed, trans
forming each fraction to have a common denominator 
makes the algorithm useful for any division of two 
fractions because both fractions· denominators would 
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be the same. Therefore, making the new fraction 
obtained out of I, creating a division by I, 

a c ad cb ad + ch ad + cb ad 
-+-=-+-=---=---= 

b d bd db bd + db cb 

This makes the "particular" algorithm an encom
passing and efficient algorithm that always brings 
us to the answer for dividing any two fractions. 
However, the person using this procedure needs to 
know conceptually that two numbers dividing each 
other can also be written in the fraction form
something that is not obvious and needs to be worked 
on (Davis 1975). At the secondary level, though, it 
can be assumed that students can make or even create 
that link. 

The Final Question: 
Why Does This Work Again? 
Why Does the Multiplication of 
Fractions Algorithm Work? 

Maybe this last set of questions sounds obvious, 
but the whole premise of accepting that we can indeed 
divide the numerators together and the denominators 
together is based on the acceptance of the multiplica
tion algorithm. Hence, I started to wonder why this 
algorithm works: Why can we multiply fractions that 
way? What is the meaning behind this algorithm? 

Of course. as I often do with pre- and inservice 
teachers, it is possible to illustrate it with the multi
plication of fractional areas, or with folding pieces 
of paper (eg, Boissinotte 1998). These approaches 
represent very nice ways to make sense of the algo
rithm itself. For example, to multiply ½ x ¼, I can 
say and show by folding areas of paper that I take a 
quarter of ½ of a piece of paper. This is very nice, 
but am I able to make sense of it by only using the 
numbers themselves with no recourse to material? 

a c axe 

Can I explain why -x ...:.. =-- works? 
b d bxd 

In fact, I must explain it if I want to use it as an 
argument to assert that the new division algorithm is 
indeed suitable. In order to make sense of it, I thought 
ahout the following explanation. 

To stay concrete and less abstract, Jet's take an 
example: ½ x ½ , which, with the algorithm, would 
give .1/is. If I say it in words, it is "four fifths multiplied 
by two thirds," so I multiply by two thirds. One way 
to see it is that I first multiply by one third, and then 
I double the amount, because I wanted to multiply it 
by twice as much (by two thirds and not by one third). 
So, first, let's multiply by one third. 
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As I s aid before for one quarter, multiplying by a 
third means that I want a third of the amount. Wanting 
a third of an amount means that I want to divide the 
amount in three. Doing that makes each part of the 
amount three times smaller-they arc indeed divided 
in three. So, in the case of ;½ , each fifth becomes a 
fifteenth, and so I have four fifteenths now (instead 
of four fifths). Doing this explains why I have to 
multiply the denominator 5 with the denomina
tor 3-because each part becomes three times smaller, 
and so becomes a fifteenth. So, the first sequence just 
explained could be represented like this: 

�x� = �x(2-x2)= (�x2- )x2 = (�+3)x2 = (�)x2 
5 3 5 3 5 3 5 15 

Now, I have four fifteenths (Y,5). I still have to 
double it, because I multiplied it by ½ and not by ½ . 
Because ½ is twice as big as ½, my answer should 
be twice as big. I have Yis and I want twice that, and so 
my answer should be .1/i5. Here, because the number 
of parts is represented by the numerator, and I want 
twice that number of parts, I multiply the numerator 4 
by the 2 in the algorithm. Hence 

(� )x 2 
_ 4 X 2 _ � 

15 15 15 

Doing that is dismantling the algorithm into a se
quence of conceptual steps, which, in an algorithm, 
are normally hidden (Bass 2003). And so, multiplying 
by a fraction means to ( l) make each part a denomi
nator number of times smaller and (2) take a numera
tor number of times the parts that are there. This can 
be summarized by the following generalization: 

Cl C a ( 1 ) (Cl 1 ) 
bxd = hx dxc = bxd xc 

(
a I) a a Xe ac 

= -+£ xc =-Xe= -- = -
h /Jd bd hd 

Concluding Remarks 
This new procedure for dividing fractions, which 

at first seemed wrong and did not feel genuine, created 
for me a list of connections regarding operations on 
fractions. Whereas I might have been the only one to 
be puzzled by it, I realized that my own colleagues 
and the secondary-level mathematics teachers with 
whom I worked were also very intrigued and sur
prised by the correctness of that procedure. 

This procedure brought me to try to better under
stand other algorithms and operations on fractions, 
especially that of multiplication, which I realized, by ask
ing these around me, is mostly taken for granted. In 
that sense, while the question of"why does the algorithm 
of multiplication work?" can sound obvious. its answer 
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is not immediately obvious. Even now, you may not 
be convinced of the tentative explanation that I have 
elaborated above-and maybe neither am I! 

I did not intend this article to show a better or a 
new algorithm to divide fractions, and certainly never 
aimed to solve the overarching, difficult problem of 
understanding this sort of computation. It is tempting 
to say that difficulties experienced in the domain of 
division of fractions will remain, because division of 
fractions is difficult to understand and conceptualize. 
The goal of this short article was to raise awareness 
of this issue, to play with numbers and, hopefully, to 
bring new ideas and insights about these calculations 
to the everyday mathematics classroom. 

Notes 
l. The colleague is David Pimm. wh11m I thank for the con

versations 11n the issue. I also want to thank Mary Beisiegel for 
many discussions on this. 

'.:. Indeed. problems requiring the operations ot multiplication or 
division are ofcen seen as pan of the same family of problems. See. 
for exam pk. the work of Vcrgnaud ( l 988) or Carpenter et al ( l 999). 

3. 01 course, it could be argued that operations on fractions 
need not be reduced to their algorithm (and research has shown 
that in many <.:ases). but this is in another domain of discussion. 

4. The explanation I have offered here mostly serves as an 
aid to understanding ;md not as a mathematical proof. It does, 
howeYcr. serve well its goal of bringing meaning to the algorithm 
of multiplication pf frnctions. 
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Binomial Probabilities on a 
Multiple Choice Test 

Bonnie H Litwiller and David R Duncan 

Teachers are always seeking situations in which 
binomial probabilities can be exemplified. One such 
setting with which students are acquainted involves 
multiple choice examinations. 

Suppose that Roy took a 40-question multiple 
choice test; each test question had five possible an
swers. How likely is it that his score on the test was 
4 or less? To answer this question we will make re
peated use of the binomial formula: 

Suppose that n independent trials are performed. 
For each trial the probability of success is p while 
the probability of failure is q, where p + q =I. The 
probability of exactly r successes and n - r failures 
in these 11 trials is then 

( 
)t 

) 
p'q"·', where the notation C (n, r) is com-

r! n-r ! 
1 /l. 

monly used to symbolize the coefficient ( i)( _ )'
.

r. 11 r . 

Case 1: Assume that Roy guessed on every ques
tion. Using binomial probability, the probability of 
at most 4 correct responses can be computed as 
follows: 

Exactly 4 coffect (and 36 wrong): 
For each of the 40 questions, the probability that 

Roy selects the correct answer is ½, while the prob
ability he selects the incorrect answer is Ys. The 
probability of exactly 4 coffect and 36 incorrect re
sponses is then 

C (40. 4)(0.2)4(0.8).16 = 0.04745 

Exactly 3 correct: C (40, 3)(0.2)·'(0.8)'7 = 0.02052 

Exactly 2 correct: C (40, 2)(0.2)2(0.8)'K = 0.00648 

Exactly I correct: C (40, 1)(0.2)1(0.8)1
') = 0.00 I 33

None correct: C (40, 0)(0.2)"(0.8i'' = 0.00013 

Since these are mutually exclusive events, the total 
probability for these five instances is then the sum of 
the five individual probabilities, or 0.0759 (to four 
decimal places). 

