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First, a brief word about the 
title. The original title was "Logo: 
Examples Illustrating Repetition and 
Modulari ty--Mind-size Chunks." The 
underlying idea I wanted to put for
ward was that of the value of modu
larity when approaching complexity. 
The expression "mind-size chunks" is 
familiar to readers of Mindstorms 
(Papert, 1980). The intention was to 
provide a number of examples that 
illustrated the application of this 
perspective. As I began to prepare 
f or the paper I explored examples 
using tiles, which can lead to a rich 
investigation of both tessellation 
and Escher-type drawings (Ranucci and 
Teeters, 1977) as well as the under
lying principles of symmetry (Bur
nett, 1980; Stevens, 1980). I also 
wanted to explore a much more re
strictive environment, that of 
straight lines, which I viewed as 
(wooden) rods, Another open-ended 
environment that I have played with 
is that of simulating a model-train 
track layout (Burnett, 1985). At 
this point I wanted to change the 
title to " ••• hand-size chunks." How
ever, and I suspect this may be the 
important point of this paper, one 
idea quickly and inevitably leads to 
another. And I value this "idea gen
eration" as an important component of 
public education. The rods of my 
earlier interest evolved into tinker
toys, and the tiles gave rise to spe
cialized tile environments, in parti
cular, tangrams. Including the 
tracks, I now had more alliteration 
than I needed, so a little trimming 
resulted in the temporary title you 
now see. 

Each of the following sections 
may be viewed as an entry into a 
micro-world. The word that merits 
emphasis in the preceding sentence is 
not "micro-world, " but "entry." I 
would like to to make a case for pro
viding less information, less infor
mation to students and perhaps more 
controversially, less information to 
teachers. The issue revolves around 
the relative emphasis given to pro
cesses versus that given to products. 
Although I do not view this distinc
tion in terms of a dichotomy, I do 
believe that, with the best of inten
tions, we are inadvertently depriving 
individuals new to Logo of the oppor
tunities to explore, either by empha
sizing the syntax of the language and 
treating Logo as just another pro
gramming language, or by providing 
not only problems for students to 
solve, but examples of what good so
lutions look like. Paradoxically, it 
is the teachers who may be losing the 
most, since they are being deprived 
of the experience of what it genuine
ly feels like to be exploring in a 
domain where they are not sure of the 
consequences of their actions--an 
emotion that is potentially in common 
with many of their own students, re
gardless of the topic. In many cases 
these prescribed Logo activities are 
in direct response to teachers' re
quests for materials that they can 
use in their classrooms--a reason
able request, particularly by histor
ical standards. However, such mate
rials have the potential pitfall of 
turning Logo into another topic suit
able for memorization. We, thus, 
appear to be aiming toward a subject-
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dominated approach rather than an 
inquiry and problem-solving approach. 
The goal seems to be to become "Logo 
experts," rather than "hypothesis 
generators." The following examples 
are intended to scratch the surface 
of some topics that appear to be rich 
in alternatives, both in terms of the 
possible approaches as well as in the 
nature of the resulting products. 

Tinkertoys 

The seminal idea here was to do 
something simple. Originally, the 
idea was to make some comments on re
cursion. Thus, I began by asking the 
question, "What is recursion?" One 
of the fundamental ideas embedded in 
this concept is that of repetition. 
Therefore, it seemed appropriate to 
begin with an exploration of repeti
tion. A question that quickly occurs 
is "What is it that you want to re
peat?" The question has many facets: 
in music, in art, in poetry, in math
ematics, perhaps even in history. 
Within mathematics, rather than play 
with repeating patterns of numbers, I 
wanted to stay within the turtle 
geometry environment and explore re
peating patterns of designs. One 
common problem-solving heuristic is 
to think of a simpler problem. Thus, 
I asked myself, what is the simplest 
possible design that I could repeat? 
I settled on a straight line (I was 
not sure that dots [points] would 
prove to be interesting--but I would 
like to go back to this). The ques
tion then became: how can we repeat 
the straight line pattern? Somewhat 
surprisingly (to me) this turned out 
to be more complex than I initially 
suspected. One answer is to consider 
a series of lines radiating from the 
same point. This is the driving con
ceptual idea. One then enters the 
enabling issues related to (Logo) 
programming: how does one write a 
procedure that draws a straight line. 
This is even easier than drawing the 
proverbial Logo house. Thus: 
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TO LINE. 1 
FD 70 

