
u.sing Logo to Solve Sommervil le's Allgorith1m
for Adding Mixed Numbers

Ron Taylor

Ron Taylor holds a B.Sc. in animal biology and a B.Ed. in secondary science. He taught Grades I through
12 in Rocky View School Division No. 41. He is cu"ently studying for a master's degree in education at
the University of Lethbridge and is interested in the phenomenology and pedagogy of play.

One of the important aspects of problem solving that we teach students is to look back at a successful
solution and determine if the problem can be solved in another manner. What follows is just such an attempt.
In this case, the essential algorithm, developed by Francis Sommerville (1987), has not been changed. The
intention here is to show how the algorithm can be implemented in another language, Logo.

The Logo language has several advantages over traditional versions of microcomputer BASIC, among them
extensibility and meaningful variable names. By extensibility, I mean that the language allows students to
incorporate task names (see Figure 1) directly into the program. Using meaningful variable names helps stu
dents to avoid the confusion that sometimes results when many variables are used. The result is a longer
program, but one that, with practice, may help the student to better understand the program or to develop
alternate solutions.

Translating a program from BASIC into Logo may seem sacrilegious to many students and teachers famil
iar with the Logo language. Logo offers the particularly strong problem solving tool of recursion to emulate
the loops used in Sornmerville's program. The program does not fully exploit the power of the recursive
loop but does retain Sornmerville's original algorithm. Excellent articles on the use of the recursive loop
can be found in the journal The Computing Teacher. Cathcart (1987) has recently published an article dis
cussing the use of the recursive loop to generate factors. Readers may wish to develop Logo programs to
add mixed numbers that use the Logo language to full advantage.

Logo Program

TO add :wholel :numeratorl :denominatorl :whole2 :numerator2 :denominator2
write. the. question
initialize. values
add. fractional. parts
combine. whole. parts
set.out. the. answer

END

TO write. the.question

END

14

PRINT (SENTENCE :wholel :numeratorl [/] : denominator I [+] :whole2
:numerator2 [/] : denominator2)

\

•

'

TO initialize. values

END

MAKE " sum.of.numerators 0
MAKE ' ' multiplier 0
MAKE " equiv.numerator! 0
MAKE ' ' equiv.numerator2 0
MAKE ' ' lowest.common.denominator 0
MAKE " total . whole 0
MAKE " reduced.denominator 0
MAKE ' ' check 0
MAKE ' ' derived.whole.part 0
MAKE " reduced.numerator 0
MAKE " not. reduced.numerator 0
MAKE " test.divisor 0

TO add. fractional . parts
find. lowest.common .multiple :denominator 1 :denominator2
rewrite. with. same. denominator
add. numerators
express. in. standard. form

END
TO find . lowest.common.multiple :denominatorl :denominator2

common.multiple :denominator! :denominator2
MAKE " lowest.common.denominator :check

END
TO common.multiple :denominator! :denominator2

MAKE " multiplier :multiplier + 1

END

MAKE '' check :denominator! * :multiplier
TEST 0 = REMAINDER :check :denominator2
IFFALSE [common.multiple :denominator! :denominator2]
STOP

TO rewrite. with. same. denominator
MAKE " equiv.numerator! : lowest.common.denominator / :denominator! * :numerator!
MAKE " equiv.numerator2 : lowest.common.denominator / :denominator2 * :numerator2

END

TO add.numerators
MAKE " sum.of.numerators :equiv .numerator! + :equiv.numerator2

END
TO express. in. standard. form

change. to. a. mixed. number
reduce. the. fraction

END
TO change.to.a.mixed.number

MAKE " derived. whole.part INT :sum.of.numerators /
: lowest. common. denominator

MAKE " not.reduced.numerator : sum.of.numerators - :derived.whole.part *
15

: lowest.common.denominator
END

TO reduce. the. fraction
find. the. greatest. common. divisor
divide. by. the.greatest.common.divisor

END

TO find. the. greatest.common.divisor
MAKE 11 test.divisor : lowest.common.denominator
try .a.divisor
MAKE. " greatest.common.divisor : test.divisor

END

TO try .a.divisor

END

IF : test.divisor = 1 [STOP]
IF NOT (AND numerator.check = " true denominator.check = " true)

[decrement.di visor try. a. divisor]
STOP

TO numerator.check

END

TEST 0 = REMAINDER :not. reduced .numerator : test. divisor
IFTRUE [OUTPUT 11 true]
OUTPUT [" false]

TO denominator.check

END

TEST 0 = REMAINDER :lowest.common.denominator : test.divisor
IFTR UE (0 UTPUT ' ' true]
OUTPUT [1 1 false]

TO decrement.divisor
MAKE " test.divisor :test.divisor - l

END

TO divide.by .the.greatest.common.divisor

END

MAKE " reduced.numerator. INT :not. reduced.numerator I
: greatest. common .divisor

MAKE " reduce.denominator INT : lowest.common.denominator I
:greatest.common.divisor

TO combine. whole. parts
MAKE " total. whole :whole! + :whole2 + :derived. whole.part

END

TO set.out.the.answer
PRINT (SENTENCE :total.whole :reduce.numerator [/] :reduced.denominator)

END

16

I
I

I
I

add

--.J

rl. write the
question

,__ _______ ,
1rnt1alize
values

add fractional
parts

combine whole
parts

set out the
answer

Figure 1. Warnier/Orr Diagram of Task Names

find lowest
common multiple

rewrite with same
denominator

add numerators

express 1n
standard form

common
multiple

change to a
mixed number

reduce the
fraction

find greatest
common divisor

divide by greatest
common divisor

lty a d1v1sor denominator
check

decrement
divisor

numerator chec

References

Cathcart, W .G. "Generating Factors . " Compu(ers in Education, February 1987, pp. 28-29.

Sommerville, F. "Programming: A Subset of Problem Solving. " de/ta-K.

1 8

-- -

6
I

______________]} J /

I

I
I
,·
I

	14 - 18 Using Logo to Solve Sommerville's Allgorithm for Adding Mixed Numbers