Case 2: Suppose that Roy found a single question 
for which he knew the answer, then guessed on the 
remaining 39. Since om: correct response is assured, 
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we calculate the probability that he correctly answered 
0, I, 2 or 3 of the remaining 39 questions. This prob
ability is 

C (39, 0)(0.2Y'(0.8)-'9 + C (39, I )(0.2) 1(0.8)-'� + 
C (39, 2)(0.2f(0.8f7 + C (39, 3)(0.2)3(0.8).16 = 0.0332 

Case 3: Roy knows the answers to exactly 2 ques-
tions. The probability that he answers at most two of 
the remaining 38 questions correctly is: 

C (38, 0)(0.2)1 '(0.8)-'� + C (38, I )(0.2) 1 (0.8)·17 +
C (38, 2)(0.2)2(0.8)3' = 0.0113 

Case 4: Roy knows the answer to exactly 3 ques
tions. The probability that he answers at most one of 
the remaining 37 questions correctly is 

C (37, 0)(0.2)0(0.8)-'7 + C (37, 1)(0.2) 1(0.8)-'' = 0.0050 

Case 5: If Roy knows exactly 4 answers, the prob
ability that he fails to answer a single other question 
correctly is 

(0.8) 16 = 0.0003 

Challenges to the reader and students 

I. Redo these types of problems, varying the maxi
mum score, the length of test and the number of
responses per question.

2. Alter the problem by supposing that Roy is able
to eliminate a certain number of responses per
question, but must guess among the remaining
possibilities.

3. Determine how a calculator could be used to sum
the probabilities in the cases described above
without having to calculate each probability
separately.

4. Suppose that the probability of recovery within
one year after therapy is 0. 7 for patients with a
certain disease. Find the probability that exactly
two of the four patients cuffently being monitored
recover within one year after therapy. Find the
probability that at least two patients recover. If n
patients are receiving therapy, write an expression
that will give the probability that exactly k of them
will recover, in terms of 11 and k.
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5. A baseball player has a batting average of 0.250. 

Determine the probability that this player gets 

a) exactly one hit in his next five times at bat. 
b) at least three hits in his next five times at bat. 
c) a hit each time in his next five times at bat. 

Draw a graph of P(k) vs k, where k is the number 

of hits during the next five times at bat, k E { 0, 1, 
2, 3, 4, 5} and P( k) is the probability of k hits. 
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TEACHING IDEAS 

Solving First Order Linear 
Differential Equations by Using 

Variation of Parameters 

David E Dobbs 

1. Introduction

One of the most significant roles of mathematics
has been to address the so-called "inverse problem·' 
in science. This concerns providing information about 
a quantity y on the basis of having measured some 
experimental trace that has been left by y. In calcu
lus. when y is a differentiable function, one such 

. I 1 1 . 1 d · · d" part1cu ar y re evant trace 1s t 1e envat1ve y '= --'--.
dx 

In solving an ordinary differential equation (ODE), 
one seeks to determine all the solutions y that satisfy 
the given ODE. The theory of ODEs (as in, for in
stance, Nagle, Saff and Snider 2004) makes it useful 
to know the order of an ODE-namely, the highest 
integer n such that /">, the 11'" derivative of y, appears 
nontrivially in the given ODE. The cases n = I, 2 are of 
particular importance because of applications in science 
and engineering (with the second derivative often play
ing the role of acceleration in applications of Newton's 
Second Law of Motion). The most complete theory 
in the subject has been developed for the class of 
linear ODEs; that is, ODEs dubbed ·'linear·• because 
their analysis is often facilitated with the aid of matrix 
theory, which is also known as linear algebra. Occa
sionally, more elementary algebra becomes relevant, 
as in the classical solution of the second order ODE 
with constant coefficients, ay "+by' + cy = g(x),
where the roots of the associated quadratic polyno
mial, aT2 + b T + c = 0, play a crucial role (see Nagle, 
Saff and Snider 2004. chapter 4 ). 

For several decades, the method of variation of 
parameters (also known as "variation of constants") 
has been a mainstay in the typical first course on 
ODEs. This method for solving n°' order linear OD Es 
is usually considered first for the case n = 2 (as in 
Nagle, Saff and Snider, 2004, section 4.6) and, in 

delta-K, Volume 44, Number 2, June 2007 

some courses and texts, later for the case n � 3 (as in 
Nagle, Saff and Snider, 2004, section 6.4). The treat
ment of variation of parameters is central to any first 
course on ODEs, as it is part of a (hopefully, gentle) 
introduction to the study of linear operators and the 
principle of superposition. Remarkably, this central 
role could be played earlier, when considering the 
case n = 1 , which is instead usually treated by various 
ad hoc methods. The main purpose of this note is to 
rectify matters by showing how the above-stated 
principles of variation of parameters can be intro
duced very early in a course on ODEs to solve the 
general first order linear ODE. Moreover, our treat
ment of the case n = 1 has the classroom advantage 
of being able to focus on the differential equation 
aspects, as we will need none of the algebraic ma
chinery and background (such as determinants, 
Wronskians and Cramer's Rule) that are needed to 
implement variation of parameters in the case n > I . 

Section 2 contains a derivation of the method 
promised in the title of this note. We have found that 
this theoretical presentation is well received in the 
first unit of an ODE course. Examples 3.1 and 3.2 
illustrate the use of this method. Rather than depend
ing on the abstract considerations in section 2, the 
presentation of examples 3.1 and 3.2 repeats some of 
those ideas in a concrete situation and is thus essen
tially self-contained. In this way, examples 3.1 
and 3.2 can serve as models for a classroom presenta
tion of our method in classes where the abstract 
considerations in section 2 may seem inappropriate. 
Remark 3.3 identifies what we see as the two most 
important pedagogical advantages of our method over 
the usual method that involves integrating factors. In 
closing, remark 3.4 suggests a new role for the topic 
of integrating factors in a first course on ODEs. 
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2. A Derivation Based on the 
Homogeneous Case 

The method of variation of parameters works in 
general as follows. To solve a nonhomogencous I in ear 
ODE, first obtain a formula for the general solution 
of the corresponding homogeneous linear ODE, and 
then determine how the arbitrary constanr.� appearing 
in that formula would have to be reinterpreted as 
functions in order for the reinterpreted formula to 
produce a solution of the given nonhomogeneous 
ODE. Let us now see how this method can be applied 
to solve the general first order linear ODE. y ' 
+P(x)y = Q(x) (where P(x) and Q(x) are continu
ous functions defined on some open interval and, as 

Jr above, v ' means -----'----). • dx 
The corresponding homogeneous linear ODE is 

P - I 1 dr - -
y '+ (x)y = 0 or, equ1va ent y,-'- = -P(x)dx. This 1s 

\' 

a (variables) separahle ODE, which is often the only 
type of ODE whose solution is typically studied be
fore the topic of first order linear ODEs is considered 
in an ODE course. As usual, one can solve this sepa
rable ODE by integrating both sides, with the result 
that ln(IYl)=-f P(x)dx+c·, where c· is an arbitrary 
constant. Exponentiation leads to the formula 

-J r(xJtf.y c· -f /'p),b. y = Ke , where K = ±e . Let v := e 

ignoring the constant of integration in the exponent. 
(It is interesting. but not essential, to note that i; = µ -i , 

J /'(x)rfr 
where µ := e is the integrating factor that is used 
in the typical textbook solution of first order linear 
ODEs.) Thus, the general solution of the correspond
ing homogeneous linear ODE is y = Kv. It follows 
that v is a particular solution of y '+P(x)y = O. We 
proceed to vary the parameter K -that is, to deter
mine how to interpret K as a jimction-so that 
y = Kv is a solution of y '+P(x)y = Q(x). 

