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EDITOR'S COMMENTS 

Welcome to the second issue of delta-K devoted to the topic of technology and mathematics. In this issue, 
J. Dale Burnett's guest editorial discusses the importance of values in technology and mathematics. An arti
cle by Kate Le Maistre encourages teachers to use television, particularly the VCR, to enhance the teaching 
of mathematics. Marlow Ediger offers guidelines for using microcomputers to teach mathematics. 

The articles by Francis Sommerville and Ron Taylor present microcomputer programs using BASIC and 
Logo respectively to solve the same mathematical problem. Scott Erickson discusses both the graphic art 
of M. C. Escher and the technology applied to the deformation of tessellations. J. Dale Burnett uses psycho
logical theory to design practice sessions on the computer. George Cathcart shows how Logo programs can 
be used to perform arithmetic tasks. Barry McGuire explains how a computer simulates science studies and 
experiments in a school-designed scientific studies and computer course. 

"Student Problem Corner" features a mathematical exercise reprinted from Resource Problems to En
hance the Teaching of Mathematics, an algebraic solution and computer program published by the Depart
ment of Mathematical Sciences, University of Delaware. In addition to "Student Problem Comer," a new 
section entitled "Student Problem Solvers" has been added. Will it become a regular component of delta-K? 
Can students develop an alternate algorithm or an algorithm using a different language? Solutions submitted 
to "Student Problem Corner will be published in the next issue. 

John B. Percevault 
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GUEST EDITORIAL ________________ _ 

Technology and Mathematics: 
The Importance of Values 

J. Dale Burnett 

An example is worth a thousand pictures. Recently, I had the opportunity to observe a Grade 8 mathematics 
class in a computer lab environment. There were about 30 microcomputers, with a student at each one. The 
students were engaged in a math drill program requiring rapid responses to a series of computational prob
lems of increasing difficulty. The screen was filled with fancy, colorful graphics as the students worked through 
the various levels of the scenario. About a quarter of the students were not involved. While the computer 
was meticulously measuring their response time to a thousandth of a second, they were actively engaged 
in conversation with their neighbor or close friend. (Imagine a researcher, removed from the classroom, 
interpreting those lengthy delays!) Most of the other students were giving the task their attention. For many, 
the importance of obtaining another 10,000 points was all-important. By most criteria, the latter three-quarters 
of the class would be considered good students. They were enjoying-and in a few cases, really eny,ying
the activity set for them. This was what I found most upsetting. 

We all have dreams. We all have visions of an ideal educational system. My visions do not include the 
above scenario. My comments are not directed to the teacher but to the students, particularly the majority 
who were enjoying the exercise. They shouldn't have! And though my comments are directed at students, 
my concern lies with the educational enterprise. I am concerned about an educational system in which stu
dents enjoy such activities. I am not opposed to drill. Far from it. There is clearly a place for such practice, 
and this classroom may well have been such a place. 

Nonetheless, I am using the example to suggest something about the appropriate use of technology in edu
cation. The simple fact that a computer can be used in a certain manner is no reason to suggest that it should 
be used in that manner. More fundamental issues, pedagogic and conceptual, need to be addressed first. 
One of my criteria for a desirable educational activity, with or without computers, is that students should 
be actively thinking. Another is that students should have the opportunity to exhibit self-control and indepen
dence. A third is that students should work within a sharing environment, where ideas and suggestions are 
freely communicated among the participants. 

I would like to contrast the above scenario with one that occurred in the same room during the next period. 
This time it was a Grade 5 class. Students were each working on a task of their own choosing within a Logo 
environment. To me, the differences were dramatic. First, the level of excitement and enthusiasm was conta
gious; the students were proud of their work and had good reason to be. Second, the students were actively 
engaged in a myriad of problems and subproblems-their minds were in high gear as they reasoned their 
way through the various implications of their actions. Third, although the students may not have realized 
it, they were doing mathematics, in contrast to remembering mathematics. In the case of Logo, the glitter 
was in the students' minds (and eyes) rather than on the screen. We need to distinguish between the enjoy
ment that comes from using a new device and the enjoyment that comes from understanding, for example, 
the pattern behind the concept of a square, or the relationships among a square, a hexagon and a circle. 
A Logo screen display is relatively barren, but it can be deeply satisfying. 
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Among the goals of the senior high school mathematics program are these: 

I. To develop in each student a positive attitude toward mathematics 
2. To develop the ability to use mathematical concepts, skills and processes 
3. To develop the powers of logical analysis and inquiry 
4. To develop an ability to communicate mathematical ideas clearly and correctly to others 

The goals of the elementary mathematics program are similar. The program is intended to "foster within 
the learner a sense of accomplishment and success, a positive attitude toward mathematics and a positive 
attitude toward learning." However, there is often a substantial gap between these goal statements and the 
skill objectives that are then formulated, avowedly to achieve these goals. Our concern for measurable skills 
and behaviors has the unfortunate tendency to pull us away from our goals-an embarrassing paradox. 

I believe that these Grade 5 students were actively involved in a setting that is highly consistent with all 
of these goals. I am less confident about the activities of the Grade 8 class. The choice is ours. The critical 
issue is not technology but how the classroom teacher plans to use the technology. I would like to see the 
computer used more often in a way that is consistent with the goals just listed. 
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If This Is Television, Shouldn't My Intelligence 
Be Insulted? 

Kate Le Maistre 

Kate Le Maistre is mathematics and science consul
tant with Jerome-Le Royer School Commission, En
glish Educational Services, Ville d'Anjou, Quebec. 
Le Maistre presented a paper to the NCTM Cana
dian Conference held in Edmonton in 1986. 

