How to Draw an Octagonal Figure Quickly

William J. Bruce

The following method, commonly used by a carpenter, is well within the understanding of students of elementary plane geometry.

- Method: 1. Draw both diagonals of a square to intersect in the centre C as shown in the accompanying diagram.
 - 2. With each corner of the square as centre and with radii equal to the length of a semi-diagonal, draw arcs to intersect all sides of the square.
 - 3. The points of intersection in (2) are the corners of the required octagon. (See proof below.)

Proof: From the figure, B is a point of bisection of a side of the square. By construction, $\triangle ACG$ is isosceles with $AG \equiv CG$. $\angle AGC = 45^{\circ}$, so $\angle ACG = \angle CAG = 67\frac{1}{2}^{\circ}$. $\angle BCG = \angle HCB = 45^{\circ}$, so $\angle ACB = \angle ACD = 22\frac{1}{2}^{\circ}$. Thus $\angle CAD = 67\frac{1}{2}^{\circ}$ also. Therefore, by a.s.a., \triangle 's ABC and ADC are congruent. So AB $\equiv \angle AD$. But AF = 2AB and AE = 2AD, by construction. Hence AF \equiv AE, as required for an octagon.

Note: If s units is the length of a side of the square and h units is the length of a side of the octagon, it is easy to obtain $h = s \tan 22\frac{1}{2}^{\circ}$ and, from the appropriate half-angle trigonometric identity, that $h = s(\sqrt{2} - 1)$.