Since y = Kv, we can find y ' by using the product 
rule: y '=v 'K + K 'v . Substituting into the given 
ODE leads to v ' K + K ' v +P(x)Kv = Q(x) or, 
equivalently, K 'v + K(v ' + P(x)v) = Q(x). Since 
v '+ P(x)v) = 0. the above condition on K simplifies 
to K 'v = Q(x) or, equivalently, K '=v - 1Q(x). Then, 
by the very meaning of indefinite integration, we have 
K = f v- 1Q(x)dx + C, where C is an arbitrary constant. 
Therefore, the general solution of y '+P(x)y = Q(x) 
is y = Kv = cf v-'Q(x)dx+ C)v = <J v- 1 Q(x)dx)r + Cv .Since 
v = µ _, , this formula can be rewritten in the more 
familiar way as y = (J µQ(x)dx)µ _, + Cµ '. Of course. 
it is not necessary for users of our method to remem
ber this formula (or the formula for µ),as they need 
only implement the above steps. 
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3. Some Examples and 
Pedagogical Remarks 

Examples 3.1 and 3.2 illustrate how to use the 
methodology in section 2 to find the general solution 
of a typical first order linear ODE. Remark 3.3 com
pares the details of example 3.1 with the details in 
the usual solution via the integrating factor method 
(as in Nagle, Saff and Snider 2004, section 2.3). In 
this way, we have a concrete example illustrating the 
advantages that we ascribe to the method in section 2. 
Of course, as we observed at the end of section 2, the 
two methods give the same answer. For a variety of 
reasons, instructors who include the method of sec
tion 2 in their curriculum for a first course on ODEs 
may also wish to include the integrating factor 
method. For such curricula, it may be advisable to 
identify an additional role that integrating factors can 
play in such a course, and remark 3.4 offers one sug
gestion along these I ines. 
Example 3.1. Use the method of section 2 to solve 
the following ODE: 2x2y' +xy = 6x2 (for x > 0 ). 

Solution. The given ODE is not in the standard form 
of a first order linear ODE; namely, y '+P(x)y = Q(x). 
To find an equivalent ODE that is in this standard 
form, divide the given ODE by 2x2 (that is, by the 
coefficient of 11 '). The result is in standard form, 

- x· 1 6x2 

with P(x) = -;;---T = 7 
and Q(x) =-

2 
= 3 . Accord-

-X _x 2x 
ing to the method of variation of parameters, we 
must first find the general solution of the corre
sponding homogeneous (first order) linear ODE, 
y '+P(x)y = 0 (namely, y '++-y = O ). This ODE 

... x 
b . dv dx ( . bl ) bl can e rewntten as ---= -- , a vana es separa e 

y 2x 
ODE whose general solution can be found in the 
usual way, as follows: J __!__dy =-J-1-dx+ c·, or 

I y 2x 
• 1/2 • 

lnlyl=--lnlxl+C =-ln(lxl )+C. By a law of 
2 

logarithms, this solution of the homogeneous 
ODE can be rewritten as ln(I y II x ! 1 12 ) = c· or, equiva
lently, as ,. = K-.:- 11". where the arbitrary constant 
K = ±i· .

. 

We now proceed to vary the parameter K that 
appeared in the above solution of the homogeneous 
ODE. As in the usual textbook treatments for the case 
n � 2, this amounts to asking for necessary and suf
ficient conditions on a function K so that v = Kx- 112 

is a solution of the gi�en (nonhomogeneous) ODE. 
Substituting this expression for y into the given 
ODE (and differentiating it using the product rule 
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from the prerequisite differential calculus), we obtain 

2 '( I -J12K K ' -112
) 

Kx-112 6 2 Th' . 
x· -- X + X + X = X . IS IS 

2 
algebraically equivalent to K ' = 3x 112 , whose 
solution (using the prerequisite integral calculus) 
is K = J. 3x1_'2dx = 2x312 + c_. Accordin�ly, the gen
eral solut10n of the given ODE 1 s  v = 

Kx-112 

= (2x3
'2 + C)x- 1'2 

= 2x + cx-112• 

For classes with enough time for additional ap
plications of the method being proposed here, ex
ample 3.2 provides two more illustrations of that 
method. Example 3.2(a) is easier than example 3. I 
in that the differential equation that one must solve 
to find K in example 3.2(a) is easy (namely, K '= l ), 
while example 3.2(b) is more difficult than exam
ple 3.1 because the differential equation that one must 
solve to find K in example 3.2(b) requires integration 
by parts. 
Example 3.2. Use the method of section 2 to solve 
the following ODEs: 
(a) )' '-2y = e2

,: and 
(b) y '-2y= x. 
Solution (Sketch). The given ODEs are both in the 
standard form of a first order linear ODE; namely, 
y '+P(x)y = Q(x) (with P(x) = -2 in both cases). 
The general solution of the corresponding homoge
neous (first order) linear ODE, y '+P(x)y = O 
(namely, y '-2y = 0 ), is found to be y = Ke2

·' • View
ing K as a function and requiring y = Ke2

' to sat
isfy the ODE in (a) leads, after some algebraic 
simplification, to e2·'K '= e2

', whence K '= I and 
K= f1dx=x+C, where C is an arbitrary con
stant. Thus, the general solution for (a)  i s  
v = (x + C)e2

' = xe 1x + Ceix. 
- A similar approach in (b) leads to K' = xe-2

', 

whence integration by parts  gives us  that 

K I -2.td ( I -2.,) 
I 

I -2., i T h = xe x = x -
2

e - -
2

e ex. u s ,  
-2x -2.r 

K=-!!._ __ e_+C and so the general solution 
2 4 ' 

-2.\' -2x 

f. (b) . xe e '. h. h . )'fj or 1s v=(------+C)e·' w 1c s1mp11es -
2 4 

' 

X I C 2, to y = ----+ e ·. 
2 4 

Remark 3.3. In Nagle, Saff and Snider (section 2.3), 
the general first order linear ODE, y '+ P(x)y = Q(x), 
is solved by using the rather unmotivated introduction 

Ji'(x)dx 
of the integrating factor µ = e (which leads to 
the equivalent ODE, �(µy) = µQ(x), which can be 

dx 
solved by separation of variables). Thus, the 
usual textbook solution of the ODE given rn 
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Example 3.1 would use the integrating factor 
Jl'(x)d, s�dx _l,ln(l.rll µ = e · 

= e 2
' = e2 =Ix i'2= x 112 .Thatsolutionis 

then y = cf µQ(x)dx)µ-' + Cµ -I= <f x112 3dx)x- 112 + Cx" 112 

= (2x311)x- 112 + cx- 112 
= 2x+ cx-112' which agrees with 

the answer found in example 3.1. 
A comparison of the above calculation with the 

details in example 3.1 shows that both involve the 
same mechanical skills. However, the solution in 
example 3.1 (and the same can be said for the solu
tions in example 3.2) has what we view as the two 
most important advantages for the method introduced 
in this note: (I) it does not require one to memorize 
the integrating factor formula µ = eJ Pi ,)dx and (2) it 
introduces variation of parameters in a context ( n = 1 ) 
that can avoid the matrix algebra that complicates the 
treatment in case n � 2. 
Remark 3.4. In closing, we pursue the comment in 
the introduction that most cutTent textbooks deal with 
first order linear ODEs in an ad hoc manner. (After 
drafting this manuscript, we came across a couple of 
recent textbooks that do introduce variation of pa
rameters in case n =I: see Diacu (2001, 32-33) and 
Logan (2006, 62-63).) Recall that the standard text
book solution of the general first order linear ODE, 
y '+P(x)y = Q(x), is carried out with the aid of the 
integrating factor µ = ejl'tx Jdx (which leads to the 
equivalent ODE, �(µy) = µQ(x), which can be 

dx 
solved by separation of variables). Rather than ap
pealing: to separation of variables, an earlier edition 
of Nagle. Saff and Snider justified the integrating 
factor method by using the theory of exact ODEs. 
(The topic of exact ODEs has been moved to sec
tion 2.4 of Nagle, Saff and Snider.) This style of jus
tification suffers the criticism of depending on Cal
culus III, especially on concepts involving partial 
derivatives and simply connected regions. On the 
other hand, for students with this background from 
Calculus III, if an instructor wishes to emphasize the 
integrating factor method in conjunction with a dis
cussion of exact ODEs, then the topic of integrating 
factors could be made more central to the course by 
including the following theorem. Any (not necessarily 
linear) first order ODE, M(x,y)dx+ N(x,y)dy = 0, 
has an integrating factor (that is, a function µ = µ (x,y) 
such that µM(x,y)dx+µN(x,y)dy=O is an exact 
ODE), provided that M and N have continuous first 
partial derivatives defined over some open rectangle. 
The proof of this theorem depends on the fundamental 
existence and uniqueness theorem for initial value prob
lems and can be found in Ford (1955, Theorem, 54). 
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A Refined Algorithm for Solving 
Polynomial Equations 

Duncan E McDougall and Ryan Willoughby 

The following article describes a sequence of steps 
designed to reduce to a minimum the number of eli
gible factors when solving analytically polynomial 
functions with integral roots and coefficients. Our 
objective is to 1 ist all possible factors and then select 
only those factors that satisfy certain criteria. This is 
done by incorporating Descartes' Rule of Signs and 
the factors of the sum of the numerical coefficients 
of the given polynomial. The algorithm consists of 
the following steps: 

I. Apply Descartes' Rule of Signs to determine pos
sible numbers of positive or negative real numbers
and/or complex roots.

