Pursuing Per Cent Problems

by Bonnie H. Litwiller and David R. Duncan

Mathematics Department
University of Northern Iowa
Cedar Falls, Iowa

The following four problems illustrate different applications of the concept of per cent. In each case, a per cent is to be computed. Although the problems may appear similar at first inspection, they are, in fact, quite different.

Let a and b be fixed constants with a < b .

1. a is what per cent of b ?
2. b is what per cent of a ?
3. b is what per cent greater than a ?
4. a is what per cent less than b?

To illustrate these numerically, let $\mathrm{a}=4$ and $\mathrm{b}=5$.

1. 4 is 80% of 5 . $\left(80=\frac{4}{5} \cdot 100\right)$
2. 5 is 125% of 4 . $\left(125=\frac{5}{4} \cdot 100\right)$
3. 5 is 25% greater than 4. $\quad\left(25=\frac{(5-4)}{4} \cdot 100\right)$
4. 4 is 20% less than 5. $\left(20=\frac{(5-4)}{5} \cdot 100\right)$

In general for $\mathrm{a}<\mathrm{b}$, the answers to the four problems are:

1. If a is $p_{1} \%$ of b, then $p_{1}=\frac{a}{b} \cdot 100$.
2. If b is $p_{2} \%$ of a, then $p_{2}=\frac{b}{a} \cdot 100$.
3. If b is $p_{3} \%$ greater than a, then $p_{3}=\left[\frac{(b-a)}{a} \cdot 100\right]$.
4. If a is $p_{4} \%$ less than b, then $p_{4}=\left[\frac{(b-a)}{b} \cdot 100\right]$.

Let us now find relationships among p_{1}, p_{2}, p_{3}, and p_{4}.
A. $p_{3}=\frac{(b-a)}{a} \cdot 100$

$$
\begin{aligned}
& =\frac{b(100)-a(100)}{a} \\
& =\frac{b(100)}{a}-100
\end{aligned}
$$

Therefore, $p_{3}=p_{2}-100$
For example, if b is 119% of a, then b is 19% greater than a.
B. $p_{4}=\left(\frac{b-a}{b}\right) \cdot 100$

$$
\begin{aligned}
& =\frac{b(100) a(100)}{b} \\
& =100-\frac{a(100)}{b}
\end{aligned}
$$

Therefore, $\mathrm{p}_{4}=100-\mathrm{p}_{1}$
For example, if a is 83% of b, then a is 17% less than b.
C. $p_{1} \cdot p_{2}=\left(\frac{a}{b} \cdot 100\right) \cdot\left(\frac{b}{a} \cdot 100\right)$

$$
=10000
$$

Therefore, $p_{1}=\frac{10000}{p_{2}}$ and $p_{2}=\frac{10000}{p_{1}}$
For example, if a is 50% of b, then b is 200% of a $\left(200=\frac{10000}{50}\right)$;
if b is 250% of a, then a is 40% of $b\left(\frac{10000}{250}\right)$.
D. $p_{3}=p_{2}-100$

$$
\begin{aligned}
& =\frac{10000}{p_{1}}-100 \\
& =\frac{10000}{100-p_{4}}-100 \\
& =\frac{10000-\left(100-p_{4}\right) 100}{100-p_{4}} \\
& =\frac{10000-10000+p_{4}(100)}{100-p_{4}}
\end{aligned}
$$

Therefore, $p_{3}=\frac{100 p_{4}}{100-p_{4}}$
E. Solving for p_{4} :
$p_{3}\left(100-p_{4}\right)=100 p_{4}$
$100 p_{3}-p_{3} p_{4}=100 p_{4}$
$100 p_{3}=p_{3} p_{4}+100 p_{4}$
$100 p_{3}=\left(p_{3}+100\right) p_{4}$
Therefore, $\mathrm{p}_{4}=\frac{100 \mathrm{p}_{3}}{\mathrm{p}_{3}+100}$
Examples of D and E follow:
If a is 13% less than b, then b is $\frac{100(13)}{100-13}=\frac{1300}{87}$ or 14.9% greater than a.
If b is 31% greater than a, then a is $\frac{100(31)}{100+31}=\frac{3100}{131}=23.7 \%$ less than a.
One final real world example is given below. The salary of the superintendent of schools is $\$ 38000$ while that of a mathematics teacher with 20 years' experience is $\$ 18000$. Using the language of per cent, the relationship may be described as follows:

1. The salary of the mathematics teacher is 47.4% of the salary of the superintendent. ($p_{1}=47.4$)
2. The salary of the superintendent is 211.1% of the salary of the mathematics teacher. $\left(p_{2}=211.1\right)$
3. The salary of the superintendent is 111.1% greater than the salary of the mathematics teacher. $\left(p_{3}=111.1\right)$
4. The salary of the mathematics teacher is 52.6% less than the salary of the superintendent. $\left(p_{4}=52.6\right)$

The relations of 3 and 4 may be restated: If the superintendent and mathematics teacher were to exchange salaries, the mathematics teacher would receive a salary increase of 111.1% while the superintendent would receive a salary decrease of 52.6\%.

We now verify that relations A through E hold.
A. $p_{3}=p_{2}-100$, so $111.1=211.1-100$
B. $p_{4}=100-p_{1}$, so $52.6=100-47.4$
C. $\mathrm{p}_{1}=\frac{10000}{\mathrm{p}_{2}}$, so $47.4=\frac{10000}{211.1}$

$$
p_{2}=\frac{10000}{p_{1}}, \text { so } 211.1=\frac{10000}{47.4}
$$

D. $\mathrm{p}_{3}=\frac{100 \mathrm{p}_{4}}{100-\mathrm{p}_{4}}$, so $111.1=\frac{100(52.6)}{100-52.6}$
E. $p_{4}=\frac{100 p_{3}}{p_{3}+100}$, so $52.6=\frac{100(111.1)}{111.1+100}$

The reader is to verify these relationships with other sets of data.
SELF-TEACHING CARDS (Vertical Form)
Publisher: Kenworthy Services
These three-purpose cards enable students to learn number combinations, test themselves, and check their answers. Math problems are displayed in vertical format (Traditional Math). Each card is placed on a sheet of paper, test side up. Students write answers through cut-out section. To check answers, the cards are turned over, displaying complete problem, correct answer, and students' answers. Printed and die-cut on durable card stock. Each pack contains 12 identical test cards.
Contents:
Addition
Subtraction
Multiplication
Division
Price:
\$3.90/each
Available from:
Western Educational Activities Ltd.
10929 - 101 Street
Edmonton, Alberta T5H 257
(See Catalog - p.175)