The Freedom Machine 

Those of us who have the responsibility of meet
ing a class of children up to 200 times a year and 
teaching them a subject like mathematics need help 
from time to time. My favorite aid is the videocas
sette recorder (VCR). 

The VCR can free us from complicated technol
ogy and from network schedules. Even the manufac
turers of VCRs have been surprised by the popularity 
of the flat box that so many of us store underneath 
the television set. Two factors that have contributed 
to this popularity are the convenience and ease of 
use of the VCR. We can "time-shift" or watch pro
grams at a time convenient to us, not when the net
works feel that we should watch them. This is 
important to a classroom teacher, who can show 
some or all of a program when it fits into the lesson 
plan, not necessarily when it is being transmitted. 

If you have not yet bought a VCR for your home, 
the total inservice time needed to train the most un
mechanical person to insert, play, rewind and eject 
a tape is about five minutes. In seven minutes, you 
can find how to fast forward, pause, put a trans
parency on the screen, trace the picture for later use 
on an overhead projector and probably come up with 
several innovative ideas of your own. 

If all else fails, ask one of the children in your class 
to show the tape; after all, your students are grow
ing up with VCRs as we did with radios. 

Compare the ease of operating a VCR with the 
agony we used to go through in setting up a 16 mm 
movie. I thought life would be easy when my school 
bought a self-threading projector, but, although I 
didn't tear the sprocket holes from as many films, 
when I stopped the film to ask a question or to ex
plain a point, someone near the projector was bound 
to call out: "Miss! I can smell something burning!" 

How Can I Compete with "Miami Vice"? 

A recent study found that ''young people between 
the ages of six and 11 watch, on the average, 27 hours 
of television a week" (Merrow 1985). As teachers, 
we cannot control what children watch at home
and there are times when we all like to spend an hour 
or two looking uncritically at television. While our 
students are spending so much time using television 
as recreation, they are not reading books, yet our 
teaching methods remain textbook-based. I am not 
suggesting that because children do not read books 
for entertainment, we should not use books at school. 
Quite the contrary; part of our role is to encourage 
students to use as many sources of information as 
possible, and any good teacher will use as many strat
egies as possible to get through to students. We are 
hiding our heads in the sand if we do not use a strat
egy that is both familiar and attractive to students. 

"Talk" and "chalk," closely followed by work
sheets, seem to be the basics of the teacher's arsenal. 
Apart from the occasional overhead projector, the 
tools in many classrooms have not changed appreci
ably since the days of the slate and pencil. Yet we 
are trying to use these archaic tools with a genera
tion of students who are often more technologically 
sophisticated than we are. 
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The most recent mathematics programs available 
on instructional television contain what the profes
sionals call ''production values,'' or what we might 
call "razzle-dazzle," attention-grabbers or-shades 
of teachers' college-motivators. These programs in
clude action shots of children of the same age as the 
intended audience, animation, outside locations, 
simulations and computer-generated graphics. If any
thing is going to compete with the glitzy productions 
of the big networks, these programs stand a good 
chance. 

I Thought We Were Supposed to 
Encourage Actiive Participation 

Here is a typical scenario for using videotapes in 
a mathematics class: A Grade 5 teacher finds tha, 
her classes on the comparison of decimals have not 
been as successful as usual. She looks at the teachers' 
guide to Math works and decides that the title of pro
gram 15 is promising. The program summary des
cribes a sequence in which two girls are running a 
race. timed to hundredths of a second; an animation 
sequence involving the Three Bears; another short 
story in which two boys discover that 0.5 kg of meat 
is more than 0.33 kg; a gemologist explaining why 
decimals are important in his work; and a summary 
sequence in which two girls apply their knowledge 
of decimals. 
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The teacher then previews the tape to decide where 
to place it in her lesson plans. Should she use the 
whole program? Some scenes only? Should she do 
the suggested activities before showing the tape? At 
some point during the program? As a follow-up? 
Should she try to fit the entire 15-minute program 
into one class? Are there enough concepts to make 
several lessons? 

Next, she prepares the program activities in the 
teachers' guide as well as any others that are ap
propriate, copies any assignment sheets and collects 
necessary materials. Again the teachers' guide is use
ful because it provides a black-line master and lists 
of simple materials used in the activities. 

At this point, the only thing left is to show the tape 
and watch the children's faces. If you've never done 
this before, be prepared for a pleasant surprise. 

I am not suggesting that playing videotapes should 
be the only, or even the major, activity in mathe
matics classes. To suggest as much would mean sim
ply replacing one provider of information (the 
teacher) with another (the "box"). Rather, I am sug
gesting that a videotape can act as a motivator, as 
an introduction to a topic, as a unit review, as one 
more version of the same information, as a tutorial 
for an absent student-in fact, as one more tool in 
the teacher's toolbox. 

After all, when you're a teacher in front of a class, 
isn't it reassuring to have a variety of tools in the 
toolbox? 

Suggested Mathematics Programs 

''Two Plus You'' 
"Math Patrol" 
"Math Patrol 2" 
"Math Patrol 3" 
"It Figures" 
'' Landscape of Geometry'' 

Check the ACCESS listings for other mathematics 
programs available on instructional television. 

Reference 

Merrow, John. "Children and Television: Natural Partners •· 
Kappan, November 1985, p. 212. 



