
Curricular Implications of Microcomputers 
for School Mathematics 

Georg Schrage, Dortmund University 

and Jerry P. Becker, Southern I l l inois University 

EDITOR ' S  NOTE: This article represents 
an abridged version of a recent unpub
l ished manuscript presented to the Na
t ional Council Supervisors of Mathe
matics , Washington , D .C,  April 1986. 

We are all aware that the micro
computer is a potentially valuable 
tool in mathematics teaching. Indeed, 
there are many who feel the microcom
puter is a very powerful educational 
tool. But to explore the potential of 
this new technology means that we must 
also examine its limitations. In this 
paper, emphasis will be placed on what 
cannot or should not be done with com
puters in mathematics education. There 
are three types of limitations con
cerning microcomputers in Grades K 
through 1 2: 

1. limitations due t0 educational 
responsibility 

2. limitations due to practical 
technical restrictions 

3. limitations due to logical and 
conceptual restrictions 

Limitations Due to Educational 
Responsibility 

The first point is certainly the 
most problematic, maybe even contro
versial. There is no doubt that mi
crocomputers are affecting what 
students are learning and how they 
are learning. But the more sophisti
cated a tool , the more we must care 
about its use; and it is exactly the 

power and versatility of microcomput
ers which threaten a danger of their 
misuse. 

Propaganda about the educational 
use of microcomputers is pervasive in 
our society today. We are referring 
to the vast promotion of educational 
software for curricular subj ects. 
Currently , the number of educational 
programs available is estimated at 
80,000, and and that number is dou
bling each year ! Most of this soft
ware is of tutorial or animated drill 
and practice type , which is usually 
very good from a technical point of 
view, but is of questionable educa
tional value. We must use great care 
in selecting software in mathematics 
teaching or else we may be risking 
misuse of the microcomputer. 

We strongly support a reasonable 
use of microcomputers in the class
room. As mathematics teachers , we 
would like to have a microcomputer , 
connected to a screen, available to 
use in making demonstrations which 
might become objects of discussion for 
the whole class. Further , we believe 
the microcomputer can be very useful 
for : 

1. stimulating mathematical thinking 
and supporting mathematical prob
lem solving , 

2. visualizing mathematical concepts, 

and 

3. simulating processes that can be 
handled by mathematical models. 
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The computer enab les us to handle 
mathematical objects, operate with 
numbers, presen t and transform geomet
rical figures, and visualize relation
ships among data. That microcomputers 
can be very useful in supporting and 
enriching mathematical problem solving 
is very clear. Problem solving is 
central to any mathematical activity. 
The computer enhances our problem 
solving capacities, and that is what 
students should experience in today ' s  
mathematical education, regardless of 
whether this occurs via BASIC, LOGO, 
PA SCAL, or some other programming lan
guage. ( Of course, we do not mean to 
imply that we regard all programming 
languages as equally suitable.) 

Solving a problem using a computer 
is typical l y  a sophisticated process 
that includes very dif ferent kinds of 
activities; for example, developing 
ma thematical models, generating data 
for a problem, analyzing relation
ships, designing al ogrithms, and con
structing programs. With these kinds 
of activities, students can get to the 
ma thematic al heart of the matt�r. If 
the problems are well chosen, students 
wil l experience the intel lectual chal
lenge of mathematics, as wel l as the 
satisfaction provided by the solution 
of a difficult problem. 

In mathematics, the solution to a 
problem is not nearl y  as interesting 
as the method used to get it , and 
many problems can be solved by quite 
dif ferent methods. Teachers should 
encourage their students to look for 
d i f ferent approaches to a problem and 
to compare and evaluate them , We il
lustrate this by two examples below. 

EXAMPLE 1 :  

The following is a nice problem 
for students at the elementary or ju
nior high school level : 
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On a farm there are 178 animals -
cows and geese. Altogether they 
have 562 legs. How many cows and 
how many geese are on the farm? 

There are many ways to solve this 
problem , 

( a) We can actuall y  make a list and 
check all combinations: 

cows 

0 
1 
2 

so 

90 

103 

geese 

178 
177 
17 6 

128 

88 

75 

legs 

356 
358 
360 

456 

536 

562 

(b) We can use a computer to generate 
the list , The foll owing LOGO pro
gram does the job: 

TO RANCH :ANIMALS :LEGS :COWS 
MAKE "GEESE : ANIMALS-: COWS 
(PRINT : COWS :GEESE 2*: GEESE + 

4*: COWS) 
IF 2* : GEESE + 4*: COWS = : LEGS 

[ STOP] 
RANCH :ANIMALS :LEGS :COWS + 1 
END 

If we type in "RANCH 178 562 0, " 
then the computer prints the above 
list and, therefore, solves the 
problem. This is a simple pro
gram, and the algorithm is brief 
and easy to understand and write. 

