## Student Problem Corner

Editor's Note: The problem presented here is suitable for students studying pre-calculus. It explores the concepts of exponentional function and quadratic formula. The problem is reprinted with permission from Re source Problems to Enhance the Teaching of Mathematics, University of Delaware, Newark, Delaware. This collection of senior high school mathematical problems is available for $\$ 4$ U.S. from Willard E. Baxter, Department of Mathematical Sciences, 501 Ewing Hall, Newark, Delware 19716. Phone: (302)451-2653.

## Problem

A wire hanging symmetrically across a road is anchored at the edges of the road on standards. The standards are 16 feet high. The road is 60 feet wide, and the height of the wire at the centre of the road is 10 feet above the road. Furthermore, after establishing the coordinate system shown, it is observed that the graph of the wire is
$y=\frac{B^{x}+B^{-x}}{2}+9$


X

1. Find B as an algebraic expression.
2. What special relationship do the two values of $B$ have?
3. Give the first five decimals in the decimal approximation of B.
4. Can a truck 10 feet wide and 14 feet high pass under the wire?

## Solution

FORMULA
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, where $a x^{2}+b x+c=0$

## STRATEGY

Since $(30,16)$ is a point on the curve, substitute the coordinates into the formula. Express the resulting equation in quadratic form and solve with the quadratic formula.

Question 1
ARGUMENT

$$
\begin{aligned}
& y=\frac{B^{x}+B^{-x}}{2}+9 \\
& 16=\frac{B^{30}+B^{-30}}{2}+9 \\
& 32=B^{30}+B^{-30}+18 \\
& B^{30}+B^{-30}=14 \\
& B^{60}-14 B^{30}+1=0 \\
& B^{30}=\frac{14 \pm \sqrt{14^{2}-4(1)(1)}}{2} \\
& B^{30}=\frac{14+\sqrt{192}}{2} \\
& B=\sqrt[30]{\frac{14 \pm 192}{2}}
\end{aligned}
$$

## ANSWER

$B_{1}=\sqrt[30]{\frac{14+192}{2}}$ and $B_{2}=\sqrt[30]{\frac{14-192}{2}}$

## Question 2

Since $B^{x}+B^{-x}=(1 / B)^{x}+(1 / B)^{-x}$, we see that $B_{2}=1 / B_{1}$.
JUSTIFICATION
$B_{2}=\sqrt[30]{\frac{14-192)(14+192)}{2(14+192)}}$
$=\sqrt[30]{\frac{2}{14+192}}$
$=1 / B_{1}$

ANSWER
$B_{2}=1 / B_{1}$

## Question 3

The appended program allows one to approximate the values of $B$ using a bracket-and-halving algorithm. We first estimate
$n=\frac{14+\sqrt{192}}{2}=13.92820$

ANSWER
Using the algorithm, we find that $B_{1}=1.09176$ and $B_{2}=0.91601$

Question 4


ANSWER
We wish to approximate y when $\mathrm{x}=20$. Using the accompanying algorithm
$y=\frac{B^{211}+B^{-20}}{2}+9=11.98097$
Since the truck is 14 feet high, it cannot pass under the wire. Therefore, the answer is no.

## Program for the Algorithm

10 'Intent: Approximate a root of a number.

70 I is the counter for calculating the power by repeated multiplications.
80 , L is the lower bound for the root.
$90, \quad M$ is the midpoint of $L$ and $R$.
$100 \quad \mathrm{~N}$ is the real number whose root is to be calculated.
$110 \quad \mathrm{P}$ is the E 'th power of T .
44

```
        Q is the reciprocal of P.
    ' R is the upper bound for the root.
    ' T is the current approximation of the root that is being tested.
    ' BEGIN
        CLS
    GOSUB 500 ' Enter values and test boundary for root
    L = 1
    IF R - L < B GOTO 290
        GOSUB 700 'Calculate an approximation for the root
        GOSUB 800 'Calculate the power of the approximation
        If P>N THEN R = M ELSE L = M
        GOTO 240
        ' ENDLOOP
        PRINT
    PRINT " The root is '';R
    PRINT
    PRINT "Do you want to evaluate the formula?"
    A$ = "'"
    INPUT "Type Y for yes, N for no";A$
    IF A$ = "Y'OR A$ = ''y"THEN ELSE 400
        GOSUB 900 'Calculate y value in formula, given x as 20
        PRINT
        PRINT " When x = 20 in the formula, y = ";Y;" feet."
        'ELSE
        'ENDIF
END
'SUBROUTINE-Enter values and test boundary for root
    INPUT "What is the real number N whose root you want to find? N = ";N
    INPUT "What is the index of the root ";E
    INPUT "What is the maximum error, you want to allow in the answer " ;B
    A$ =
    IF A$ = "Y" OR A$ = " y"GOTO 660
            INPUT "Name a value that is an upper (or lower) bound for N";R
            PRINT "The computer will now test the value you just entered.'
            PRINT
            T = R
            GOSUB }80
            PRINT P
            PRINT
            PRINT "Is the value printed above larger (or smaller) than N?"
            INPUT "'Type Y for yes,N for no. '';A$
            GOTO 550
        'ENDLOOP
RETURN
    'SUBROUTINE - Calculate an approximation of the root
    M = (L + R)/2
    T = M
    RETURN
    'SUBROUTINE - Calculate the power of the approximation
        P = 1
```

820
830
840
850
900
910
920
930
940
950 960

FOR I = 1 TO E
$\mathrm{P}=\mathrm{P} * \mathrm{~T}$
NEXT I
RETURN
'SUBROUTINE-Calculate y value in formula, given x as 20
$\mathrm{T}=\mathrm{R}$
$\mathrm{E}=20$
GOSUB 800
$\mathrm{Q}=1 / \mathrm{P}$
$\mathrm{Y}=(\mathrm{P}+\mathrm{Q}) / 2+9$
RETURN

This program was run on an IBM-PC.

## RUN

What is the real number N whose root you want to find? $\mathrm{N}=$ ? 13.92820
What is the index of the root? 30
What is the maximum error you want to allow in the answer? . 000001
Name a value that is an upper (or lower) bound for N ? 1.5
The computer will now test the value you just entered.

## 191751.1

Is the value printed above larger (or smaller) than N ?
Type Y for yes, N for no.? y
The root is 1.091767
Do you want to evaluate the formula?
Type Y for yes, N for no? y
When $\mathrm{x}=20$ in the formula, $\mathrm{y}=11.98086$ feet


