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Problems suggested here are aimed at students of both the junior and senior
high schools of Alberta. Solutions are solicited and a selection will be made
for publication in the next issue of delta-k. Names of participants will be in-
cluded. A11 solutions must be received (preferably in typewritten form) within
30 days of publication of the problem in delta-K.

Matl solutions to: Dr. Roy Sinclair or Dr. Bill Bruce
Department of Mathematics
University of Alberta
Edmonton, Alberta T6G 2G1

Problem 6:

(submitted by Roy Sinclair, University of Alberta)

A person has 31 dominoes, each 2 cm by 4 cm, and a checkerboard,
each of whose squares are 2 cm by 2 cm. Is it possible to place all
the dominoes on the board so as to leave only a pair of diagonally op-
posite squares uncovered?

Solution to Problem 2

Problem
(submitted by William J. Bruce, University of Alberta)

Clearly 1 = 12 is a perfect square, but 11 and 111 are not. Consider all
numbers 11111 ¢e¢ 1 = S, in which all digits are unity, and prove or disprove

that, except for s = 1, no such number is a perfect square.*

*EXTENSION (Proof not to be submitted for publication.)

The theorem is true for any number that can be written in the form 100m + 10
+ 1 (m a positive integer). Also, true for 100m + k + 1 when k is not divis-
ible by 4,
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Solution
(suggested by Dr. A. Meir, University of Alberta)

Since the given number is odd, it must be the square of an odd number, say
2K + 1. Then we have

(2K +1)2 = 4k2 + L4k + 1

If we write 11111ees] = 100m + 10 + 1, we must have
Lk? + L4k + 1 = 100m + 10 + 1
or Lk2 + Lk = 100m + 10 ,

which is not possible because the left member is divisible by 4, whereas, the

right member is not. Thus 11111+«¢1 cannot be a perfect square except for 1.

Solution to Problem 3

Problem
(submitted by William J. Bruce, University of Alberta)

Point P is located in a rectangular region such that its distances from
three of the vertices of the rectangle are given by ''a ft. ,'" 'b ft.,'" and '"c ft."
Let ''d ft ' be the unknown distance to the fourth vertex and find a relation
among the four distances, '"a,'" '"b,'" 'c,'" and 'd,'" so that whenever any three are
known, the fourth can be computed.

Solution

(suggested by William J. Bruce)
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