( c) Some students attack the problem 
by using linear equations: 

X + y = 178 
4 x  + 2y = 562 

(d) We know an eight-year old girl who 
solved the problem with smaller 
parameters - 12 animals and 34 
legs - in the fol lowing manner: 



( i )  
0 0 0 0 0 0 0 0  
Q Q Q Q 1 1 1 1 1 1 1 1 1 I 

( i i )  
Q Q Q Q Q Q Q Q 
0 q Q Q 

She symbolized the animals by cir
cles, gave two legs to each, and 
assigned the remaining ten legs in 
pairs. Once she had solved this 
"smaller" problem anci understood 
the concept, she was then able 
to solve the problem for arbitrary 
parameters. 

Which solution is the "best" one? 
We think the last, because it is the 
simplest and most straighforward 
one. It avoids the tedious work of 
the first, as well as the advanced 
algebraic tool of the third one. Fur
ther, it is available to an elementary 
school student, and we think it is the 
best solution from the point of view 
of a mathematician, too. The second 
(computer) solution represents a pos
sible approach, too, but it should not 
stand alone. 

We cannot define mathematical 
beauty, except to say that is has to 
do with simplicity and the use of 
straightforward arguments, simple but 
powerful ideas, and avoiding the use 
of sophisticated tools. Teachers 
should always strive to help students 
get a feeling for the beauty of mathe
matical ideas and methods. This is 
all the more important when we have a 
computer which we can program to sup
ply solutions very quickly. 

EXAMPLE 2 :  

The following is a strategy game 
for students: 

We start with six vertices of a 
hexagon. Two players alternately 
take turns , each time connect ing 
two so far unconnected vertices . 
The first player uses a red pen
cil, and the second player uses a 
blue one. A player loses if he or 
she generates a triangle wi th all 
s ides in his or her color . The 
result is  a draw if all possible 
1 5  l ines have been drawn without 
producing a one-colored triangle . 

----- Red 

_ _ _ _ _  Blue 

After some experimentation, it is 
observed that someone always loses. 
The following conjecture arises: if 
each of the 15 connecting lines of a 
hexagon is colored either red or blue, 
then there will be at least one red or 
blue triangle. 

If  we have a computer available, 
the conj ecture can be proven by sys
tematically checking all possible blue 
and red colorings. If no coloring 
without a one-colored triangle is 
found in this process, then we are 
done. But, compare this with the fol
lowing method. Consider an arbitrary 
vertex of the hexagon, say A. There 
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are 5 emanating lines. At least three 
must have the same color. Without 
los s of generality, let us assume that 
there are three red lines. The end 
points of these three lines may be la
beled B, C, and D. 

B D 

A 
If one of the lines BC, BD, or CD 

is red, then there is a red-colored 
triangle; if these three lines are all 
blue, then we have a blue triangle 
( that is, BCD). We think this is a 
beautiful proof, demonstrating the su
periority of mathematical reasoning 
over brute computer force. 

What should we learn from these 
examples? When teaching problem solv
ing, we should always encourage our 
students to look for different ways to 
get solutions. They should also be 
aware of the tools available and se
lect the most suitable one (s). It 
isn't necessary to use a bomb to kill 
a fly ! 

Limitations Due to Technical 
Restrictions 

Virtually any finite mathematical 
problem can be solved by a computer, 
simply by checking all possible states 
of the problem. But many mathematical 
problems , especially combinatorial 
ones, are of such exploding complexity 
that even the most powerful computer 
may never be ab le to handle them. Let 
us demonstrate this, again by a simple 
example : 

EXAMPLE 3: 

Consider the numbers 1 and 2. 
There are two different arrangements 

26 

to write these numbers in sequence, 
namely 1 2  and 2 1, and each such ar
rangement is called a permutation. 
There are six permutations of the 
three numbers 1, 2, 3: 1 23, 132, 2 13, 
23 1, 3 1 2, 3 2 1. 

It is not difficult to write a 
program to find out all possible per
mutations of n elements. But suppose 
we want to get a list of all pos sible 
arrangements of the numbers 1 to 1 5. 
This would seem to be a simple problem 
for a computer. The number of permu
tations of n elements is n! = l*2*3* • • • 
* (n- l) *n. The table below provides 
the values l! to 1 5 !  

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
1 1  
1 2  
13 
1 4  
15 

II Permutations 

1 
2 
6 
24 
1 20 
720 
5,040 
40,320 
362, 880 
3, 628,800 
39,916, 800 
479,00 1, 600 
6, 227,020,800 
87, 178, 291, 200 
l,307, 666,368,000 

Now, imagine a very powerful com
puter, capable of determining and 
listing 1,000 different arrangements 
each second. This computer would have 
to work 40,000 years to finish its 
job !  

There are many problems having im
portant applications, which are prac
tically unsolvable because of their 
algorithmic complexity. It is a sub
j ect of greatest scientific and eco
nomical importance to determine the 
complexity of algorithms and, if pos
sible, to find algorithms for a given 
class of problems by which solutions 
can be obtained in a reasonable amount 
of time. We should strive to help 
students learn by simple examples 



from ,  say ,  combinatorics and number 
theory , that there are many problems 
which cannot be solved by computers 
for practical reasons , even if it is 
easy to develop a program that seems 
to solve the problem. 

