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Note: This article.first appeared in the Mathematics 
Council Newsletter volume 9, number 2, pages 2-12 

( 1970). This publication was renamed delta-K in 
1971. Minor changes have been made in accordance 
with current ATA sryle. 

Euclid must go! Surely anyone who utters such 
sentiments must be sacrilegious. Yet these are the 
words of the outstanding mathematician Professor 
J Dieudonne in his address to the Organization of 
European Economic Council in France, in 1959. 1 Why
did he make the statement? Perhaps I can bring some 
light to this. 

We read so much today about what should and 
should not be included in the school curriculum that, 
1 am sure, we all wonder just what mathematics will 
become in another decade. One such indicator is the 
Report of the Commission on Mathematics of the 
College Entrance Examination Board, published in 
1959." The very bold programs set forth in that docu­
ment (very bold for its day) are being realized in 
varying degrees around the world today-just 
10 years later. A number of topics and concepts listed 
have yet to be included in the Alberta curriculum, but 
we are surprisingly close to the programs outlined. 

The report of the Cambridge Conference on School 
Mathematics-Goals for School Mathematics, 3 pub­
lished in 1963-listed a still more startling set of 
objectives for mathematics from K through 12. This 
document might well be the preview of the next 
decade. 

Why do 1 mention these two reports? I do because 
in both reports strong reference is made to transfor­
mations. In the Commission report,4 some time is
spent on the three primary weaknesses of the so-called 
Euclidean geometry as it has been presented for so 
many years. 1 shall be concerned primarily with only 
one of the weaknesses. Professor Dieudonne had 
these weaknesses in mind when he made the state­
ment ''Euclid must go!" 

There has been a pronounced trend away from 
"traditional" geometry in countries outside of North 
America. A number of the British programs-to name 
three, the School Mathematics Project, the Nuffield 
Project and the Scottish Mathematics group--em­
phasize transformation. 
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Belgium, perhaps as a result of Papy's work, leans 
heavily on transformations from elementary school 
up. Here in Canada, Professor Dienes of Sherbrooke, 
Quebec, has made transformations an integral part of 
his program. Del Grande and Egsgard of Toronto have 
come out with high school texts integrating transfor­
mations into the program.; The Secondary School 
Mathematics Cuniculum Improvement Study (SSM­
CIS), 0 produced by Teachers College, Columbia 
University-two of the authors are Dr Julius Hlavaty 
and Professor Ray Cleveland-has utilized transfor­
mations in algebra and geometry. The NCTM publica­
tion Geometry in the Secondary School ( 1967) 7 de­
votes nearly half of its space to discussions about 
transformations of one type or another and hardly 
mentions traditional Euclidean geometry as it has 
been taught for years. 

Transformations 

My objective will be to show quickly and easily 
how transformations may be used in high school 
geometry and, at the same time, not get involved with 
"motion" of a geometric figure or set of points. (At 
times, I shall call upon your intuition as to the motion 
of a figure.) I shall not be rigorous in such a brief 
presentation. I shall also make statements that, in a 
more formal presentation, would need more firm and 
rigorous attention. 

Definition of Transformation 
A transformation is a one-to-one mapping. Since 

we will be talking about plane geometry, I will say 
that a transformation is a one-to-one mapping in 
which the domain and range are the set of points of 
a plane. 

Let us now look at a particular set of transforma­
tions-the set known as isometries. 

Definition of lsometry 
An isometry is a distance-preserving function. Any 

figure transformed under an isometry is said to be 
invariant; that is, a figure is its own image under an 
isometry. Another way to say this, and perhaps crucial 
to this discussion, is that a figure transformed under 
an isometry is congruent to its image. 
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Reflection (in a Line) 
Consider a triangle reflected in a mirror. 

Figure 1 
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This is the intuitive concept of a reflection. Now 
let me draw to your attention some of the pertinent 
details. 
I. Every point of the figure ABC is associated with

one-and only one-point in its image figure
A'B'C'.

2. Points: A-A'; B-B'; C-C'; P-P; Q-Q; R-R.
3. Notice that the points in the mirror line are invari­

ant: each maps on to itself.
4. Segments: AB- A'B'; AC- A'C'; BC- B'C';

AP-PA'; BQ-QB'; CR-RC'
5. Notice that the mirror line is invariant. PR -PR
6. Consider the angles formed by AB and� with

PR. The angles are congruent.

Figure 2 
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7. The perpendicular distance between a point and
the mirror is congruent to the perpendicular dis­
tance between the image point and the mirror or,
stated differently, the axis of reflection is the per­
pendicular bisector of the segment joining a point
and its image.

