? ? ? PROBLEM CORNER ? ? ?

edited by William J. Bruce and Roy Sinclair University of Alberta Edmonton, Alberta

Problems suggested here are aimed at students of both the junior and senior high schools of Alberta. Solutions are solicited and a selection will be made for publication in the next issue of detta-K. Names of participants will be included. All solutions must be received (preferably in typewritten form) within 30 days of publication of the problem in deIta-K.

```
MaiI solutions to: Dr. Roy Sinclair
    Department of Mathematics
    University of Alberta
    Edmonton, Alberta T6G 2G1
```


Problem 2:

(submitted by rilliam J. Bruce, University of Alberta, and reprinted from the June 1980 issue of delta-K.)

Clearly $1=1^{2}$ is a perfect square, but 11 and 111 are not. Consider all numbers $11111 \cdots 1=S$, in which all digits are unity, and prove or disprove that, except for $s=1$, no such number is a perfect square.*
*EXTENSION (Proof not to be submitted for publication.)
The theorem is true for any number that can be written in the form $100 \mathrm{~m}+10$ +1 (m a positive integer). Also, true for $100 \mathrm{~m}+\mathrm{k}+1$ when k is not divisible by 4.

Problem 3:

(submitted by William J. Bruce, University of Alberta.)
Point P is located in a rectangular region such that its distances from three of the vertices of the rectangle are given by "a ft.," "b ft.," and "c ft." Let "d ft." be the unknown distance to the fourth vertex and find a relation among the four distances, "a," "b," "c," and "d," so that whenever any three are known, the fourth can be computed.