Limitations Due to Logical and 
Conceptual Restrictions 

There are other problems which 
have been proven to be unsolvable by 
any computer .  The best known of these 
problems is the so-called "halting 
problem. "  The unsolvability of the 
hal ting problem means that it is im
possible to construct an algorithm 
which can decide for any arbitrary 
program and its data if it wil l  ever 
s top or if  it wil l  be caught: in a 
never ending loop . We think that the 
treatment of the halt ing prob�em and 
related problems is , perhaps , beyond 
the usual mathematics curriculum , 
though i t  is not real ly difficult . 
But there are other problems by which 
s tudents can become aware of what a 
computer actually can and can.not pro
vide in order to find a solut ion . 

EXAMPLE 4 :  

Recently, we asked some students 
in a problem solving course to prove-. 
that ./i. is  irrational ; that it cannot 
be represented as p/q with integers p 
and q .  One student wrote the follow
ing :  "With the help of a computer , we 
can de termine that 12 i s  equal to. 
1 . 4 142 1 3  • • • , never ending and nev
er repeating . Therefore , it cannot be 
a rational number . "  The student , of 
course , had a fundamental misunder
standing of the conceptual potency of 
computers . 

EXAMPLE 5 :  

The Collatz Problem (also known as 
the Ulam Problem, the Syracuse Prob
lem ,  or the Hasse-Kakutani Problem) . 
Cons ider the following algorithm in 
Pascal : 

INPUT N 
WHILE N > 1 DO 
IF ODD . (N) THEN N: =3*N+l ELSE N : =  

N DIV 2 
END . 

(NOTE : DIV denotes whole number 
division . )  

The input number N is the seed 
of a sequence efther ending with 1 or 
never e�ding . Here are some examples : 

( a) 1 0  5 16 8 4 2 1 
( b )  4 2  21  64 32 16 8 4 2 I 

( c )  1 20 60 30 15 46 23 70 35 106 53 
1 60 so 40 20 ro 5 16 8 4 2 1 

It  is still an unproven conj ecture 
that for any positive integer N the 
algorithm will come to 1 eventually. 
Recent issues of the American Mathe
matical Monthly and The Mathemati
cal Intelligencer contain papers de
voted to this problem. 

A good deal of experimental work 
has been done concerning this problem . 
Using powerful computers , -it has been 
proven that the algorithm stops for 
any posit ive integer N < 240 :::::: 1 . 2* 
1 01 2 • This gives certain evidence 
about the conj ecture , but it doesn ' t  
prove anything concerning the general 
problem. Why , then , all this effort ? 
There are two possibilit ies : 

( a) The conj ecture is true . This can 
never be proven by computer exper
imentati�n , because we can only 
check a finite number of  integers , 
and therefore , an infinite number 
of possible seed numbers will  for
ever remain unchecked . 

( b) The conj ecture is false ;  that is , 
there is a pos itive integer input 
N such that the algorithm never 
comes to 1 • This can be due to 
e ither of the following reasons : 

- There is a seed number N such 
that the sequence generated by N 
diverges to inf inity . The exis
tence of such a number can never 
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be proven by running the algor
ithm , because you have to stop 
this calculation after awhile 
not knowing if , at sometime in 
the future , the algorithm would 
come to the end. 

There is a seed number N such 
that the sequence N ,  N1 , Nz , 

generated by N is caught 
in a loop ; that is , after a 
while , part of the sequence will 
be periodically repeated. 

Such a loop can be detected by a 
computer , thus proving that the con
j ecture is wrong. (If ,  in the above 
algorithm ,  N: 3*N+l  is replaced by 
N: =3*N-l , we can find seed numbers 
producing infinite sequences. For 
example , 80 40 20 10 5 14  7 20 10  5 1 4  
7 • • • ) These are the only logical 
possibilities. 

Conclusion 

There is presently a great deal of 
discussion about computer literacy. A 
major factor in computer literacy , we 
believe , is the competence to make 
reasonable use of the power of comput
ers , which means to be aware of the 
computer ' s  limitations. We have all 
heard the tenn "computer revolution" 
in education. One characterisitic of 
a revolution is that it completely 
changes traditional values , struc
tures , and ideas. The computer is a 
powerful tool that can affect what 
students will learn and how they 
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will learn. But we should not forget 
t he great mathematical ideas as devel
oped by Euclid , Archimedes , Euler , 
Gauss , and others over hundreds of 
years. They are still the great ideas 
of tomorrow and tomorrow ' s  tomorrow. 
Further , the importance of these ideas 
continues to grow. We must not allow 
t he availability of computers to make 
mathematics superfluous ; on the con
trary , it requires improved mathemati
cal education. The computer itself 
can help us to improve and enrich the 
curriculum. If we make sensible use 
of the comput er ,  its impact should 
result in a permanent educational 
evolution, instead of revolution. 
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