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What are continued fractions? Consider attempting 
to solve the quadratic equation 

x
2 

- 5x- l = 0

by dividing by x and writing the equation in the form 

1 
x=5+ -

X 

The variable, x, is still found on the right side of 
the equation, but it can be replaced by its equal, 
5 + 1/x.

1 I 
x=5+ - =5+--

x 
5 

1 
+-

x 

If one repeats this several times, one gets 
I 

x=5+------

5+ 
I 

5+ 
I 

5+--
1 

5+
x 

This type of multiple-decked fraction is known as 
a simple continued fraction. Continued fractions have 
been studied by many mathematicians in the past and 
are a subject of active investigation today. Almost 
every book on the theory of numbers includes a 
chapter on continued fractions. 
An expression of the form 

a2 + - b
al +--3-

a4 + ... 

is called a general co11tinuedfraction. The numbers 
a 1 , a 2 , a 3 ••• b 1 , b 2 , b 3 may be real or complex, and 
the number of terms may be finite or infinite. 

In a simple continued fraction, all the numerators 
involved are ls, and the first term, a 

1
, is usually a 

delta-K, Volume 46, Number 2, June 2009 

negative or positive number, while a 2 , a 3 ••• are usu
ally all positive. 

IQ
I +-----

a2 +---I 
ai

+-
a4 

+ ... 

A terminating or finite simple continued fraction 
is a simple continued fraction that has a finite number 
of terms. It is in the form of 

I 
a +--------

ai + ... +---l
a,,_1 +

a. 

Examples of these fractions have been found 
throughout mathematics for the past 2000 years, so 
its exact origin is hard to pinpoint, but the study of 
continued factions did not really begin until the later 
l 600s and early l 700s.

Traditionally, the origin of continued fractions is
said to be at the time of the creation of Euclid's (ca 
325 BC-ca 270 BC) algorithm, used to find the great
est common denominator of two numbers. Euclid's 
algorithm seems to have no connection to continued 
fractions, but by algebraically manipulating the algo
rithm, a simple continued fraction of plq can be de
rived. Euclid and his predecessors probably never 
actually used this algorithm to discover continued 
fractions, but due to the close relationship it has to 
continued fractions, the creation of the algorithm is 
a very important step in its development. 

For more than a thousand years, any work that 
used continued fractions was limited to specific ex
amples. Indian mathematician Aryabhata ( d 550 AD) 
used a continued fraction to solve a linear indeter
minate equation. Rather than generalizing his 
method, he only used continued fractions in specific 
examples. 
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Traces of continued fractions were found in Greek 
and Arab mathematical writing as well, but were also 
only used in specific examples. Two Italians, Rafael 
Bombelli (1526-1572) and Pietro Cataldi (1548-1626), 
also contributed to this field, although, they still did 
not try to investigate the pro�ies of continued frac
tions. Bombelli expressed ✓l 3 as a repeating contin
ued fraction in 1572, and Cataldi did the same for 
✓18 in 1613. 

Continued fractions finally surfaced through the 
work of John Wallis (1616-1703). In his book, Ari
themetica lnfinitorium ( 1655), he developed and 
presented the identity 

4 3•3•5•5•7•7•9 
� 2•4•4•6•6•8•9 

The first president of the Royal Society, Lord 
Brouncker, in about 1658, transformed this into: 

4 4 1' 
- = I +------Or - = l+------

,r 2 + 9 rr 3' 2+-----

2 + 25 
51 

2+ 
2+ 49 2+-1_·_ 

2 +-8_1_ 2 + _'!!_
2+... 2+ ... 

Wallis took an interest in this work and began the first 
steps to generalizing continued fraction theory. In his 
book Opera Mathematica ( 1695), Wallis laid a foun
dation for continued fractions. He was the first to use 
the term continued fraction.

The field of continued fractions began to flourish 
when mathematicians Leonhard Euler ( 1707-1783), 
Johann Lambert ( 1728-1777) and Joseph-Louis La
grange ( 1736-1813) embraced the topic. Euler, in his 
work De Fractionibus Continuis ( 1737), was the first 
to prove that every rational number can be expressed 
as a terminating simple continued fraction. 

