
Curricular Implications of Microcomputers
for School Mathematics

Georg Schrage, Dortmund University

and Jerry P. Becker, Southern I l l inois University

EDITOR ' S NOTE: This article represents
an abridged version of a recent unpub
l ished manuscript presented to the Na
t ional Council Supervisors of Mathe
matics , Washington , D .C, April 1986.

We are all aware that the micro
computer is a potentially valuable
tool in mathematics teaching. Indeed,
there are many who feel the microcom
puter is a very powerful educational
tool. But to explore the potential of
this new technology means that we must
also examine its limitations. In this
paper, emphasis will be placed on what
cannot or should not be done with com
puters in mathematics education. There
are three types of limitations con
cerning microcomputers in Grades K
through 1 2:

1. limitations due t0 educational
responsibility

2. limitations due to practical
technical restrictions

3. limitations due to logical and
conceptual restrictions

Limitations Due to Educational
Responsibility

The first point is certainly the
most problematic, maybe even contro
versial. There is no doubt that mi
crocomputers are affecting what
students are learning and how they
are learning. But the more sophisti
cated a tool , the more we must care
about its use; and it is exactly the

power and versatility of microcomput
ers which threaten a danger of their
misuse.

Propaganda about the educational
use of microcomputers is pervasive in
our society today. We are referring
to the vast promotion of educational
software for curricular subj ects.
Currently , the number of educational
programs available is estimated at
80,000, and and that number is dou
bling each year ! Most of this soft
ware is of tutorial or animated drill
and practice type , which is usually
very good from a technical point of
view, but is of questionable educa
tional value. We must use great care
in selecting software in mathematics
teaching or else we may be risking
misuse of the microcomputer.

We strongly support a reasonable
use of microcomputers in the class
room. As mathematics teachers , we
would like to have a microcomputer ,
connected to a screen, available to
use in making demonstrations which
might become objects of discussion for
the whole class. Further , we believe
the microcomputer can be very useful
for :

1. stimulating mathematical thinking
and supporting mathematical prob
lem solving ,

2. visualizing mathematical concepts,

and

3. simulating processes that can be
handled by mathematical models.

23

The computer enab les us to handle
mathematical objects, operate with
numbers, presen t and transform geomet
rical figures, and visualize relation
ships among data. That microcomputers
can be very useful in supporting and
enriching mathematical problem solving
is very clear. Problem solving is
central to any mathematical activity.
The computer enhances our problem
solving capacities, and that is what
students should experience in today ' s
mathematical education, regardless of
whether this occurs via BASIC, LOGO,
PA SCAL, or some other programming lan
guage. (Of course, we do not mean to
imply that we regard all programming
languages as equally suitable.)

Solving a problem using a computer
is typical l y a sophisticated process
that includes very dif ferent kinds of
activities; for example, developing
ma thematical models, generating data
for a problem, analyzing relation
ships, designing al ogrithms, and con
structing programs. With these kinds
of activities, students can get to the
ma thematic al heart of the matt�r. If
the problems are well chosen, students
wil l experience the intel lectual chal
lenge of mathematics, as wel l as the
satisfaction provided by the solution
of a difficult problem.

In mathematics, the solution to a
problem is not nearl y as interesting
as the method used to get it , and
many problems can be solved by quite
dif ferent methods. Teachers should
encourage their students to look for
d i f ferent approaches to a problem and
to compare and evaluate them , We il
lustrate this by two examples below.

EXAMPLE 1 :

The following is a nice problem
for students at the elementary or ju
nior high school level :

24

On a farm there are 178 animals -
cows and geese. Altogether they
have 562 legs. How many cows and
how many geese are on the farm?

There are many ways to solve this
problem ,

(a) We can actuall y make a list and
check all combinations:

cows

0
1
2

so

90

103

geese

178
177
17 6

128

88

75

legs

356
358
360

456

536

562

(b) We can use a computer to generate
the list , The foll owing LOGO pro
gram does the job:

TO RANCH :ANIMALS :LEGS :COWS
MAKE "GEESE : ANIMALS-: COWS
(PRINT : COWS :GEESE 2*: GEESE +

4*: COWS)
IF 2* : GEESE + 4*: COWS = : LEGS

[STOP]
RANCH :ANIMALS :LEGS :COWS + 1
END

If we type in "RANCH 178 562 0, "
then the computer prints the above
list and, therefore, solves the
problem. This is a simple pro
gram, and the algorithm is brief
and easy to understand and write.

(c) Some students attack the problem
by using linear equations:

X + y = 178
4 x + 2y = 562

(d) We know an eight-year old girl who
solved the problem with smaller
parameters - 12 animals and 34
legs - in the fol lowing manner:

(i)
0 0 0 0 0 0 0 0
Q Q Q Q 1 1 1 1 1 1 1 1 1 I

(i i)
Q Q Q Q Q Q Q Q
0 q Q Q

She symbolized the animals by cir
cles, gave two legs to each, and
assigned the remaining ten legs in
pairs. Once she had solved this
"smaller" problem anci understood
the concept, she was then able
to solve the problem for arbitrary
parameters.