2. Find the sum of the numerical coefficients or the
polynomial.

3. List all the factors of this sum and then add l to
each factor. This becomes set B.

4. List all the factors of the constant of the polynomial
(Integral Factor Theorem). This becomes set A.

5. Find the intersection of sets A and B, listing only
the common elements.

6. Use step 1 to focus on the number of positive or
negative real roots.

Using a variety of examples, let us examine the use
fulness of this algorithm. 

Example I: Solve x
3 -5x2 - 8x+ 12 = 0 

Step I: There are two variations in sign for 
p(x): Case I, two positive real roots and 
one negative real root: or Case 2. no positive 
real roots, one negative real root and two 
complex roots. 

Step 2: The sum of the numerical coefficients, 
1- 5 - 8 + l 2 , is zero. Since the sum is zero,
the number I is a root (Remainder Theorem)
and x-1 is a factor of p(x) (Integral Factor
Theorem). We go immediately to either long or
synthetic division to find the other two roots.
This gives a quotient of x2 -4x- 12 or
(x- 6)(x+ 2). We go no further because we
have all three factors: (x-1),(x-6) and
(x + 2) and thus the roots I, 6, and -2.
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Example 2: Solve x3 - 4x2 
+ x + 6 = 0 

Step 1: There are two variations in sign for p(x): 
Case 1, two positive real roots and one negative 
real root; or Case 2, no positive real roots, one 
negative real root and two complex roots. 

Step 2: a) 1- 4 + l + 6 = +4 :;t: 0 ,  so 1 is not a root. 

b) 1 + 1 = 2 and -4 + 6 = 2. Since these
sums match (Remainder Theorem),
- I is a root and x + l is a factor.

We go immediately to long or synthetic division 
in order to obtain the other two factors (x - 2) 
and (x -3). We go no further because we have 
all three factors; (x + l), (x-2) and (x-3). 

The above two examples serve to show the impor-
tance of immediately looking for 1 or -1 as a factor. 
However, not all polynomials contain these factors, 
and so we continue with the next example. 

Example 3: Solve x
3 -4x2 -1 lx + 30 = 0 

Step I: There are two variations in sign for p(x): 
Case I, two positive real roots and one negative 
real root; or Case 2, no positive real roots, one 
negative real root, and two complex roots. 

Step 2: 1- 4- 11+30=16:;t:0 :.Jis notaroot 

and 1-11 :;t: -4 + 30 :. -1 is not a root 

Step 3: From step 2, 16 is the sum and its 
f a c t o r s  a r e  -1,-2,-4,-8,-16 a n d  
1,2,4,8,16. Adding I to each factor gives 
0,-1 ,-3,- 7,-15 and 2,3,5,9,17 ;Set B = 
{ 0,-1,-3,-7,-15, 2,3, 5,9,17 }. 

Step 4: From the Integral Factor Theorem, the 
fac tor s  o f  30  a re  p laced  in  Se t  A; 
Set A= {-1, -2, -3 -5, -6, -10, -15, -301 
{ 1, 2. 3, 5, 6, 10, 15, 30) 

Step 5: The intersection of the two sets gives 
{-!, -3, -15, 2. 3, 5}. Since-I has already been 
eliminated (step 2), the list of possible factors 
is really (-3, -15 ,2, 3, 5). 

Step 6: From step l ,  only one of the elements -3 
and -15 can be a factor, while two of the three 
elements 2, 3 and 5 are factors. 
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If we compare the original number of factors of 
30 ( 16) to the elements in An B, we have narrowed 
it down to 5. Incidentally, the probability of selecting 
the correct negative root is ½, while the probability 
of selecting the correct positive root is ½. Trying the 
positive roots in ascending order where the probabil
ity is higher, we have p(2) = 20. The other roots 
become 5 and -3 (both in the final list). 

Quartics 
When we get into the realm of even-numbered 

polynomials, the rule for I works but the rule for -I 
does not. However, everything else holds. We now 
examine two more examples, one of which empha
sizes the strength of Descartes' Rule of Signs. 
Example 4: x

4 
5x

2 + I = 0 

Step 1: There are no variations in p(x), so there 
are no positive real roots. The same is true in 
p(-x). so there are no negative real roots. We 
conclude that there are four complex numbers, 
then move on! 

Example 5: x4 + 6x
3 + x2 

-24x-20 = 0 

30 

Step I: There is one variation in sign for p(x), so 
there we have the following possibilities: 
Case 1, one positive real root and three negative 
real roots; or Case 2, one positive real root, one 
negative real root and two complex roots. 

Now p(-x) = x4 
-6x3 +x2 + 24x-20. 

Since there are three variations in sign, we will 
look for three negative real roots. 

Step 2: The sum of the numerical coefficients is 
-36-:t-0 . :. I is not a root. 

Step 3: The factors of the sum 36 are -1, -2. -3, 
-4, -6, -9. -J 2, -I 8, -36 and I. 2. 3, 4, 6, 9,  
12. 18. 36. 

Adding I to each factor gives set B: { 0,-1, -2, -3, 
-5,-8,-11,-17.-35} (2,3,4,5, 7, 10, 13, 19,37) 

Step 4: The factors of the constant 20 gives 
set A: (-1, -2, -4, -5, -10, -20) { I, 2, 4,  
5,  10, 20) 

Step 5: AnB= (-1,-2,-5, 2,4,5, 10) 

Step 6: From Step 1, there are three negative real 
roots, so -I, -2, and -5 qualify, and since 
p(2) = 0, we have all four roots. 

Naturally, five examples do not make the case for 
all polynomial functions, as we have not explored 
rational and irrational roots. However, for the monic 
polynomial with integral roots, we have a method 
that cuts down the guessing of factors in order to solve 
a polynomial function. The combination of Descartes' 
Rule of Signs along with the intersection of two sets 
reduces remarkably the number of possible factors 
to be considered. This in turn reduces time spent on 
any one question and reduces the frustration of guess
ing, when solving analytically. 
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A Shape Quest Through Story 

Chantel Mulder and Gladys Sterenberg 

Once upon a Time 

The popularity of teaching with picture books in 
elementary mathematics classrooms is increasing as 
teachers make connections between literature and 
mathematics. Since picture books can be read in one 
sitting, they can offer a springboard into mathematical 
inquiry. Textbook series and teaching resources pro
vide many pedagogical ideas for integrating picture 
books into mathematics classrooms and some teach
ers are introducing picture books into their classroom 
in an attempt to garner interest, increase motivation 
and improve mathematical sense-making. The visual 
nature of these books has aesthetic appeal for many 
students. 

This article explores how students in a Grade 1 
classroom interacted with the picture book The 
Greedy Triangle, written by Marilyn Burns ( 1994). 
As teachers, we were interested in how the story could 
be used to investigate different polygons, how the 
students would engage in the story and the colourful 
illustrations, and how related tasks could enhance 
mathematical understanding for students. Chantel 
developed a lesson plan and Gladys expanded on this 
work when she taught the lesson to a class of Grade I 
students as a visiting professor. What follows is a 
summary of the book, a description of the tasks of
fered to students and a reflection on the mathematical 
learning of the students as they engaged in the tasks. 