END 

Even at this point it is impor
tant to test the procedure to see 
that the resulting graphics picture 
coincides with the mind's eye. The 
next question is how to return the 
turtle to its original position 
(without changing its orientation). 
One way is to retrace the path back
wards (are there other ways?). One 
procedure for retracing a line is: 

TO R.LINE.1 
BK 70 

END 

This procedure should also be 
tested. The next step is to combine 
these two procedures into one proce
dure that draws a line and returns to 
the starting position. 

TO LINE 
LINE .1 R.LINE. l 

END 

This procedure should also be 
tested. So far, so good. Now to 
return to the original task of draw
ing a series of radiating lines. 
This is a natural for the REPEAT com
mand. Thus: 

TO DESIGN.I 
REPEAT 6[LINE RT 11] 

END 

There is not much careful plan
ning here. I am just beginning to 
become familiar with the problem 
space. There will be time for rigor 
and reflective thought later. Thus, 
the idea is to draw a line, turn a 
bit, draw another line, do this a few 
times, and see what happens. The 
next step is to increase the number 
of repetitions to some larger number. 

TO DESIGN.2 
REPEAT 40[LINE RT 11] 

END 



So far we are just varying the 
value of the REPEAT parameter, we may 
now want to try altering the value of 
the orientation command. 

TO DESIGN.3 
REPEAT IO[LINE RT 35) 

END 

One may now explore with various 
combinations of REPEATs and RTs. At 
this stage we have satisfied the 
original task of creating a pattern 
of radiating lines, but new questions 
suggest themselves. Under what con
ditions of REPEAT and RT does the 
pattern repeat itself? This seems to 
be a deeper question than the origi
nal question of how to generate a re
peating design. What other interest
ing things can you do with a series 
of radiating lines (all of the same 
length)? 
1. Use color· 

2. Make the lines invisible (except 
at their end points, try drawing 
a circle!) 

3. Make a Pac-man 
Once again, let's return to the 

original question of how to repeat a 
simple pattern. We have explored the 
idea of always returning to the same 
start point but altering the angle of 
orientation. Another way to repeat a 
simple pattern is to simply attach 
the start point of the next figure to 
the end point of the previous figure 
(without changing the orientation). 
What would this look like in the case 
of our straight line segment? A 
longer line. This does not appear 
interesting from a graphical perspec
tive, but let's explore it from a 
programming perspective. Using REPEAT 

TO DESIGN.4 
REPEAT 4{LINE.l] 

END 

A line which repeats itself sug
gests a procedure which calls itself. 
Recursion! 

TO DESIGN .5 
LINE.I 
DESIGN.5 

END 

If  recursion works here, could it 
also work in our previous example of 
radiating lines? 

Returning from our slight digres
sion into recursion, it is time to 
create a "construction set" of tinker 
toy-like pieces. The rod is easy. 
The "point" that contains the "holes" 
for the rods to fit into is likely to 
be somewhat more interesting. How 
many "holes" should there be? Anoth
er question that is likely to emerge 
fairly early relates to the length of 
the rods. Are some types of lengths 
better than others? Why? What is 
the relationship between these ques
tions and the question on the number 
of holes? Once one creates a set of 
pieces, what types of patterns and 
designs can one make with it? In 
what ways is the set more flexible 
than the wooden sets? In what ways 
is it more restrictive? What are the 
merits of having both? Where is the 
greater sense of satisfaction--in 
constructing the set or in using the 
set to construct something else? I 
suspect the sense of accomplishment 
among the early developers of Logo is 
enormously satisfying. One of our 
tasks as educators is to create situ
ations that also permit our students 
to have a similar sense of accom
plishment. 