Mathematics Education and Technology 

Marlow Ediger 

Dr. Ediger is professor of education at Northeastern 
Missouri State University, Kirksville. He was the 
1985 recipient of the Project Innovation 's Merit 
Award for Excellence in Teacher Education. He is 
a regular contributor to delta-K. 

Much has been written about using technology to 
teach mathematics. Such semi-concrete audiovisual 
aids as slides, films, filmstrips, transparencies and 
single-concept film loops have been used for several 
decades, and their use is increasing. 

Prior to the advent of semi-concrete materials, 
mathematics educators advocated using concrete 
materials in the classroom. Objects and items used 
to teach stress the concrete. Students learned by relat
ing the real world of objects to abstract ideas in 
mathematics. 

In addition to using semi-concrete materials, the 
mathematics teacher should emphasize abstract learn
ing. Reading materials and student-teacher interac
tion help students move from the concrete to the 
semi-concrete to the abstract. 

Computers in the Curriculum 

Computers are a relatively recent development in 
teaching mathematics. The principles of educational 
psychology should guide the teacher in selecting soft
ware for the curriculum. First, the software and com
puter should provide learning opportunities that are 
interesting and that secure the student's attention. 
Time on task is significant. Absent students waste 
their own time, as well as the time of the teacher. 
A major concern with technology is whether it at
tracts and maintains student interest. 

Second, software should be meaningful to the 
learner. Students need to understand sequential con
tent. The subject matter must make sense; if it is too 

complex, students will not be able to understand it. 
If it is too easy, students will learn nothing. Soft
ware must provide students with realistic goals. 

Students need reasons for learning. They should 
find value in the content of computerized instruction. 
Although students perceive the content in mathe
matics to be worthwhile, they frequently fail to find 
value in the objectives emphasized in software con
tent. Teachers need to evaluate new software to see 
if it contains striking content and reflects worthwhile 
objectives. The chosen objectives should guide soft
ware selection. 

Slow, average and fast learners need to be 
respected for the abilities they possess and the levels 
of learning they have attained. The teacher must 
identify objectives, provide learning opportunities 
and select appraisal methods that assist each learner 
to achieve as much as possible. Software that pro
vides for slow, average and fast achievers needs to 
be made available. 

Regardless of abilities, students must achieve cog
nitive, affective and psychomotor objectives to the 
best of their abilities. First, cognitive process, which 
stresses intellectual tasks, is important. Students need 
to achieve structural ideas, major generalizations and 
higher-order thinking skills. Second, the affective or 
attitudinal category must also be emphasized. Stu
dents having healthy attitudes will likely enjoy and 
appreciate mathematics. A third objective is to im
prove psychomotor functions. Students require good 
eye-hand coordination, coupled with gross and fine
motor movement to construct models, designs and 
figures in mathematics. 

Students need feedback on ongoing and completed 
work. Feedback informs the students about their pro
gress, alerts them to what is incorrect and shows them 
how to remedy identified deficiencies. Computers 
and software provide students with immediate results 
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to responses made sequentially. If students do not 
receive feedback, they may make identical or simi
lar errors. Allowances should be made for trial and 
error-this learning process teaches students to 
generalize. 

Students should be provided with both deductive 
and inductive learning opportunities. Teachers should 
select software that helps students to learn a new pro
cess through deduction. Students need opportunities 
to discover and find out on their own-the thrill and 
excitement of discovery are extremely valuable. 

Students need opportunities to apply what they 
have learned. Objectives achieved by students using 
software should reflect the level of application. The 
applications can be made within the framework of 
sequential experiences contained in the software pro
gram. Applicatipns can also be stressed by using 
mathematics textbooks, workbooks, worksheets, as 
well as actual problems in society. Mathematics is 
dynamic, utilitarian and functional in the day-to-day 
l ives of students. 

Selecting Software 

Teaching materials should be evaluated before, 
during and after use; software should be thoroughly and 
continually evaluated. Which criteria for evaluation 
should then be applied in teaching-learning situations? 

Software must assist students to achieve objectives 
and should be related to material taught in a lesson 
or unit. Content in software must relate to preced
ing subject matter. Unrelated facts, concepts and 
generalizations might well confuse students. High 
quality instruction and depth learning by students, 
rather than survey approaches, should be undertaken. 
Carefully chosen software directly related to objec
tives in the curriculum can aid students to understand 
subject matter in-depth. Depth teaching is not a pro
cess adding new content to previous subject matter. 
Rather, depth teaching forces students to relate the 
new ideas gained from using computers to their previ
ously acquired learning. Depth learning focuses on 
helping students to grasp structural ideas and major 
generalizations more fully and comprehensively. At
titudes toward learning mathematics should become 
more positive as students attach increased meaning 
to acquired subject matter. 

Software must present the content sequentially so 
that students perceive order and structure. Students 
in the classroom need to experience success, not fail
ure. Proper I y sequenced software ensures that stu
dents have success and provides a foundation on 

8 

which new subject matter can be learned. Therefore, 
writers of mathematics programs must test and de
velop sequence. 

Software content should promote successful learn
ing. Success reinforces what students have learned, 
and subject matter, in tum, is learned more effec
tively with reinforcement. Everyone desires to be 
successful in life-students are no exception. 

As with sequence testing, the success rate of the 
program needs to be field-tested adequately. If the 
steps involved in learning are spaced too far apart, 
then the programmer should add items to the pro
gram so that students can respond correctly more 
frequently. 

Students should be given the opportunity to re
spond frequently to questions and multiple-choice 
items within a program. Often, required reading 
leaves the student with very little responding time 
in a software program. Frequent interactions are 
recommended so the students receive feedback to 
their responses. 