The Storyline 

The Greedy Triangle, written by Marilyn Burns 
and illustrated by Gordon Silveria, is about a triangle 
that is unsatisfied with its shape and tired of having 
only three sides. Initially, the triangle goes to a shape
shifter to be changed into a quadrilateral. Then the 
triangle asks the local shapeshifter to add more sides 
and angles until it doesn't know which side is up. 
After many t1ips to the shapeshifter, the triangle learns 
that being a triangle is the best after all. 

Storytelling 

We started by considering the general and specific 
outcomes listed in the Alberta Program of Studies. 

delta-K, Volume 44, Number 2, June 2007 

The ones we chose to work on focused on exploring 
and classifying circles, triangles, and rectangles ac
cording to their properties. Since we wanted to em
phasize process skills of communication and reason
ing, we decided to design student tasks in relation to 
the book The Greedy Triangle. 

Gladys began the lesson began by playing a game. 
Students were asked to guess an answer to the state
ment, "I spy with my little eye something that is a 
triangle." This sparked a rich discussion on the attri
butes of classroom objects. The first suggestion was 
made by a student who tried to form a triangle with 
his fingers. I asked him to explain why he thought 
this shape was a triangle. Another pointed to designs 
on the carpet. Yet another identified the wings of a 
butterfly in a poster. At each suggestion, Gladys 
asked students to explain why they thought the shapes 
were triangles. When one student mentioned that 
the points on the maple leaf on the Canadian flag 
could make a triangle, other students were quick to 
dispute this conjecture. This led to much discussion 
about the characteristics of triangles. This initial task 
seemed to provide students with an opportunity to 
identify and describe triangles in their classroom 
environment. 

During this game, Gladys was sitting with her hand 
on her hip, thus forming a triangle with her arm. None 
of the students guessed her answer and when she of
fered it to them, they recognized the shape. and many 
tried to fonn a triangle using their arms, legs. and 
fingers. This activity helped prepared them for the 
description in the book of the triangle's favourite 
thing to do. As a triangle, it could ''slip into place 
when people put their hands on their hips." 

After this game, Gladys read the story with the 
students. The illustrations were instnimental in foster
ing conversations about the shapes and their attri
butes. Students were asked to predict what shape the 
triangle might change into. Much discussion occun-ed 
when new terms were introduced. The students espe
cially enjoyed the section on the quadrilateral's ex
pe1iences and were quick to point out many examples 
of quadrilaterals around the classroom. Students re
mained motivated to interact with the story through
out the entire reading of it. 
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Following the story, students were given a sheet 
of paper with a triangle glued to it. These triangles 
were arranged in a variety of orientations. Chantel 
hud noticed that many students thought about shapes 
in a particular way. For example, when asked to draw 
a triangle, students often crafted an equilateral trian
gle with a horizontal base. A misconception can occur 
when students see shapes "on their side"' or "upside 
down" and believe that these shapes are somehow 
"wrong." Chantel wanted the students to draw on 
their experiences of reading the book and realize that 
if they saw a triangle "upside down," it was not incor
rect and, indeed, it was the same object. Students 
were instructed to draw a picture incorporating the 
shape and use as many triangles, quadrilaterals, and 
other shapes as possible in their drawings. 

So the Story Goes 

Students were quite engaged in this task and cre
ated interesting drawings. However, the most impor
tant part of this task was how students talked about 
their shapes. Gladys was able to ask students to clas
sify their shapes and explain their thinking. Again, 
this fostered rich conversations and allowed Gladys 
to assess student understanding of the attributes of 
the shapes. 

Jared was very articulate about his drawing: 

-

. .  

He talked about where he saw triangles in places 
outside of the classroom and was particularly proud 
of showing Gladys that shapes can exist inside other 
shapes. He was able to tell her why the triangles that 
looked different were still called triangles. While 
Gladys missed it at the time, she could have asked 
him about the 3-D box in the centre of the picture. 
This might have extended his understanding about 
the difference between 2-D shapes and 3-D objects. 

Shondra emphasized that she was drawing friends 
for her triangle. She wanted these friends to be 
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different so she made them with triangular faces but 
added quadrilaterals and "partial'' circles to her 
shapes. 

Gladys talked with her about semi-circles and 
squares and rectangles, and Shondra was beginning 
to make mathematical distinctions between these 
shapes. 

Andrew wanted to include as many shapes as he 
could in his picture. He especially liked hexagons 
and enjoyed talking about how he was making the 
sides join together so that they were "even." He de
scribed the L shape as a half a square, and we talked 
a bit about what he was seeing. His drawing showed 
his experimentation with drawing the shapes, but this 
was a mere artifact of a much richer conversation 
about shapes. 

As students completed their drawings, they were 
offered an opportunity to choose another sheet with 
a shape and draw a picture using only this particular 
shape. Chantel wanted students to be able to identify 
hexagons, pentagons. and rectangles in their environ
ment and distinguish these from triangles. This was 
quite effective. 
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This lesson was extremely successful in motivating 
students to talk and think like mathematicians. During 
a 45-minute period, these students remained capti
vated by the tasks and the story. Their excitement was 
contagious. 

As we reflect on this lesson, we believe that fol
low-up lessons might be fruitful. These lessons could 
include 
• using geoboards to experiment with different 

shapes, 
• examining the different polygons presented in the 

book in three dimensions, 
• making a collage of shapes found in magazines, 
• identifying shapes at home by completing an activ

ity with a parent (eg, have a worksheet with 
the following shapes on it and ask parents to help 
their child find the shapes in their home and draw 
them) or 

Tr�ngle O"adalale•a 

Hepta1on Odagon Decagon 
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• integrating the story with other content areas such 
as health (eg, extending this assignment to teach 
our students about self-acceptance and how im
portant it is for students to accept themselves and 
others for their uniqueness). 

For us, the most exciting parts of this lesson were 
the conversations that the students engaged in. The 
Greedy Triangle provided a context for students to 
see geometric shapes all around the world and to in
vestigate the concept of angles and sides. The story 
was especially helpful in connecting geometric shapes 
to shapes found in the students' environment. The 
integration of literature encouraged students to share 
their understandings of mathematical concepts. Stu
dent engagement and learning were enhanced. 
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Diophantine Polynomials 

Duncan E McDougall 

What is a Diophantine Polynomial? It is a polyno
mial of degree 2, 3 or 4 which is factorable in the set 
of integers and whose derivative is factornble in the 
set of rational numbers. We want to discuss them to 
facilitate curve sketching. 

The polynomials that we are about to examine can 
be used for both Grade 11 and calculus students, be
cause the intercepts are easy to find and they-values 
for the maxima and minima are shared among the 
families of curves. For example, we can ask a 
Grade 11 student to sketch y = x3 + x2 

- I 6x -16 by 
finding both the x and y intercepts. We can use the 
very same polynomial for the Calculus 12 student 
who can find the intercepts easily and more readily 
find the x-values for both maxima and minima be
cause the derivative is easy to factor. 

My belief is that students should learn a compli
cated algorithm in simple progressive steps using 
straightforward numbers. Diophantus worked with 
integers and rational numbers only. Pedagogically, 
Diophantus was really onto something because he 
created methods that involved a lot of processing and 
sequencing while focusing on whole numbers. The 
distractions I refer to in curve sketching are complex 
and irrational numbers. It is difficu It enough to learn 
some five to eight steps gathering enough data to ac
curately sketch a cubic, quartic, or quintic polynomial 
and/or a rational expression that may involve a di
agonal asymptote without difficult-to-work-with 
numbers. If the student has the burden (when first 
learning the process) of working with irrational or 
complex numbers, along with concentrating on the 
behaviour of the curve and concavity, then he or she 
might simply declare "whatever" and drop the task. 
Tf the numbers are whole or integral (Diophantus), 
then the focus remains where it should be: on the al
gorithm. The task of the educator is to demonstrate 
algorithms in such a way that the student can master 
the process in sequence. The solution is to stick to 
the Diophantine process and to model examples that 
involve process and sequencing without getting tan
gled up with irrational numbers. To some readers this 
may be self-evident, but it is not as simple as it sounds 
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to find cubics, or quartics with single integral roots 
whose derivatives have single rational roots. Finding 
them involved testing hundreds of polynomials using 
DERIVE (an algebra software developed by Texas 
Instruments), as I was determined to find easy-to
calculate polynomials, which would facilitate graph
ing curves like y = x3 + 1 lx2 + 24x without worrying 
about irrational and complex numbers. There was 
another challenge, of course, and that was to keep the 
constant of the polynomial relatively small so that 
working without a calculator would not be arduous. 