8. I:!,. ABC� I:!,. A'B'C'
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9. The sense of !:!,.ABC is opposite to that of !:!,.A'B'C'.
The order of vertices of the object triangle listed
clockwise is A-B-C, whereas the order of vertices
of the image triangle, clockwise, is A'-C'-B'.

Let us now look at a double reflection-a reflection
of a reflection. In the first, the two axes of reflection 
are parallel (Figure 3 ), whereas in the second (Fig­
ure 4), the two axes are not parallel. Notice that we 
have one transformation followed by another. This is 
called composition of tran�formations. 

Figure 3 
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Figure 4 
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These two illustrations may lead us intuitively to 

accept the statement that given any two congruent 
triangles in a plane, there is a series of reflections 
such that one triangle is mapped onto the other. It is 
an interesting exercise to determine the maximum 
number of axes of reflection necessary to transform 
any given triangle into a specific congruent triangle 
and where those axes of reflection are. 
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At this time I wish to emphasize that we are not 
moving triangles or lines or points. When you look 
in a mirror and see your eyes, you do not, for a mo­
ment, have the notion that your eyes have moved 
behind the mirror. As one author states, in tenns of a 
bowling lane, "We are setting up pins in another al­
ley." As for motion in a plane to explain congruency, 
there is no motion that would permit you to move 

� ABC to coincide with � A'B'C' (Figure 1). The 
motion would have to come out of the plane. 

To make my point clear, let me digress for a mo­
ment to a transformation that is not an isometry. 
Consider the inversive transformation. For this trans­
formation, consider a circle in a plane with centre 0 
and fixed radius r. Any point M is mapped into M' 
such that m(OM) · m(OM') = r�. Refer to Figure 5. 

Figure 5 
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This transformation results in some strange things: 

1. Every point in the interior of the circle is mapped
into a point in the exterior of the circle and, con­
versely, every point in the exterior is mapped into
the interior.

2. Every point on the circle remains fixed (mapped
into itself).

3. Every circle in the interior of the circle that passes
through the centre is mapped into a straight line.

4. Every line that contains the centre O of the circle
is mapped into itself.

5. Every line that does not contain the centre O of the
circle is mapped into a circle.

6. Every circle not containing the centre O of the
circle is mapped into another circle.

Clearly, we have not "moved" figures-we have
not preserved shape or size. 

However, let us return to isometries. While we can 
use reflections to establish our mappings of one figure 
into congruent figures, other transformations may be 
used as well. We shall only spend time with two others 
in this paper. 

Refer to Figure 6. Notice that we can think of 
A-A", B-B" and C-C". If we place this figure on
the coordinate plane, it is easy to think of this trans­
formation as mapping any point M(x,y) into M'(x+l,
y+h).

Figure 6 

Intuitively, a translation can be thought of as the 
transformation of the set of points, taken in order, 
through a certain fixed distance in some direction. 

Review some of the properties of this invariant 
transformation: 

1 . Corresponding sides are parallel and congruent. 
2. Corresponding angles are congruent.
3. The sense of the figure is preserved.

Rotation 

The third and last transformation discussed by 
me in this paper is illustrated in Figure 7. I have 
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reproduced it here to show the mapping of 11 ABC 
onto 11 A"B "C". You can visualize the mapping: 
A-A", B-B" and C-C". As you know, this is a
rotation.

Figure 7 

In the next figure, we clearly see the mapping on 
the Cartesian plane. 

(-5,8 
C 

Figure 8 

The point of rotation is the origin. The angle of 
rotation is the measure of LAOA'.

Points to observe in this isometry: 

• LAOA' = LBOB' = LCOC'

• The perpendicular bisector of the segment deter­
mined by two corresponding points contains the
point of rotation O (£ bisects CC').

• The said perpendicular bisector of the segment CC'
bisects LCOC'.

• Sense is preserved.
• The point of rotation is the only point in the plane

that is invariant.
• The image is congruent to the object.

Another isometry is the glide-reflection. It is a
combination of the translation followed by a reflec­
tion. Some books use the glide-rotation. These are 
simply compositions of other isometries. 
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Properties of an lsometry 

At this point we will sum up briefly and state our 
understandings in the form in which we will be using 
them. 

I. If there is an isometry or isometries which trans­
form one geometric figure into another, the two
figures are congruent.

