actifities
 Beyond the Usual Constructions

by Melfried Olson
University of Wyoming
Laramie, Wyoming 82071

Reprinted with permission from the Mathematics Teacher, May 1980 (Vol. 73, No. 6), copyright 1980 by the National Council of Teachers of Mathematics.

Teacher's Guide

Grade level: 7-12.
Introduction: Basic constructions concerning triangles and the nine-point circle were introduced in this column by Allen in 1972. There are other interesting relationships concerning triangles and circles that can be explored by using constructions. The activities below provide additional construction experiences.

Materials: Compass, protractor, straightedge, and copies of the next three sheets for each student.

Objectives: After a review of similarity of triangles, congruence of circles, work with half planes, and the constructions of centroid, orthocenter, circumcenter, incenter,
and the nine-point center and nine-point circle of a triangle, the following set of exercises can be used as motivational material for further discussion of special relationships derived from a triangle and previously mentioned basic constructions.

Directions: Make copies of the following pages-enough to allow for student mistakes. You may need to review the basic constructions if you haven't worked with them recently. These include bisecting angles, constructing a perpendicular from a point to a line, and constructing a perpendicular bisector of a segment. Appropriate discussion should follow each activity, and the interested student could pursue similar material as a class project.

Solutions

1B. Angle bisectors of $\triangle J K L$ are altitudes of $\triangle A B C$.
Note: If a nonacute $\triangle A B C$ is used, the altitudes will intersect outside the triangle so the relationship in IB will not hold.
2 C. The segments are concurrent. The point at which they are concurrent is called the Fermat point of the $\triangle A B C$ (denoted F).
D. $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C^{\prime}}$ all have the same length.
E. The measures of the six angles are congruent.
3C. $\overline{P Q}\|\overline{J K}, \overline{P R}\| \overline{J L}$, and $\overline{Q R} \| \overline{K L}$, and, as such, $\triangle P Q R$ and $\triangle J K L$ are similar.

4D. The points M, N, and O are collinear. This line is called the Simson line of P for the triangle.
5. Note: This activity should be done as a parallel construction to Euler's ninepoint circle (see Allen).
5D. The nine-point center of $\triangle A B C$ is Z. The nine-point circle of $\triangle A B C$ is the circumcircle of $\triangle J K L$.

REFERENCES
Allen, Charles E "Actıvıies: Mission--Construction." Mathematics Teacher 15(November 1972); 631-34.
Eves, Howard. Fundamentals of Geometry. Boston: Allyn \& Bacon, 1969.

BEYOND THE USUAL CONSTRUCTIONS

ACTIVITY 1

A. Points J, K, and L are the feet of the altitudes from A, B, and C, respectively. Draw $\triangle J K L$.
$\triangle J K L$ is called the orthic triangle of $\triangle A B C$.
B. Construct the bisectors of the angles of $\triangle J K L$, labeling the point of intersection of the angle bisectors H. What do you notice?
With respect to $\triangle A B C, H$ is called the orthocenter, but with re-
spect to $\triangle J K L, H$ is called the incenter.

ACTIVITY 2

ACTIVITY 2
A. Construct an equilateral $\triangle A B C^{\prime}$ with sides of length $A B$ so that C^{\prime}
is not in the same half plane as C determined by $\bar{A} \dot{B}$.
B. Repeat (A) for the other sides of $\triangle A B C$ so as to have three equila-
teral triangles, $\triangle A B C^{\prime}, \triangle A B^{\prime} C$, and $\triangle A^{\prime} B C$.
C. Draw $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C}$. What do you observe?
D. Measure $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C^{\prime}}$. What do you observe?.
E. Label $\overline{A A^{\prime}} \cap \overline{B B^{\prime}} \cap \overline{C C^{\prime}}$ as F. Measure the six angles formed
around F. What do you observe?

BEYOND THE USUAL CONSTRUCTIONS