Another aspect of this approach with whole num
bers is that when the student knows that the numbers 
are designed to work, learning of the method or al
gorithm remains the priority. The student also knows 
that there is something wrong if the numbers do not 
work. It is kind of a security blanket for the beginner, 
but it eliminates doubt, which so often takes away 
confidence in ability and performance. Later on, after 
mastering the technique, the student gains confidence 
through the ease of this, and therefore can tackle 
problems with both i rrat ional and complex 
numbers. 

It is my objective to propose families of cubics and 
quartics that are factorable in the integers and whose 
derivatives are factorable in the set of rational num
bers. I will also propose methods using DERIV E by 
which you can constmct your own polynomials. We' II 
start with the very basic table of linear and quadratic 
polynomials, then lead up to the cubics and quartics. 
1 will end the paper with a brief discussion of the 
quintic, which should have worked but did not. 

Table I contains all the various linear and quadratic 
forms along with the general set of cubics. 

Using Table I 

Take a cnbic of the form (x+ a')(x+2ab)(x+b') 
whose derivative has rational roots. Choosing any 
integers. a= l and b = 3 for example, our new poly
nomial is (x+1)(x+ 6)(x+9) with roots -1,-6, and 
-9. The differential form is 3x

2 + 32x + 69 , whose roots
are -3 and _ 23.

3 
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Table I 

Conditions on 

coefficients 
Family Function Roots Derivative Roots and constants 

to have 

integral roots 

a none 0 none not applicable 

ax x=O a none not applicable 

ax + b  -b 
x=-

(I none not applicable 
a 

(x+aY x=-a 2(x+a) x=-a none 

x' +ax= x ( x +a) X = 0,-a 2x + a -a a must be even x=-

x'+x(a+b)+ab x = -a,-b 2x+a+ b -a-b 
a and bare 

= (x+a)(x+b) 
x=-- both odd or 

2 both even 

acx' + x ( ad +be)+ bd -b -d 2CJcx + ad + be -ad-be a ;t 0, C ;t 0 x=-,- x= 
= (ax+b )(cx+d) a C 2ac ad+bc 

must either 
equal ac or be 
an even 
multiple of it 

(x+a}3 

X=-a 3 (x+ a)' x=-a none 

(x+a)\x+b) x=-a. 2(x+a)(3x+2b+a) x=-a none 
x=-b -2b- a 2b + a is 3 or a 

x=--- multiple of 3 3 

x(x+a)(x+b) x=O 3x" +2x(a+b )+ab -(a+b )±✓a' - ab+b' a'- ab+b' 
x= equals zero or a x=-a 3 

x=-b perfect square 

(x + a: )(x+ 2ab )(x+b') X =-a- 3x' + x (2a: + 4ab + 2b:) x=-ab 2a' + ab +2b2 

x = -2ab,x = -b" +ab (2a2 +ab+ 2h2 ) -2a' - ab- 2b2 must be 3 or a 
x= multiple of 3 

3 

(x+ lXx-a)(x+a) x=-1 3x2 - 2x-a' X = 2 ± ✓ 4 + 12a' 4+ 12a' must 
x=a 6 be a perfect 

x=-a square 
(a=0,1,4,16 ... ) 

The polynomials in Table II consist of the particular numerical families with single roots. These are the ones 
that are ready to use in your classroom today. 

As we observe the families in Table II, it is hard not to notice the pattern 8, 15, 21, 30, 35 and 36. It is a qua
dratic arithmetic sequence whose elements (except for a couple) all work as families of curves. 
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Table II 

Family Function Roots Derivative Roots Transformation 

x(x+ 3 )(x+8) 0,-3,-8 (3x+4)(x+6) 4 (x±k )(x± 3a ± k )(x±8a±k) -- 6 
x3 +l lx� +24x 3x' +22x+24 3' 

x(x+5)(x+8) 0,-5,-8 (3x+20)(x+2) 20 (x±k )(x± Sa± k )(x ± 8a± k) -- -2 
x3 +13x' +40x 3x' + 26x+ 40 3 , 

x(x+7)(x+15) 0,-7,-15 (3x+35)(x+3) 35 (x± k )(x± 7a± k )(x± 15a ± k) -- -3 
x3 + 22x' + I 05x 3x' + 44x+ 105 3 , 

x(x+&)(x+ 15) 0,-8,-15 (3x+ l0)(x+ 12) 10 (x ± k )(x ± 8a ± k )(x ± 15a ± k) 

x3 + 23x' + l 20x 3x' +46x + 120 
-3,-12 

x(x+5)(x+21) 0,-5,-21 (3x+7)(x+l5) 7 (x±k )(x± 5a±k )(x± 21a±k) --.-15 
x3 +26x' +105x 3x' +52x+ 105 3 

x(x+16)(x+2l) 0,-16,-21 (3x+56)(x+6) 56 (x±k )(x± 16a±k )(x±21a±k) --.-6 
x3 +37.x' +336x 3x: + 74.x + 336 3 

x(x+26-a)(x+26) 0,a- 26,-26 3x' + 52x + 26a - a' not 

x3 +x' (52-a)+26(26-a)x 
rational 

x(x+ 14)(x+30) 0,-14,-30 (3x+70)(x+6) 70 (x±k )(x± 14a±k )(x±30a±k) -- -6 
x3 + 44x' + 420x 3x' + 88x + 420 3 . 

x(x+l6)(x+30) 0,-16,-30 (3x+20)(x+24) 20 (x ±k )(x ± 16a± k )(x± 30a± k) -- -24 
x3 + 46.x" + 480.x 3x' + 92x + 480 3 

. 

x(x+33- a)(x+33) 0, a-33,-33 3x' +::!x(66-a)+33(33-a) not 

x3 +x' (66-a)+33(33-a) 
rational 

x(x+ l l)(x+35) 0,-11,-35 (3x+72)(x+ 5) 72 (x± k )(x± I la±k )(x± 35a ± k) -- -5 
x3 + 46.x: + 385x 3x' + 92x + 385 3 • 

x(x+ 24)(x+35) 0,-24,-35 (3x+14)(x+15) 14 (x±k )(x± 24a ± k )(x±35a± k) -- -15 
x3 + 59x: + 840x 3x: + I 18.x + 840 3 • 

x(x+36-a)(x+36) 0,a-36,-36 3x' +2x(72-a)+36(36-11) not 

x3 +x' (72-a)+36(36-a)x 
rational 
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Methods Using DERIVE 

Regarding methods for single roots, let us begin 
by entering the form x(x+a)(x+b) into DERIVE. 
This guarantees a factorable form. Press C for Cal
culus and differentiate. The resulting form is put in 
function form as DECLARE. Now we can either 
guess values and hope that our quadratic is factorable, 
or fix a value for a, and then guess values for b until 
the quadratic is factorable. The question is, do we 
have anything to guide our guessing? In fact, we do. 
Visually, the values of x for maxima and minima will 
occur between the first and last x-intercepts. Hence, 
if we were to choose O and 8 as two of our first and 
last roots, we would know that the third one must 
come between them. lt is just a question of leaving 
enough room between the roots so that the critical 
points can occur as integers and/or rational numbers. 
Algebraically, we enter x(x-a )(x-:;-8) into DERJVE, 
and then differentiate giving 3x· +2x(a-8)+8a. 
Since we have a quadratic, the discriminant B" -4A C 
must equal a perfect square in order to be factorable. 
Usi n g  the  command D ECLAR E, we s e t  
f (a)= 4a2 -32a+ 256 = 4(02 -8a+ 64) and evalu
ate (or use the TI83 where second function gives 
TABLE and we search it for perfect squares). Both 3 
and 5 come up quickly, implying that both 
x(x-3)(x-8) and x(x-S)(x-8) have derivatives 
whose roots are rational. 