2. Suppose in polygonsABCD andA'B'C'D' the map­
ping is an isometry and suppose A-A', B-B',
C-C',D-D'.
a. Distance is preserved:

m(AB) = m(A'B')
m(BC) = m(B'C')
m(AC) = m (A'C')
etc.

b. Measure of each angle is preserved: m LABC

= m LA'B'C', etc. 
c. Straightness is preserved-that is, lines map

into lines.
d. Parallel lines map into parallel lines. If AB II

CD, then A'B' II C'D'. (Hence, perpendicularity
is preserved.)

Now we arrive at the main point of the discussion. 
I have gone neither into any detail on the method of 
presentation nor into interesting side trips. I have only 
laid the foundation for that which I want to present 
at this time. 

Geometric Proofs Using 
lsometries 

Definition: two figures are said to be congruent if 
there is an isometry ( or a composition of isometries) 
that maps one of the figures onto the other. Let us 
look at specific instances. 

Example I v ____ -'7'w 

Figure XYZVW 

Segments XW and VY 
intersect such that XY 
is parallel to VW and 
YZ2:VZ. 

Prove: XZ = WZ 

X' 

x-----v 

Proof: Consider the 180° rotation of !). XYZ 
about Z. 
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Thus Z-Z 
Since YZ = VZ, Y-V 
Let X-X' 
Since X lies on ZW, X' lies on ZW 

Now in a rotation of 180° a line not through Z maps 
onto a parallel line (property of rotations). 

·: XY-VX' 
:. XY II VX' and XY = VX' 

But:. XY II VW 

VX' II VW 
Two parallel segments with one common point 

must lie in the same line (Euclid-we have not ban­
ished him completely. Saccheri does not dethrone 
Euclid here!). 

X' lies in VW 
But X' lies on line ZW 
W is the only point common to the two lines zW 
andvW 
:. X'=W 
:. xz-wz 

:. XZ:::WZ 
Let us look at another example. 

Example 2 
Consider the square ABCD. P and Q are midpoints 

of AB and BC respectively. Prove PD _l_ AQ 
J,' 
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We will not set up the detailed proof, but 1 will 
work through the general approach. First, by transla­
tion, we transform!). DAP along the DA the distance 
equal to the measure of DA. Thus we get the !). AA'P'. 
Now we rotate !). AA'P' about point A, through an 
angle of rotation of rc/2. We can then show that 
!). AA'P' has been mapped onto !). ABQ. Hence, AD' 
(which is parallel to DP) maps onto AQ by a rotation 
of rc/2. Hence AQ 1- DP. 
Here is a final example to illustrate the use of a reflection. 

Example 3 
Given: In the figure, AP and PQ are parallel chords 

of two circles with a common centre 0. 
Prove: (a) L. AOP = L. BOQ 

(b) AP2:BQ
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Proof: Consider a reflection of Ll PAO in a line M 
through O perpendicular to PQ. From previous work 
we know line M bisects PQ. (Can prove, but will 
accept now.) 

o-o 

s-s 

R-R
·: PR-QR and PR 1- OR (previously proven)
:. P-Q

Similarly, we can show A-B. 

:. L. AOP-L. BOQ :. L. AOP � L. BOQ 
:. PA-QB: :. PA� QB. 

I have illustrated the use of transformations in 
proofs from plane geometry. Transformations also 
may be used to let students discover construction 
techniques and in tum make the work on constructions 
far more meaningful and a far more powerful unit in 
geometry. Time will not permit a discussion of this 
area. 

A Few Concluding Remarks 

I have restricted my discussion to plane geometry. 
There is no need for this restriction; transfor­
mations allow an easy transition into 3-dimension 
or even n-dimension. This is an advantage of 
transformations. 
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Transformations can also be used to solve qua­
dratic equations of the form ax2 

+ by2 
+ 2yx + 2fy +

c = 0 by simply transforming them to the form 
ax 2 + by 2 = c. This is another advantage of 
transformations. 

Finally, transformations provide ample opportunity 
to show that Euclidean geometry is one particular 
element of the set of geometries in which a certain 
set of properties are invariant. Whenever we change 
the set of invariant properties we have a new geom­
etry. Within the scope of transformations lies a host 
of geometries of such a simple nature that students 
at an early age can develop, if given an opportunity, 
an intuitive understanding of them. 

Professor Dieudonne viewed the broader field of 
mathematics that is possible through the new freedom 
provided by a break from Euclid. He does not advo­
cate throwing out all of Euclid, but rather stresses that 
for young students there is a richness in geometry 
possible when parts of Euclid are set aside. 
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