Today, continued fractions serve as an important 
tool for new discoveries in the theory of numbers and 
in the field of Diophantine approximations. Analytic 
theory of continued fractions, an important general
ization, is an extensive area for present and future 
research. Continued fractions have also been used 
within computer algorithms for computing rational 
approximations to real numbers, as well as solving 
indeterminate equations. 

Rational Continued Fractions 

There are two simple ways to write a finite simple 
continued fraction. It can be written as: 

1 1 1 I 
a,+-- ---- ... --

a2 + a] + 04 + + an
where the + signs after the first one are lowered to 
remind mathematicians of the real format of the 

14 

continued fraction. A simple continued fraction can 
also be written by using the symbol [a 1, a 

2 
••• a

n
], 

so that 
I I I [a,,ai, ... anJ=a, +----... --

a
2 

+ a
3 

+ +an
The terms a 

1 
, a 2 •. . a" are called the partial quotients

of the continued fraction. 
Theorem: Any rational number can be expressed as 
a finite simple continued fraction. Conversely, any 
finite simple continued fraction represents a rational 
number. 

Let plq be any rational fraction, with q>O. Then 

!!_=a, +2 
q q 

where r
1 

is the remainder and O <r 
1 
< q, and a I is 

any positive or negative integer, or zero. 
If r 1 = 0, then the process terminates. However, if 

r
1 

-:t:- 0 then 
p 1 
-=a 1 

+- where 0<r 1 <q 
q .!:L 

r I 

Repeating this process and dividing q again by r 1 , 

we get 
!i=a,+� where 0<r2 <r'
r1 - r1 

These calculations continue until r" equals 0. If 
p/q is indeed rational, then there has to be a point 
when r 11 = 0 because the remainders form a sequence 
of decreasing non-negative integers where q > r 1 > 
r 2 > r 3 ••. and there cannot be an infinite number of 
positive integers between q and 0. By continually 
dividing, r n eventually equals 0, and all the remain
ders cancel, leaving only the partial quotients of the 
finite simple continued fraction. 

Therefore, any rational number, positive or nega
tive, will give us [ a

1
, a

2
, a

3 
••• a11], where a,, is the 

terminating denominator of the continued fraction. 
Let's examine the continued fraction expansion 

for the fraction I 0/3. To write� in the simple con-
3 

tinued fraction form, where all the numerators in the 
chain of the expansions are l s, we begin by writing 
IO I 

3 
= 3 + 

3
. We can, however, take it a step further and

write 1/3 as l /2+ I /1, giving the number I 0/3 the 
continued fraction expansion 

�=3+-l-
3 2+ � 

I 
These representations can be recorded as< 3; 3 > or 
< 3; 2, 1 >. 
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Using the same procedure, we can change 75/31 
into a simple continued fraction: 

� = 2+�=2+_!__ = 2+-1-= 2+-1-= 2+---
31 31 31 2+2- 2+_!__ 2+_! __ 13 13 � 2+i 

I =2+ I =2+ I 2+--1 2+ 
2+- 2+ 1

1 5 2+-3 I+� 

5 5 

=2+----=2+-----= <2;2,2,1,1,2> 
2+--- 2+ 11 2+_1_ ") -+--

I
-

I+_!_ l+-
i 1+..!.. 
2 2 

We could have also extended the process one more 
step and written the 1/ 2 as 1 + 1 / I + l / l. This 
would give the expansion < 2; 2, 2, 1, 1, l ,  1 >. 

Using 64 as an example: 
27 

64 = 2+..!..Q_ 
27 27 
10 I 

27 =27 
= 

2 + 7
10 10 

7 I 
w

=

w
= 

i+l 

3
7 7 

7 7 
3 

I 2+-
3

I 
3

=

3
=

3 
I 

Since this fraction _I_ is the same as the original 
3 

fraction on the last line, we know that we are finished. 
Therefore, we conclude that 

64 
= 2 + 1 or 64 = 2 + _l __ l __ l _ _l_

27 1 27 2 + 1 + 2 + 3 2+ 1 1+--
2+ _1_

3 
64 or -= [2,2,1,2,3].
27 

These partial quotients [2, 2, I, 2, 3], when assembled, 
will allow us to reconstruct the number 64/27. 