I do not pretend to have all the families. but ap
plying translations to any given family will yield 
many polynomials. The following is a small sample 
arrived at by adding a constant to all the terms. 

Given family x(x-3)(x-8
t Add 1 

!
x+l)(x-2) x-7) 

Add 2 x+2)(x-l) x-6) 
Add 3 x+3)(x)(x-S) 
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Add 4 
Add5 
Add 6 
Add 7 
Add 8 

X + 5 X + 2 )�x - 3) 
x + 411x + 1 )(x -4) 

x+6 x+3) x-2) 
x+7 x+4) x-1) 
x+8 x+5)(x),etc. 

Interestingly enough, the entire above shares 
a max height of :o

7
o = 

( ¾ X 1 )( 23°} and minimum 

low of -36, and the difference between their corre
sponding .\·-coordinates is exactly �. A linear rela-

3 

tionship exists between these values and those found 
in the quartics. We shall explore this after exploring 
the quartic family of curves. 

Having fully explored the cubic, the quartic family 
of curves presented quite a challenge because there 
would be three roots, other than zero, to find. Visually, 
I opted for a span of 7 ( one less than the 8 for cubics), 
entered x ( x -a)( x -b )(x - 7) into DERIVE, fixed 
a= 3 (only because it had worked with the cubic), 
took the derivative and evaluated h from I to 7 hoping 
that some value b would work. The derived form was 
4x3+x2 (-3b- 30)+x(20b+42)-2lb , and by de
claring fas the function I simply tested values for b 
and systematically factored (pressing F). To my great 
delight b = 4 worked. giving 2(x-6)(x-1)(2x-7). 
Observing 3 and 4 together, I acted on a hunch that 
Pythagorean Triples might work. So, following in the 
footsteps of Diophantus, I tried triplets beginning with 
odd numbers and even numbers, and they worked 
beautifully. An added bonus was those triplets with con
secutive legs such as 20-21-29 and 119-120-169, etc, 
which also worked wonderfully. The patterns appear 
in Table III. The numerical families of the form 
x(x + a ) (x+ b )(x +c) appeur inTable IV The numerical 
families for the form x2 (x+a)(x+b) appear in Table Y. 
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Family Function 

(x +a)' 

(x+ a )
3 

(x+b) 

(.-r+a)'(x+b)' 

(.-r+a)'(x+b)(.r+c) 

The prnducr or (x) and 
( x + "211 + I) and 
(x + 2n' + 211) and 
(x + 2n' + 411 +I) 

The. product 01· (.r) and 
(x + 211 + I) and 
(x + 2n' + 211) and 
(x+2n' +4n+1) 

Roots 

-a 

-a.-b 

-a.-b 

-a,-b.-c 

-2n-1, 

-211' - 211 
and 
-2n' -411-l 

-2n.1- n', 
and 
-n' - 2n+ I 

Table Ill 

Derivative Roots Conditions For 
Integral Roots 

4(x +a )
3 -a no restrictions 

(a+bl(4x+3b+a) -a and -3b-a must he a 
-3b- a multiple or 4 

- --

4 for h= I a= 1.5.9 ... 4k-3 
for h=2 a=2,6, 10 .. .4k-2 
for b=3 a=.3,7, 11 .. .4k-l 
for h=4 a=4.8. 12 .. .4k 

2 (x + a )(x + b )(2x +a+ b) -a,-b a and b must he hoth 
and odd or hoth even 
-b- a --

2 

(x+a)[4x' +x(3h+3c+2a) 4a'+9b+9c 
-3b- 3c-2a± ✓4a' +9b= - 4ab-4ac-14bc 

+ 2bc + ab + ac] -4ab - 4ac - l 4bc 
8 must be perfect square 

2(x+11)(.r+211' +311+1) -11, -2,/ - 311 -1 and -211' - 4n -1 no conditions 

(2x+211' +411+!) 

2(.r+n-l)(x+n' +n) 
I - n, -11' - n and -11' - 211 + I 

( 2x + 11' + 211 -1) no conditions 



Table IV 

Family Function Roots Derivative Roots Transformation 

Odd Pythagorean Triplets 

X 
(x+ 3)(.t+ 4 )(x + 7) o.-J.--4.-7 2(x+l)(x+6)(2x+7) -7 -1,-6,- (x±k )(., ±3a ±k )(x± 4a ± k )(x± 7a ±k) 

.r(x+5)(x+l2)(x+ 17) o.-s.-12.-11 :!(x + 2)(x + 15)(2.r + 17) -17 -2.-15.-,- (.r±k )(x ± Sa±k )(x ± 12a±k )(x± 17a ± k) 

x(x + 7)(x+ 24 )(x + 31) 0.-7.-24.-31 2(x +3)(.r + 28)(2x + 31) -31 
-3.-28,-:;- (x±k )(x± 7a ±k )(., ± 24a ±k )(x±3la ±k) 

etc 

Even Pythagorean Triplets 

x(x+4)(x+3)(x+7) 0.-3.--4.-7 2(:r+ 1)(x+6)(2x+ 7) -7 -1.-6.- (x±k )(.,· ± 4a±k )(x±3o ±k )(x ± 7a± k) 

.r(x+6)(x+8)(x+ 14) u.-6. -8.-14 4(x+2)(x+ 7)(.r+ 12) -�.-7.-l � (x± k )(x± 6a ± k )(x± 80 ± k )(x± 14a±k) 

x(x+8)(x+ 15)(x+23) 0.-8.-15,-23 2(., + 3 )(x+ 20)(.r + 23) -:?3 
-3.-20.- (x ±k )(x ±Sa± k )(x± 150 ± k )(x ± 23" ± k) 

etc 

Consecutive-Leg Triplets 

x(x +3)(x+4)(x+ 7) 0,-3,--4.-7 2 (x+ l)(., +6)(2x + 7) -7 -1.-6,- (x ± k )(x ±3<1 ± k )(x ±4a±k )(.r± 7a ±k) 

x(x + 20)(x+ 2l)(x+41) 0.-20.-21,--41 2(x + 6 )(x + 35 )Px + 41) --41 
-6,-35.--::;-

(x± k )(x±20a ±k )(x±21a ± k )(x ±4 la± k) 

x(x+l 19)(x+l20)(x+239) o.-119.-120. 2 ( ., + 35 )(., + 204 )(2x + 239) -'39 
-35, -204. -=--

(x:tk )(x± I 19a±k )(x± 120a:!: k )(.t± 2390± k) 

-239 

Table V 

Family Function Roots Derivative 

x:(x+5)(x-7) 0.-5, 7 2x(x-5)(2x+ 7) 

x:(x+5)(x+2) o.-s.-2 x(x+4)(4x+5) 

x:(x+S)(x+9) 0,-5,-9 x(x+ 3 )(2x+ 15) 

x" (x + 7)(x + 10) 0,-7.-10 x(x+4)(4x+35) 

x" (x+9)(x+ 14) 0
,
- 9,-14 x(x+12)(4x+21) 
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Roots 

-7 
0

,
5
,2 

-5 
0-4-
' '4 

0 -3 -15 
, ' ') 

0.-4, -35 
4 

0 -12 -21 
, ' 4 

2 

etc 

Transformation 

(x: ±k )(x+Sa±k )(x-7a±k) 

(x= ±k )(x+5a±k)(x+2a±k) 

(x: ±k )(x+ Sa±k )(x+9a±k) 

(x: ±k )(x+7a±k)(x+l0a±k) 

(x" ± k )( x + 9a ± k )(x + 14a ± k) 
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Family Function 

(x +a)' 

( x +a)' (x + b) 

(x + a )
3 

(x + b )(x + c) 

(x+a)
3 

(x+bf 

(x + a Y (x + h )(x t c) 

x= (x + a )(x + h )(x + c) 

,\' (,\'+(I) ( .\' + h) ( ,\' + C) ( .\" + ") 