Tracks 

Model railway tracks are very 
much like tinkertoys. In both cases 
one attempts to combine a fixed set 
of pieces into some form of meaning
ful whole. The principal difference 
lies in the shape of the pieces; al
though they both contain straight 
sections, tinker toys contain hubs as 
their other main shape, whereas 
tracks contain curved sections. 

5 



It is not too difficult to con
struct the two main types of track. 
Once again the earlier comments ap
ply. Suppose that the student has 
constructed two sections, called S 
(Straight section) and C (Curved sec
tion). From here the modularity 
principle reigns supreme. Thus: 

TO RECTANGLE 
REPEAT 2 [ REPEAT 10 [ S] 
REPEAT 4 [ C ]  ] 

END 

or equivalently, 

TO RECTANGLE 
s s s s s s s s s S C C C C 
s s s s s s s s s S C C C C 

END 

will both produce the basic train 
layout familiar to many children and 
ex-children (assuming that C produces 
1 /8 the circumference of a circle). 

( __ ) 
This example takes implicit ad

vantage of the fact that all curves 
have the same curvature, relative to 
a fixed frame of reference. If one 
constructs both RC and LC procedures 
to provide for both right and left 
curvature, then the following slight
ly more interesting layout is pos
sible. 
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TO BARBELL 
s s s s s s s 

RC RC 
s s 

RC RC RC RC 
s 
LC LC LC LC 
s 
RC RC RC RC 
s s 

RC RC 
s s s s 

END 

Why do the tracks fail to meet by 
just a tiny bit? In the real world 
of model trains, this slight gap 
would not likely be noticed. One 
would just wiggle the pieces togeth
er. However, the mathematics of the 
situation indicate a slight gap. It 
is a nice task to compute the actual 
length of the gap, assuming specific 
values for the length of the S sec
tion and for the radius of the circle 
corresponding to the arcs RC and LC. 

In addition to the above rela
tively simple layouts, one can branch 
out into more complex track layouts 
involving switches. One can then get 
into a dynamic simulation where the 
switches actually work. From there 
it is natural to play with the idea 
of having a model train moving along 
the track. With switches and two 
different trains, it could become 
quite involved. 

Tiles 

The objective here is to con
struct procedures for tiling a floor. 
The task breaks into two natural 
parts: one is to construct proce
dures for drawing tiles, the other is 
to construct procedures for placing 
them into interlocking patterns. One 
simple starting point is to begin 
with squares and attempt to create a 
checkerboard. From here two main 
points of departure suggest them
selves: one is to play with other 
regular polygons such as triangles, 
pentagons, hexagons, and so forth. 
The other is to take a square and 
perform some form of deformation on 
it. This may lead into an explora
tion of Escher-type drawings (Ranucci 
& Teeters, 1977) while conducting a 



comprehensive treatment of mathemati
cal ideas such as symmetry and tes
sellation. My intent is to only open 
the door. Tiling the floor with more 
exotic patterns is left to the 
reader. 

Creating a square tile is rela
tively familiar to most users of 
Logo. 

TO TILE.I 
PD 
REPEAT 4(FD SO RT 90) 

PU 
END 

There are many ways to conceptu
alize the task of placing tiles into 
an interlocking pattern. Restraining 
ourselves to squares and thinking of 
checkerboards, we may begin in the 
lower-left corner and repeat a row of 
squares, then return to the left 
side, move up a level and repeat an
other row, and-so on. Thus, we can 
visualize the task as moving the pen 
to the lower left portion of the 
screen (using a procedure called 
I NIT), drawing a row of squares (us
ing a procedure called ROW), return
ing the pen to the proper position to 
begin another row (using a procedure 
called RETURN), and repeating these 
latter two steps a specified number 
of times. A variety of box chart 
conventions have been recommended for 
representing this top-down, modular 
approach to writing Logo programs. 
In this case we might have: 

TILE 

INIT 

ROW 

RETURN 

The respective procedures are all 
f airly straight forward. 