Drill and practice are necessary activities. Care
fully selected software should guide students to re
view what was learned previously. If drill and 
practice are not stressed, students tend to forget the 
subject matter. Retaining information is important 
in mathematics. 

Other software deals with games and gaming. In 
a game situation, two to four students can be involved 
in wholesome competition. Each student tries to gain 
as many points as possible by answering mathematics 
questions on the monitor. The student with the most 
points wins. Easier questions are worth fewer points 
than are more complex ones. 

A fourth type of software covers simulations in 
which students play roles in solving real problems. 
Compared with day-to-day situations in school or 
home, simulations provide low-risk situations for stu
dents. Higher levels of thinking must be stressed in 
simulated programs. 

Diagnostic and remedial programs may be em
ployed in the mathematics curriculum. Diagnosis pin
points specific difficulties that a student has in 
mathematics. Based on diagnosis, remedial programs 
follow. 

Along with software related to ongoing lessons and 
units in mathematics, additional learning activities 
and resources must be available to students. These 
resources include textbooks, workbooks, filmstrips, 
slides, films, transparencies, overhead projectors, il
lustrations, videocassette tapes and single-concept 
film loops. 



To help students, mathematics teachers must fol
low recommended principles of learning. These prin
ciples stress ways of guiding learners to attain as 
much as possible. They are applicable regardless of 
the aids used to teach mathematics. Aids include 

0 
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computers as well as textbooks and audiovisuals. 
Teachers should employ drill and practice, tutorials, 
games, simulations, and diagnosis and remedial tech
niques. Ultimately, each student's goal should be to 
achieve as much as possible in mathematics. 

0 
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Programming: A Subset of Problem Sollv1ing 

Francis Sommerville 

Francis Sommerville teaches mathematic and com
puter courses at E. P. Scarlett High School, Calgary. 
Sommerville served as an executive member of 
MCATA and most recently as co-editor of the MCATA 
newsletter. 

Computer programming effectively extends prob
lem solving activities in the mathematics classroom. 
The computer forces a systematic approach, provides 
immediate feedback and appeals to most students. 

Unfortunately, many programming activities are 
only marginally related to the responsibilities of ju
nior high math teachers. In his book Mindstorms: 
Children, Computers, and Powerful Ideas, Seymour 
Papert claims that when children program computers 
they ' '  establish an intimate contact with some of the 
deepest ideas from science, from mathematics, and 
from the art of intellectual model building' '  (Papert 
1980, 5). This sounds great, but will they pass the 
math final? 

An approach is required that allows for group in
struction, provides for individual differences and 
draws examples from the standard mathematics 
curriculum. 

Consider the task of adding mixed numbers. Al
though not a problem in the usual sense, the task can 
be approached as a problem solving activity. Some 
students require extensive review while others are 
ready to solve the problem in the general sense us
ing variables. 

"How do you add mixed numbers?" In response to 
this question, students might suggest following steps 
such as writing down the question, adding the frac
tional part, combining the whole and fraction part and 
setting out the answer. These responses reflect the 
usual heuristics of thinking of a similar problem or, 
dividing the problem into subproblems. These steps 
could be summarized on the board. (See Figure l.) 
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Figure 1. Adding Mixed Numbers 

I 

To add two 
mixed , 
numbers I 

Write down 
the question 

Add the fractional 
parts 

Combine the whole 
and fractional parts 

Set out the answer 

'This style of representing the students' suggestions 
is described by Higgins (1979) and is called a War
nier /Orr diagram. Set notation shows the division of 
a task into its components. When read from left to 
right, the diagram explains how to add mixed num
bers. The tasks are listed in order from top to bot
tom. Reading from right to left explains why a certain 
process is required. Students could be asked to ex
pand on the more difficult aspects of the process to 
produce a diagram similar to Figure 2. 

Figure 2 provides an overall picture and may help 
students identify areas that require review. As ex
amples are completed, the teacher refers to the stage 
at which the students are working. This process also 
provides a sound basis for the student who is ready 
to solve the problem of adding mixed numbers in 
the general sense, using algebra. 

A major thrust of the junior high mathematics pro
gram is to move students from solving specific ex
amples to solving general problems. The general 
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Figure 2. Overall Picture of Process 

Write down 
the question 

Find the 
lowest common 
multiple of the 
denominators 

Add the 
fractional 
parts 

Write equivalent 
fractions with 
the same 
denominator 

Add the 
numerators and 
copy the 
denominator 

To add 
two mixed 
numbers 

Combine the 
whole and 
fractional 
parts 

Set out 
the answer 

Express 
in 
standard 
form 

solution can be expressed verbally, algebraically or, 
more recently, as a computer program. Probably all 
three can be used effectively by some students; there
fore a conscious effort to structure examples in a 
manner that promotes transfer to all three modes of 
expression is needed. Consider the subproblem iden
tified previously, that of finding the Lowest Com
mon Multiple (LCM) of the denominators. 

Once students demonstrate the ability to find the 
LCM for specific examples, they might be led to a 
general solution by asking such questions as these 
(answers are given in parenthesis). 

Change 
to a 
mixed 
number 

Reduce 
the 
fraction 

Find 
the 
GCD 

Divide 
by the 
GCD 

To find the LCM of C and D let us first con
sider multiples of C.  What is the first multiple of 
C? (C or C times 1 .) What is the second multiple 
of C? (C times 2.) What is the third multiple? (C 
times 3 . )  Now, what number is a multiple of both 
C and D? (C times D.) Is this the lowest common 
multiple? (Not necessarily.) How could you check 
to see if there is a smaller multiple of both C and 
D? (By testing each multiple of C to see if it is a 
multiple of D.) 