I I I I I I 3 I 7 IO 64 2+---- = 2+--+- = 2+--= 2+- =-2 + I + 2 + 3 2 + I 7 2 + 10 27 27 
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Expansion of Irrational 
Continued Fractions 

The method of finding the successive partial quo
tients of irrational numbers is repeated in order to 
expand the continued fraction. But this algorithm will 
never terminate or result in a rational number because 
when an integer is subtracted from an irrational num
ber, the difference will still be irrational. 

x = a + 
1 

I 
-

X2 

I where, x
2 

= ---
(x -a 1

) 

X2 = a 2 +
X3 

and so on. 
Therefore, 

I l x=a1 +�=a1 +--1-=a1 +a,+ I 
a2 

+- . a
3 
+-

X3 X
4 

or 
x = [a

1
,a

2
,a

3
,a

4 
. . • ] 

As an example, the expansion of ✓3 = 1 .73205 ... 
will be used: 

✓3= 1+__1__ 
Xi 

where, 
I ✓3+1 ✓3+1 

Xi = 
.fj - I • .fj + l = -2

-

1 
.fj = l+--

.fj +l
2 

Now the largest integer for the number .fj + 1 = 
1 .3660 ... is l, so 2 

.fj +l =l+ __I__
2 x

3 

where, 
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Then the largest integer for ✓3 +I= 2.7320 ... is 
2, so 

✓3 + 1=2+_!_

where,
_ I _ 1 ✓3+1 ✓3+1

X4 ��-----•--=--· 

(✓3+1)-2 ✓3-1 ✓3+1 2 
We see that this expansion will repeat and we 

can therefore conclude that the -��press ion of 
✓3 =[!, I, 2, 1, 2, I, 2 ... ] or [1,1,2].

Theorem: Any irrational number x can be expanded 
into an infinite simple continued fraction. 

Solving Quadratic Equations Using Continued 
Fractions 

It is also possible to solve the quadratic equations
of the form ax 

2 
+ bx + c = 0 (where a, b and c are

integers) using continued fractions. Using the equa
tion x 

2 
- 5x - 1 = 0, we can rewrite this as x 

2 = 5x
+ 1. Then x = 5 + I Ix. This means that whenever there
is an x, we can replace it with a 5 + 1/x. When we do
this we get:

X = 5 + _!_ = 5 +-] - = [ 5, 5, 5, 5 ... ]
X 5+_.!_ 

X 

We can continue to replace the x again and get a 
periodic continued fraction 

I x=S+----1 5 + 1 5+--
5+ ... 

Patterns in the Golden and 
Silver Means 

The golden mean, Phi, is a root of the equation 
x

2 
+ x -1 = 0, and as a continued fraction is expressed 

as Phi= [1,1,1,1 ... ]. Silver means are the numbers 
that have the same repeating continued fraction pat
tern as Phi, such as [2, 2, 2, 2 ... ], ... [1 1 ,  11, 11, 11. .. ] 
and so on. 

The exact values of the silvers means, as well as 
the golden mean, can be calculated using simple al
gebra. For example, the quadratic equation 
x 2 

- 5x -1 = 0 contains a root that is a silver mean.
When we solve this quadratic equation using the 
quadratic formula, we get x = (5 ± ./29)12. Since 
( 5 - ,./29) I 2 is negative, the positive value, ( 5 + ,./29) / 2, 
is the value of the continued fraction [5, 5, 5, 5 ... ], 
since all continued fractions are positive. 

There is a pattern to the values of the continued 
fractions of the golden means as well. As we know, the 
quadratic equation that governs Phi is x� + x -l = 0. 