Table VI 

Roots Derivative 

-a 5 (x +a)' 

-a,-b (x+a)
3 (5x+a+4b) 

-a,-b, (x + a Y (sx= + 2x (a+ 2h + 2c) 
-c +ab+ac+3bc) 

-a,-b (x + a Y (x + b )(5x + 2a + 3b) 

-a,-h, (x+b)(x+a)[s./ +.,(3a+3b+4c) 

-c +ah+ 2ac + 2bc] 

0,-a, x(sx' +x' (4a+4b+4c)+x 
-b.-c ( 3ab + 3ac + 3bc) + 2abc) 

0,-a, 5x' +4x'(a+b+c+d)+3x' 

-b,-c, ( ab + ac + ad + be + /,d + cd) 
-d +2x ( abc + abd + acd +bed)+ abed 

Roots 

-a 

-a and 
-a-4b 
---

5 

-a and 

-(a+2b+ 2c)± ✓a' +4b' - ab- ac-7bc 

-a,-b and 

-a,-b, and 

5 

-2a-3b 
5 

-(3,, •Jh, ,k)t ✓9a' •9b' +16c'-cah-16hc-16-c 

10 

no rational roots 

no rational roots 

Conditions For 
Integral Roots 

none 

a+4b must be 5 
or a multiple of 5 

Conditions: 
a' +4b' +4c' 
- ab - ac - 7bc 
must be zero or 
a perfect square 

2a+ 3b must he 5 or 

a multiple of 5 

Conditions: 
' 

9a +9b +16c 

- 2ab - 16hc - 16ac 

must be a 
perfect square 

NIA 

N/A 



The Quintic 

In terms of multiple roots, the quintic lends itself 
nicely to easy-to-work-with numbers that are small 
in quantity. However, for quintics of the form 
x(x-a)(x-b)(x-c)(x-d), the derivative has 

no rational roots, primarily because of Fermat's 
Last Theorem whereby there are no integral values 

for which x4 + y4 = z4

• Having run the computer 
through thousands of number combinations (just to 
be sure), no derivative with rational roots could be 
found. Our Table VI contains multiple roots only. 
Table VII contains the numerical families for the 
forms 

Table VII 

Family Function Roots Derivative 

x'(x+3)(x+4) 0,-3,-4 x=(.x+2)(5x+l8) 
x; + 7x' + 12x3 Sx" + 28x3 + 36.x: 

x' (x+3)(x + 1 1) 0,-3,-1 I x:(x+9)(5x+18) 
x; + 14x4 + 33x3 5x" + 56x3 + 99x' 

x' (x+4)(x+ 7) 0,-4,-7 x: (x+6)(5x+ 14) 
x; + 1 lx4 + 28x3 3x4 + 44.x-' + 84x' 

x3 (x+S)(x+ 12) 0,-5,-12 x: (x+ I 0)(5x+ I 8) 
x; + I 7 x• + 60x3 5x4 + 68x' + l 80x' 

x"(x-3/(x-1) 0,3, I x(x-3)(x-2)(5x-3) 
x5 

- 7x4 + 15x3 -9x: sx· -28x' + 45x: -I 8x 

x" (x-3f (x-2) 0,3,2 x(x-3)(x-l)(5x-12) 
,/ -8x' + 2 lx3 -18x: 5x4 

- 32x-' 
+ 63x' -36x 

x'(x-3f (x-7) 0,3, 7 x(x-6)(x-3)(5x-7) 
x' - l 3x4 + S lx3 -63x" 5x4 

- S2x3 + 153x' -I 26x 

x' (x-3)2 (x +4) 0,3,-4 x(x-3 )(x + 3 )(Sx-8) 
x5 

- 2x' -15x3 + 36x' Sx' -8x' -45x' + 72x 
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x3 (x+a)(x+b) and x2 (x+a)
2 {x+b)· 

Roots 

0 _.., -18 ' �, 
5 

0.-
9,-18 

5 

0 -6 -14 ' ' 
5 

0,-10. -18 
5 

0,3,2} 
5 

12 0,3,1.-
s 

7 0,6,3.-
5 

8 0,3,-3.-
5 

Transformation 

(x± k )' (x± 3a ± k )(x±4a± k) 

(x±k}'(x±3a±k)(x±1 la±k) 

(x± k )' (x±4a± k )(x± 7a ± k) 

(x± k )' (x± Sa ±k )(x± 12a±k) 

�±kf�-3a±kf�-a±k) 

(x ± k f (x -3a ± k f ( x -2a ± k) 

(x±k )' (x-3a±k f (x-7a±k) 

(x±k f (x-3a±k f (x+4a±k) 
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With all the patterns that do work, it was too tempting not to try to make a linear link among the cubic, 
quartic, and quintic forms. Let us examine the following facts. 

I. Cubic Form Smallest Root 

x(x-S)(x-8) 0 

Derivative 

(3x-20)(x-2) 2 

II. Quartic Form Smallest Root 

x(x-3)(x-4)(x-7) 0 

Derivative 

2(x-1)(2x-7)(x-6) I 

Ill. Quintic Form Smallest Root 

x(x-2)(x-3)(x-6) 0 

Derivative 
5x' -60x' + 240x' - 360x + 144 . 616036 ... 

We realize very quickly that we can come close to 
rational roots, but cannot obtain them as our constant 
tenn would have to be a multiple of 5 in order to be 
factorable, which is impossible in this situation. 

Summary 

If nothing else. the reader now has a partial list of 
cubic and quartic polynomials with multiple or single 
integral roots whose derivatives have multiple or 
single rational roots. The quintic avails itself to mul
tiple but not to single roots. 

I would never have attempted all this work without 
the user-friendly program DERIVE, as 1 was able to 
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Largest Root Range Sum of Roots 
8 8 13 

20 14 26- - -
3 3 3 

Largest Root Range Sum of Roots 
7 7 14 

20 42 
5=- -

6 4 4 

Largest Root Range Sum of Roots 
6 6 15 

60 
5.383960 ... 4.767924 ... 

-
5 

test many polynomials in seconds and quickly find 
derivative and corresponding factored forms. The 
same Diophantine process can be applied to rational 
forms. making life a little easier for the curve 
sketcher. 

Dunrn11 McDougall has been teachi11Kfor 27 years. 
i11clucling I 3 veors in the public school systems of 
Que/Jee. Alberto. and Brirish Columbia. During the 
past 15 yrnrs. he has fCl11ght nwthematics to high 
school G11d u11i,·ersitr s111denrs and to elementary 
school teachers. He owns 011d opemtes TutorFind 
Learning Centre. in Victoril1, British Columbia. 
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A Craig Loewen 

High School 

A dog is tied outside with a SO m rope at the 
corner of a 25 m square building. What is 

the size of the area the dog can reach? 

By how much does the area increase if the 
dog is given a 60 m rope? 

Adapted from Kantecki. C, an<l LE Yunker. 1982. 
"Problem Solving for rhe High School Mathematics 
Student." Marh Monoxraph 7: 49--60. 

Junior High 

You have only one 5-litre container and 
one 3-litre container. How can you measure 

out exactly 4 litres of water if neither 
container is marked for measuring? 

Find strategies to measure out any number 
of litres of water from I to 20. 

Billstein, R. S Libeskind and J W Lott. 1987. 
A Problem Solving Approach ru Mat/1emuric.1 ji,r 
Ele111e11Wr\' School Teachers. 3rd ed. Menlo Park. 
Cal: Benjamin/Cummings. 

de!ta-K, Volume 44, Number 2, June 2007 

Middle School 

Students in a physical education class 
are spaced evenly around a circle, and then 

they count off. Student I 5 is directly 
opposite student 49. How many students 

are in the class? 

Marhem"rics Teacher 83. no -1: 290-91. 

Elementary 

A frog fell into a well that was 20 metres 
deep. Each day he climbed 3 metres up the 

well 's sides. At night he slid back down 
I metre. How many days did it take him to 

climb out of the well? 

www.myteacherpages.com/webpagcs/ LWoods/ 
index.cfm'1subpage=266012 
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