This approach transfers to programing in BASIC 
in the following manner: 

1 1  



To add 
two mixed 
numbers 

1 2  

· Write down 
the question 

Add the 
fractional 
parts 

Combine the 
whole and 
fractional 
parts 

Set out 
the answer 

Figure 3. Warnier/Orr Solutions 

� 1 0  INPUT A,E,C,B,F,D 
l 1 2  PAINT A " " E ''/" C " + " B " " F "/ " D " = " 

Find the 

I 
1 4 FOR X • 1 TO D 

lowest common 1 6  LET M = c·x 

multiple of the 1 8  IF M/D = INT(M/0) THEN 22 
denominators 20 NEXT X 

Write equivalent 1 22 LET G • MIC ' E  
fractions with 24 LET H = M/D * F  
the same 
denominator 

Add the 
numerators and l26 LET N • G + H 
copy the 28 LET D - M 
denominator 

Change 
to a 130 LET W • INT(N/O) 

mixed 32 LET N = N - W*D 
number 

Express 
in Find 

I 
34 FOR F • D TO 1 STEP - 1 

standard the 36 IF N/F < > INT(N/F) THEN 40 
form Reduce GCD 38 IF 0/F = INT (D/F) THEN 42 

the 40 NEXT F 
fraction 

Divide 142 LET N = N/F 
by the 44 LET D = D/F 
GCD 

I·· LET T • A + B + W  

I·· PRINT T" "N"/"D 



r 

1. FOR x = 1 TO D 
2. LET M = C*X : REM M is a multiple of C 
3. IF MID = INT(MID) THEN 5 : REM Check 

to see if M is a multiple of D and, if it is, go on 
to line 5. 

4. NEXT x : REM Repeat lines 2 and 3 with the 
next value of x. 

5. PRINT M :  REM M is the LCM of C and D. 

Marcia Linn (1985) calls such programs "tem
plates. " She defines templates as "stereotypic pat
terns of code using more than a single language 
feature. They are employed as an entity in programs 
to perform commonly encountered tasks. ' '  In mathe
matics classes, templates are not necessarily pro
gramming code; they could be expressed verbally 
or algebraically. However, introducing programming 
code at this level reinforces verbal and algebraic 
templates. 

To complete the initial problem, students must inte
grate such other templates as finding the greatest 
common factor and changing improper fractions to 
mixed numbers. The WamierlOrr diagram (Figure 
3) shows the complete solution. The BASIC program 
assumes that you are adding the mixed numbers of 
A EiC and B F/D. (Note that A and B are whole 

numbers with fractional parts, EiC and F/D respec
tively.) The program works on Apple or IBM com
puters. (The input and output commands on lines 10, 
12 and 48 are potential problems if this program is 
attempted on other computers.) 

Thus the student solves problems by dividing com
plex problems into sets of subproblems and solving 
them by relying on a previously developed repertoire 
of templates. If programming is part of this process, 
then students have to learn the features of the lan
guage, develop a repertoire of templates and develop 
the ability to use templates to solve more complex 
problems. 

Clearly programming is not problem solving. It 
is, however, an exciting subset of the problem solv
ing process as it exits in junior high mathematics 
classes. 
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u.sing Logo to Solve Sommervil le's Allgorith1m 
for Adding Mixed Numbers 

Ron Taylor 

Ron Taylor holds a B.Sc. in animal biology and a B.Ed. in secondary science. He taught Grades I through 
12 in Rocky View School Division No. 41. He is cu"ently studying for a master's degree in education at 
the University of Lethbridge and is interested in the phenomenology and pedagogy of play. 

One of the important aspects of problem solving that we teach students is to look back at a successful 
solution and determine if the problem can be solved in another manner. What follows is just such an attempt. 
In this case, the essential algorithm, developed by Francis Sommerville (1987), has not been changed. The 
intention here is to show how the algorithm can be implemented in another language, Logo. 

The Logo language has several advantages over traditional versions of microcomputer BASIC, among them 
extensibility and meaningful variable names. By extensibility, I mean that the language allows students to 
incorporate task names (see Figure 1 )  directly into the program. Using meaningful variable names helps stu
dents to avoid the confusion that sometimes results when many variables are used. The result is a longer 
program, but one that, with practice, may help the student to better understand the program or to develop 
alternate solutions. 

Translating a program from BASIC into Logo may seem sacrilegious to many students and teachers famil
iar with the Logo language. Logo offers the particularly strong problem solving tool of recursion to emulate 
the loops used in Sornmerville's program. The program does not fully exploit the power of the recursive 
loop but does retain Sornmerville's original algorithm. Excellent articles on the use of the recursive loop 
can be found in the journal The Computing Teacher. Cathcart (1987) has recently published an article dis
cussing the use of the recursive loop to generate factors. Readers may wish to develop Logo programs to 
add mixed numbers that use the Logo language to full advantage. 