16 

If we solve for x, we get (1+ ✓
5
)/2 as the value of 

the continued fraction [ 1, 1, I. .. ]. By looking at 
.fi = [l ,  2, 2, 2 ... ], we can determine that[2, 2, 2 ... ] 
= 1 + .fi. Using the same reasoning, we can find 
that there is a pattern to the values of the continued 
fraction values of the golden and silver means: 

[!, 1, 1, I. .. ]= (1+ ✓
5

)/2 
[2, 2, 2, 2 ... ] = (2 +✓8/2) = I +.fi 
[3, 3, 3, 3 ... ] = (3 + ✓13)/2 
[4,4,4,4 ... ] =(4+✓-io)/2=2+✓5

[5, 5, 5, 5 ... ] = (5 + ./29)12 
[6, 6, 6, 6 ... ] = (6+✓'W)/2 = 3+../Io 
and so on. 

Other Numbers with 
Patterns in Their Continued 
Fraction Expansions 

"e," the base of natural logarithms, is the only 
number besides the square root expressions that yields 
this kind of continued fraction. Euler found many of 
these continued fraction expressions involving "e." 

The continued fraction expansion of "e" is: 
I 

e = 2 +------
] l+------

2 2+----
3 3+---

4 
4+--

5+ ... 
This is not a simple continued fraction (where the 
numerator al ways equals 1 ), so it cannot be expressed 
in bracket form. However, "e" can also be expanded 
so that it can be expressed as a simple continued 
fraction: 

e=2+-----,----- = [2,l,2,l,l,4,l.l,6,1,1,8 ... ] 
l+---

1 2+---�, --
!+----

l+----
4+ 

I l+--,-1+-6+ ...
Euler also developed more continued fraction 

expansions involving "e" that were simple continued 
fractions: 

✓e = 1 +----
1
-- = [l,l,1,5.1,1,9,l,l,13,l,l,17 ... ] 

I+---- --
1 + 

I 

5+-!
l+-.!....

l+-1-9+ ... 
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e-1 =I+------= [l,!,2,l,l,4,l,l,6,I,1,8 ... ]
l+-----

2+ l

I+ 
l 

l+-1-
4+ ... 

There are two other continued fraction expansions 
involving "e" developed by Euler: 

e- I l 
= 

e+I 
2+ 

e-1
= 

2 
1+ 

6+ 
I 

1 
10+--

14+ ... 

6+ 
I 

10+--
14+ ... 

= [0,2,6,I0,14,18,22 ... ] 

= [0,I,6,10,14,18,22 ... ] 

This last expansion of Euler's allows us to approxi
mate 'e' quickly. For example, the 7th convergent to 

(e -1) . 342762 
h -- IS ---, SO t at 

2 398959 

e 

= 
1084483 = 2.718281828458 ...
398959 

This number differs from the actual value of "e" by 
only one unit in the 12th decimal place. 

Applications of continued fractions, as we have 
seen, have been closely tied to establishing rational 
approximations to irrational numbers, such as ap
proximations to "e," or to the square root of n (where 
n is not a perfect square), as above. Another applica
tion of continued fractions arises in the area of me
chanical engineering. Here, problems can be solved 
including the design of a gearbox that will take a 
given input of x revolutions per minute and deliver 
an output of y revolutions per minute. A third area of 
applications of continued fractions comes from the 
area of botany. Botanists have tried to understand the 
recurring appearance of the sequence 1, 2, 3, 5, 6, 13, 
21, 34, 65, ... in many natural settings. This sequence, 
the Fibonacci sequence, is found, for instance, in 
counting the patterns of seeds on a sunflower, or even 
leaves on a tree. Other applications deal with the 
calendar, the prediction of eclipses, chaos theory and 
the role that approximations play in designing musical 
instruments. 
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This topic is an excellent one to add to the math
ematics curriculum of gifted students as an enrich
ment topic. Students studying this subject matter will 
gain additional facility in analyzing and generating 
number patterns, the representation of numbers in 
unique ways, increased proficiency with calculations, 
and the use of arithmetic and algebraic operations on 
real numbers. Students and teachers of mathematics 
alike can further explore the applications in mathe
matics and also such diverse fields as botany, as
tronomy and mechanics. Though its initial develop
ment seems to have taken a long time, once started, 
the field and its analysis grew rapidly. The fact that 
continued fractions are still being used signifies the 
long-term importance of the field. 
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