Which solution is the "best" one?
We think the last, because it is the
simplest and most straighforward
one. It avoids the tedious work of
the first, as well as the advanced
algebraic tool of the third one. Fur
ther, it is available to an elementary
school student, and we think it is the
best solution from the point of view
of a mathematician, too. The second
(computer) solution represents a pos
sible approach, too, but it should not
stand alone.

We cannot define mathematical
beauty, except to say that is has to
do with simplicity and the use of
straightforward arguments, simple but
powerful ideas, and avoiding the use
of sophisticated tools. Teachers
should always strive to help students
get a feeling for the beauty of mathe
matical ideas and methods. This is
all the more important when we have a
computer which we can program to sup
ply solutions very quickly.

EXAMPLE 2 :

The following is a strategy game
for students:

We start with six vertices of a
hexagon. Two players alternately
take turns , each time connect ing
two so far unconnected vertices .
The first player uses a red pen
cil, and the second player uses a
blue one. A player loses if he or
she generates a triangle wi th all
s ides in his or her color . The
result is a draw if all possible
1 5 l ines have been drawn without
producing a one-colored triangle .

----- Red

_ _ _ _ _ Blue

After some experimentation, it is
observed that someone always loses.
The following conjecture arises: if
each of the 15 connecting lines of a
hexagon is colored either red or blue,
then there will be at least one red or
blue triangle.

If we have a computer available,
the conj ecture can be proven by sys
tematically checking all possible blue
and red colorings. If no coloring
without a one-colored triangle is
found in this process, then we are
done. But, compare this with the fol
lowing method. Consider an arbitrary
vertex of the hexagon, say A. There

25

are 5 emanating lines. At least three
must have the same color. Without
los s of generality, let us assume that
there are three red lines. The end
points of these three lines may be la
beled B, C, and D.

B D

A
If one of the lines BC, BD, or CD

is red, then there is a red-colored
triangle; if these three lines are all
blue, then we have a blue triangle
(that is, BCD). We think this is a
beautiful proof, demonstrating the su
periority of mathematical reasoning
over brute computer force.

What should we learn from these
examples? When teaching problem solv
ing, we should always encourage our
students to look for different ways to
get solutions. They should also be
aware of the tools available and se
lect the most suitable one (s). It
isn't necessary to use a bomb to kill
a fly !

Limitations Due to Technical
Restrictions

Virtually any finite mathematical
problem can be solved by a computer,
simply by checking all possible states
of the problem. But many mathematical
problems , especially combinatorial
ones, are of such exploding complexity
that even the most powerful computer
may never be ab le to handle them. Let
us demonstrate this, again by a simple
example :

EXAMPLE 3:

Consider the numbers 1 and 2.
There are two different arrangements

26

to write these numbers in sequence,
namely 1 2 and 2 1, and each such ar
rangement is called a permutation.
There are six permutations of the
three numbers 1, 2, 3: 1 23, 132, 2 13,
23 1, 3 1 2, 3 2 1.

It is not difficult to write a
program to find out all possible per
mutations of n elements. But suppose
we want to get a list of all pos sible
arrangements of the numbers 1 to 1 5.
This would seem to be a simple problem
for a computer. The number of permu
tations of n elements is n! = l*2*3* • • •
* (n- l) *n. The table below provides
the values l! to 1 5 !

n

1
2
3
4
5
6
7
8
9
10
1 1
1 2
13
1 4
15

II Permutations

1
2
6
24
1 20
720
5,040
40,320
362, 880
3, 628,800
39,916, 800
479,00 1, 600
6, 227,020,800
87, 178, 291, 200
l,307, 666,368,000

Now, imagine a very powerful com
puter, capable of determining and
listing 1,000 different arrangements
each second. This computer would have
to work 40,000 years to finish its
job !

There are many problems having im
portant applications, which are prac
tically unsolvable because of their
algorithmic complexity. It is a sub
j ect of greatest scientific and eco
nomical importance to determine the
complexity of algorithms and, if pos
sible, to find algorithms for a given
class of problems by which solutions
can be obtained in a reasonable amount
of time. We should strive to help
students learn by simple examples

from , say , combinatorics and number
theory , that there are many problems
which cannot be solved by computers
for practical reasons , even if it is
easy to develop a program that seems
to solve the problem.

Limitations Due to Logical and
Conceptual Restrictions

There are other problems which
have been proven to be unsolvable by
any computer . The best known of these
problems is the so-called "halting
problem. " The unsolvability of the
hal ting problem means that it is im
possible to construct an algorithm
which can decide for any arbitrary
program and its data if it wil l ever
s top or if it wil l be caught: in a
never ending loop . We think that the
treatment of the halt ing prob�em and
related problems is , perhaps , beyond
the usual mathematics curriculum ,
though i t is not real ly difficult .
But there are other problems by which
s tudents can become aware of what a
computer actually can and can.not pro
vide in order to find a solut ion .