Logo Program 

TO add :wholel :numeratorl :denominatorl :whole2 :numerator2 :denominator2 
write. the. question 
initialize. values 
add. fractional. parts 
combine. whole. parts 
set.out. the. answer 

END 

TO write. the.question 

END 
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PRINT (SENTENCE :wholel :numeratorl [/] : denominator I [ +] :whole2 
:numerator2 [/] : denominator2) 

\ 

• 
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TO initialize. values 

END 

MAKE " sum.of.numerators 0 
MAKE ' '  multiplier 0 
MAKE " equiv.numerator! 0 
MAKE ' '  equiv.numerator2 0 
MAKE ' '  lowest.common.denominator 0 
MAKE " total . whole 0 
MAKE " reduced.denominator 0 
MAKE ' '  check 0 
MAKE ' '  derived.whole.part 0 
MAKE " reduced.numerator 0 
MAKE " not. reduced.numerator 0 
MAKE " test.divisor 0 

TO add. fractional . parts 
find. lowest.common .multiple :denominator 1 :denominator2 
rewrite. with. same. denominator 
add. numerators 
express. in. standard. form 

END 
TO find . lowest.common.multiple :denominatorl :denominator2 

common.multiple :denominator! :denominator2 
MAKE " lowest.common.denominator :check 

END 
TO common.multiple :denominator! :denominator2 

MAKE " multiplier :multiplier + 1 

END 

MAKE '' check :denominator! * :multiplier 
TEST 0 = REMAINDER :check :denominator2 
IFFALSE [common.multiple :denominator! :denominator2] 
STOP 

TO rewrite. with. same. denominator 
MAKE " equiv.numerator! : lowest.common.denominator / :denominator! * :numerator! 
MAKE " equiv.numerator2 : lowest.common.denominator / :denominator2 * :numerator2 

END 

TO add.numerators 
MAKE " sum.of.numerators :equiv .numerator! + :equiv.numerator2 

END 
TO express. in. standard. form 

change. to. a. mixed. number 
reduce. the. fraction 

END 
TO change.to.a.mixed.number 

MAKE " derived. whole.part INT :sum.of.numerators / 
: lowest. common. denominator 

MAKE " not.reduced.numerator : sum.of.numerators - :derived.whole.part * 
15  



: lowest.common.denominator 
END 

TO reduce. the. fraction 
find. the. greatest. common. divisor 
divide. by. the.greatest.common.divisor 

END 

TO find. the. greatest.common.divisor 
MAKE 11 test.divisor : lowest.common.denominator 
try .a.divisor 
MAKE. " greatest.common.divisor : test.divisor 

END 

TO try .a.divisor 

END 

IF : test.divisor = 1 [STOP] 
IF NOT (AND numerator.check = " true denominator.check = " true) 

[decrement.di visor try. a. divisor] 
STOP 

TO numerator.check 

END 

TEST 0 = REMAINDER :not. reduced .numerator : test. divisor 
IFTRUE [ OUTPUT 11 true] 
OUTPUT [ "  false] 

TO denominator.check 

END 

TEST 0 = REMAINDER :lowest.common.denominator : test.divisor 
IFTR UE ( 0 UTPUT ' '  true] 
OUTPUT [ 1 1  false] 

TO decrement.divisor 
MAKE " test.divisor :test.divisor - l 

END 

TO divide.by .the.greatest.common.divisor 

END 

MAKE " reduced.numerator. INT :not. reduced.numerator I 
: greatest. common .divisor 

MAKE " reduce.denominator INT : lowest.common.denominator I 
:greatest.common.divisor 

TO combine. whole. parts 
MAKE " total. whole :whole! + :whole2 + :derived. whole.part 

END 

TO set.out.the.answer 
PRINT (SENTENCE :total.whole :reduce.numerator [/] :reduced.denominator) 

END 
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Escher Revisited: Modeling Gradual 
Deformations Using Logo 

R. Scott Erickson 

R. Scott Erickson is a computer specialist for Star
land School Division. He graduated from the Univer
sity of Lethbridge and served as a computer consul
tant for the City of Lethbridge, as a member of the 
University of Alberta PLATO Project Team and as 
a software technician for an accounting systems 
developer. 

Introduction 

M. C. Escher was a graphic artist who had little 
interest in traditional mathematics. However, the 
complexity of his compositions has interested many 
mathematicians. Escher used repeating patterns ex
tensively and integrated them into very interesting 
drawings. The study of these geometric patterns is 
called "Escher Mathematics." 

Many of Escher's drawings are composed using 
figures called "tessellations. " A tessellating shape 
is one that, when repeated across a plane, will cover 
the plane entirely without leaving any space. It takes 
very little experimentation to discover that, when a 
square is repeated along both axes of a plane, the 
plane will be covered entirely. Hexagons and trian
gles are also tessellating shapes. 

Escher had the ability to take basic tessellating 
shapes and modify them according to certain rules 
so that they become artistically fascinating, yet re
tain their properties of tessellation. Ranucci and 
Teeters (1977) explain Escher's rules in detail. 

Logo plays an important role in the modeling of 
Escher-type drawings. Because Logo makes is pos
sible to draw lines using few commands, it is a con
venient tool in formulating computer simulations of 
Escher's work. Perhaps one of the greatest advan
tages of using Logo to model tessellations is that 

the mathematical component of the drawing becomes 
apparent while constructing the simulated drawing. 
Figure 1 shows three gradual deformations, adapted 
from Hofstadter 1983. 

Rationale 

I undertook this research to explore some of the 
mathematics of gradual deformations in a simple 
form. Gradual deformations were implemented by 
Escher in many of his line drawings. I felt that the 
interesting mathematics of Escher-type drawings 
would make examining the principles involved 
an enlightening experience. Additionally, I hoped that 
the topic might provide enrichment material 
for advanced or gifted high school students. Having 
encountered students who are not challenged by 
the standard curriculum, I am always looking for 
interesting and demanding activities. As a result, 
one of my objectives was to evaluate the topic of 
gradual deformation to see if it could be imple
mented. 