TO INIT 
CS PU HT 
SETX -100 SETY -100 

END 

TO ROW 
REPEAT 6[TILE.l RT 90 FD SO 
LT 90) 

END 

TO RETURN 
LT 90 FD 300 RT 90 FD SO 

END 

TO TILE 
INIT 
REPEAT S[ROW RETURN] 

END 

At this point you may want to in
troduce variables to provide greater 
flexibility in determining the size 
of the square and the number of repe
titions, both horizontally and verti
cally. You might also wish to play 
with alternate tiling strategies. 
Instead of tiling in a conventional 
horizontal manner you could experi
ment with procedures that begin near 
the centre of a given space and rep
licate the design in an outward, spi
ralling fashion. Other possibilities 
abound. You might also explore other 
types of symmetry operations (such as 
reflection) while experimenting with 
approaches to replication. 

An introduction to Escher-type 
drawings can be achieved by realizing 
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that any deformation applied to the 
opposite sides of a square results in 
a shape that will tessellate. A rela
tively simple example involves notch
ing the side. 

Ranucci and Teeters provide a 
comprehensive and entertaining ac
count of such principles, extending 
their treatment to other polygonal 
structures. Their book encourages 
the reader to create his or her own 
patterns, a philosophy consistent 
with much of the Logo literature. 

Tangrams 

There are a number of books pub
l ically available on the ancient Chi
nese puzzle/ game of tangrams. Sey
mour (1971) has provided an excellent 
book on how the puzzle can be incor
porated into the mathematics curricu
lum. Perhaps a small digression is 
appropriate at this point. Seymour' s 
book on tangrams, Ranucci and Tee
ters' on Escher-type drawings, Ja
cobs' (1970) treatment of billiard 
ball paths, and more recently, Abel
son and diSessa's (1981) original 
contribution on turtle geometry all 
approach mathematics from a similar 
perspective. Instead of treating the 
(mathematics) curriculum as a fixed 
entity where we, as educators, strive 
to perfect a method for teaching it, 
they take as their starting point a 
rich and intrinsically interesting 
situation and in their exploration of 
it in depth, they reveal a number of 
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important mathematical principles. 
In a fundamental sense they exemplify 
mathematics as a process, rather than 
as a set of fixed facts, rules, and 
algorithms suitahle for memorization. 
The current concern in education for 
a return to basics provides an excel
lent opportunity for a discussion of 
what these basics might be. If we 
state that one of our goals is to 
help students learn to think, then we 
must give them opportunities to 
think. 

Read (1965) also provides a des
cription of a IS-piece puzzle, for 
those who feel limited by the tradi
tional tangram format. Once one is 
released from the initial boundary 
conditions of the tangram set, it is 
natural to consider other possibili
ties, and to concomitantly consider 
higher order principles such as: 
"What types of guidelines should be 
considered when attempting to con
struct other sets of pieces so that 
the puzzle environment is both chal
lenging and interesting?" I would 
love to hear from anyone who would 
like to suggest what some of these 
principles should be. It would be 
interesting to see what the collec
tive mentality of a class could 
provide. 

From a Logo perspective, the task 
is to construct a tangram environ
ment. The task has two components: 
one is to construct a set of proce
dures for drawing the seven pieces, 
the other is to establish a set of 
conventions and possibly procedures 
for placing the pieces on the screen. 



For the newcomer to tangrams, the 
following two pictures are given (out 
of literally thousands of possibili
ties) of the types of shapes that are 
composed with the seven pieces. 

There is an underlying harmony in 
the above tasks. As in music, there 
is both point and counterpoint. Like 
mathematics, there is both aesthetics 
and rigorous thought. And from psy
chology (or is it philosophy?), the 
individual--stJJdent or teacher--must 
construct his or her own world. 

J. Dale Burnett is an Associate Pr-o
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