EXAMPLE 4 :

Recently, we asked some students
in a problem solving course to prove-.
that ./i. is irrational ; that it cannot
be represented as p/q with integers p
and q . One student wrote the follow
ing : "With the help of a computer , we
can de termine that 12 i s equal to.
1 . 4 142 1 3 • • • , never ending and nev
er repeating . Therefore , it cannot be
a rational number . " The student , of
course , had a fundamental misunder
standing of the conceptual potency of
computers .

EXAMPLE 5 :

The Collatz Problem (also known as
the Ulam Problem, the Syracuse Prob
lem , or the Hasse-Kakutani Problem) .
Cons ider the following algorithm in
Pascal :

INPUT N
WHILE N > 1 DO
IF ODD . (N) THEN N: =3*N+l ELSE N : =

N DIV 2
END .

(NOTE : DIV denotes whole number
division .)

The input number N is the seed
of a sequence efther ending with 1 or
never e�ding . Here are some examples :

(a) 1 0 5 16 8 4 2 1
(b) 4 2 21 64 32 16 8 4 2 I

(c) 1 20 60 30 15 46 23 70 35 106 53
1 60 so 40 20 ro 5 16 8 4 2 1

It is still an unproven conj ecture
that for any positive integer N the
algorithm will come to 1 eventually.
Recent issues of the American Mathe
matical Monthly and The Mathemati
cal Intelligencer contain papers de
voted to this problem.

A good deal of experimental work
has been done concerning this problem .
Using powerful computers , -it has been
proven that the algorithm stops for
any posit ive integer N < 240 :::::: 1 . 2*
1 01 2 • This gives certain evidence
about the conj ecture , but it doesn ' t
prove anything concerning the general
problem. Why , then , all this effort ?
There are two possibilit ies :

(a) The conj ecture is true . This can
never be proven by computer exper
imentati�n , because we can only
check a finite number of integers ,
and therefore , an infinite number
of possible seed numbers will for
ever remain unchecked .

(b) The conj ecture is false ; that is ,
there is a pos itive integer input
N such that the algorithm never
comes to 1 • This can be due to
e ither of the following reasons :

- There is a seed number N such
that the sequence generated by N
diverges to inf inity . The exis
tence of such a number can never

27

be proven by running the algor
ithm , because you have to stop
this calculation after awhile
not knowing if , at sometime in
the future , the algorithm would
come to the end.

There is a seed number N such
that the sequence N , N1 , Nz ,

generated by N is caught
in a loop ; that is , after a
while , part of the sequence will
be periodically repeated.

Such a loop can be detected by a
computer , thus proving that the con
j ecture is wrong. (If , in the above
algorithm , N: 3*N+l is replaced by
N: =3*N-l , we can find seed numbers
producing infinite sequences. For
example , 80 40 20 10 5 14 7 20 10 5 1 4
7 • • •) These are the only logical
possibilities.

Conclusion

There is presently a great deal of
discussion about computer literacy. A
major factor in computer literacy , we
believe , is the competence to make
reasonable use of the power of comput
ers , which means to be aware of the
computer ' s limitations. We have all
heard the tenn "computer revolution"
in education. One characterisitic of
a revolution is that it completely
changes traditional values , struc
tures , and ideas. The computer is a
powerful tool that can affect what
students will learn and how they

28

will learn. But we should not forget
t he great mathematical ideas as devel
oped by Euclid , Archimedes , Euler ,
Gauss , and others over hundreds of
years. They are still the great ideas
of tomorrow and tomorrow ' s tomorrow.
Further , the importance of these ideas
continues to grow. We must not allow
t he availability of computers to make
mathematics superfluous ; on the con
trary , it requires improved mathemati
cal education. The computer itself
can help us to improve and enrich the
curriculum. If we make sensible use
of the comput er , its impact should
result in a permanent educational
evolution, instead of revolution.

Georg Schrage is a professor of mathe
ma tics at Dortmund TTniversity , Federal
Republic of Germany. Dr. Becker has
been employed by Southern Illinois
University since 1979, where he is a
professor of mathematics, Curriculum
and Instruction and Media Department.
The authors have an interest in the
use of microcomputers in educa tion ,
particularly in their application to
problem solving.

REFERENCES

Lagarias , J . "The 3X+l Problem and Its Gener
alizations ." American Mathemat ical Month
.!.Y. 92 , no . l (1985) : 323,

Wagan S, "The Collatz Problem . "
matical Intelligencer 7 , no .
7 2-76.

The Mathe-
1 (1985) :

	23 - 28 Curricular Implications of Microcomputers for School Mathematics