The project was unique; whereas tessellations have 
received considerable attention since the advent of 
Logo, gradual deformations have been largely ig
nored. Therefore, the project provided a takeoff point 
for studying Escher Mathematics further. 

The Problem 

The project was to take a square and deform it by 
having the midpoints of the top and right sides mi
grate directly away from the centre of the square. 
The mathematics of this deformation is easier to un
derstand if the problem is broken down and the top 
side looked at first. The same principles can then be 
applied to the other axis. 
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Figure 1. Three Gradual Deformations 
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Razor Blades 

Parquet Deformat,on Titled Fylfot Fl ipflop 

The result is the .. addition" of a triangle on top 
of the square (Figure 2) .  Interesting relationships are 
established if this triangle is divided into two equal 
parts. 

There are two important points on the path that the 
turtle must take in tracing the deformed shape . The 
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angle the turtle turns at each corner and the distance 
it travels between corners must be found. Both values 
can be calculated with trigonometry (Figure 2). Turn
ing the turtle right at the upper left corner of the 
square at an angle of 90 - 0 will point the turtle 
along the "right" edge of the triangle. 



Figure 2. Gradual Deformation of the Top of a Square 
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The turtle will then travel 10/cos 0 units in that 
direction until it reaches the next comer, which is 
the apex of the triangle. 

Floure 3. Similar Triangles Arising 
from the Deformation 

.... - - - - --' ' 
d ' ,  ' ' 

' 

At this point, a construction of several similar tri
angles can be used to determine how much the tur
tle must tum. Figure 3 illustrates the relationships 
of several triangles. The measure of angle e is 
90 - 0, since 0 + e === 90. Applying the principles 
of similar triangles establishes that angles a and e 
are equal. As well, angle b has the same measure 
as 0. Angles b and c are vertically opposite, so they 
must be equal . Finally, angle d can also be proven 
to be 90 - 0. The result is as follows: 

20 

90 - a go - e 

....,.,.,, 1 0- -1 0 -

angle a === 90 - 0 
angle b = 8 
angle C :;;: e 
angle d === 90 - a 
angle e === 90 - 0 
Now, it is relatively simple to determine that, at the 

apex of the triangle, the turtle must turn right at an 
angle of 2 x 9, move a distance of IO/cos 8 and turn 
right 90 - 9. Turtle will then be pointing straight 
down, ready to draw the next side. 
The Solution 

Programming the solution in Logo entailed a mini
mum of "dirty work." Figure 4 lists the completed 
program. 

To begin with, an arbitrary square size of 20 by 
20 units was chosen, as well as an arbitrary grid size 
of 8 squares by 10 squares. Three short routines were 
then written to draw a grid, starting at the lower left 
corner. FILLTILES fills the screen with 10 strips 
of squares (Figure 4), and STRIPTILES is the proce
dure that draws each strip. SQUARE is a procedure 
that draws out each individual distorted square. The 
program, when executed, draws an undistorted 
square in the lower left corner of the screen and 
gradually deforms the shape until the upper right 
square is drawn. This corner would be the most 
deformed in both dimensions. The result of running 
the program with the command FILL TILES 8 6 can 
be seen in Figure 5 .  

In programming the solution, I introduced a num
ber of variables and counters to keep track of the 
angles and increments required for the gradual defor
mation. XDEG and YDEG are representations of 
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Figure 4. The Procedures FILL TILES, STRIPTILES and SQUARE 

TO FILL TILES :XINC :YINC 
cs 
PU 
SETPOS [ - 1 00 -60) 
PD 
MAKE " XDEG 0 
REPEAT 1 0  [STRIPTILES :XDEG :YINC RT 90 FD 20 LT 90 MAKE " XDEG :XDEG + :XINC] 
END 

TO STRIPTILES :XDEG :YINC 
MAKE " YDEG 0 
REPEAT 8 [SQUARE :XDEG FD 20 MAKE " YDEG :YDEG + :YINC] 
BK 1 60 
END 

TO SQUARE :XDEG :YDEG 
FD 20 
RT 90 - :YDEG 
FD 1 0  / ( COS :YDEG ) 
RT 2 * :YDEG 
FD 1 0  / ( COS :YDEG ) 
RT 90 - :YDEG - :XDEG 
FD 1 0  / ( COS :XDEG ) 
RT 2 * :XDEG 
FD 1 0  / ( COS :XDEG ) 
RT 90 - :XDEG 
FD 20 
RT 90 
END 

9 (Figure 2), one for each of the X and Y axes. XINC 
and YINC are variables that hold the increment of 
8 for the gradual deformation along each axis. 

Impl ications 
The most striking observation was that Logo 

programming language played a very minor role in 
the project. I paid much more attention to solving 
the actual mathematical problem, a result that pleased 
me because I had intended to concentrate on 
mathematics rather than on computer programming. 

I was somewhat disturbed that the relationship be
tween this type of gradual deformation and trigonom
etry was not immediately apparent. I did not realize 
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the connection until I had examined the problem more 
closely. (Perhaps this indicates a general lack of 
mathematical awareness in society.) Once discov
ered, the connection is obvious, and I wonder how 
long it would take someone with a weaker back
ground to recognize the relationship. 

Before, during and after the investigation, I con
sidered implementing this and similar problems in 
a class. The problem would make an interesting and 
challenging enrichment exercise, implemented in the 
framework of the mathematics curriculum. Such an 
activity would do equally well as a culminating ac
tivity, to wrap up a unit on trigonometry and simi
lar triangles. Whether this type of activity can be used 
for direct instruction needs to be examined. 



rather than midpoints, are chosen? Also, what hap
pens when the direction of the migration is altered? 
When the point migrates at X degrees to the right 
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(or left) of perpendicular? And what would happen 
if both ideas were combined? 

The ultimate investigation of this problem would 
involve three dimensions and repeating all of the 
above in the context of X, Y and Z axes. A cube 
would replace the square, and new variables would 
be introduced. Concepts such as stellate polyhedra 
could be examined, as well as many other topics. 
I can't imagine where this might lead. 

There exists a vast Jnexplored area of 
mathematics. Rich rewards await those prepared to 
press forward and push their personal limits to the 
edge of what we now understand. See you there! 
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Figure 5. The Result of FILL TILES 8 6 

A number of questions come to mind. For exam
ple, wouldn't it be interesting to begin with a square 
in the middle of the screen and to deform all four 
sides toward the perimeter of the screen? Or to ex
amine the limits of deformation? How much can the 
square be distorted? What happens when negative 
numbers are used? Are there values that will not 
work? Why don't they work? 

What happens when one performs similar defor
mations of figures such as triangles, pentagons and 
hexagons? Is there a difference in the behavior of 
tessellating and non-tessellating polygons? What spe
cial problems are encountered? Are there cases in 
which the deformation of one shape in a particular 
way gives rise to a new shape? Under what condi
tions does this occur? These and similar questions 
can be posed and conclusions drawn from the 
answers. 

Other, advanced topics could include the defor
mation of irregular and curved shapes. The program
ming would involve a fair amount of dirty work, but 
the mathematics would indeed be interesting. 

This project involved deformations in which the 
midpoint of a side migrates perpendicular to, and 
away from, the side on which it is located. It would 
be interesting to examine the behavior of deforma
tions when a point other than the midpoint is cho
sen. Does something special happen when corners, 
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Logo: An Opportunity for Synthesis, 
Self-Control and Sharing 

J. Dale Burnett 

J. Dale Burnett is an associate professor in the 
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Introduction 

Logo is a computer language specifically designed 
for children. I am not implying that it is a ' 'kiddie 
language" (Logo is suitable for graduate work in 
computing science) but rather that the syntax and the 
domains of inquiry are readily accessible to young 
children. Logo is successful with very young chil
dren (Lawlor 1985), with physically disabled students 
(Goldenberg 1979), with students with learning dis
abilities (Weir and Watt 1981), as well as with stu
dents in regular classrooms and in gifted programs 
(Carmichael et al. 1985) . 

What are some of the reasons for Logo's success? 
Synthesis, self-control and sharing (the three Ss), plus 
the teacher, are key factors in Logo's success. 

Synthesis refers to the natural necessity to build 
on one's previous knowledge (the Piagetian concept 
of constructivism), using both real world knowledge 
as well as a growing understanding of the rules of 
the Logo language. Self-control flags the value of 
permitting the learner to have a substantial degree 
of autonomy in what tasks are set and in the method 
of approaching them. Sharing refers to the social con
text in which much Logo activity occurs. Students 
helping students and feeling good about it (and about 
themselves) are common features of many Logo set
tings (Carmichael et al. 1985). 

Synthesis 

I will discuss the nature of synthesis at two levels. 
After reviewing how the concept of synthesis fits into 
current psychological theory, I will show how syn
thesis can be applied to the situation of an individual 
facing his or her first exposure to Logo. The sec
ond subsection then shows how this theory might ap
ply to the situation of an individual learner, faced 
with their first exposure to Logo. 

Synthesis and Psychological Theory 

The educational community owes an enormous 
debt of gratitude to a self-proclaimed non-educator: 
the Swiss psychologist-epistemologist Jean Piaget. 
When one hears Piaget's name, one immediately 
thinks of children and of stages. The first associa
tion is a good one, the latter misleading. His sub
stantial contribution to current psychological 
perspectives was not the idea of stages (which sug
gests that development is discrete rather than con
tinuous) but rather that of development. Development 
implies change and growth. The purpose of educa
tion is to facilitate development. Change and growth 
are our mandate. 

Equilibration is the term used to describe the un
derlying process of mental development by which 
individuals organize their ideas into noncontradic
tory wholes. This process occurs through the com
plementary subprocesses of assimilation and 
accommodation. Because individuals draw heavily 
upon what they already know (their present cogni
tive structure), the label constructivism can be used 
to describe theoretical perspective. 

Traditionally, developmental literature has treated 
only a particular subset of the total picture: cognitive 
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development, physical development, social develop
ment, moral development and emotional development 
are all familiar terms. The thesis is that such exclu
sions or restrictions, while well intentioned ("let us 
control for all possible sources of variation except 
one, and then observe the effect of this one remain
ing factor"'), are fundamentally misguided. The re
sulting information is misleading because individuals 
never find themselves in such controlled situations 
outside of the research environment. Classroom prac
tices or curriculum guidelines that fail to take this 
natural complexity into account are inappropriate. 

Figure 1 illustrates the interaction between men
tal development and other developmental factors. The 
arrows indicate a posited causal effect. Thus an in
crease in emotional development causes an increase 
in mental development. Similarly, an increase in 
mental development causes an increase in emotional 
development. The positive signs beside each arrow
head indicate that the relationship between the two 
nodes is in the same direction (for example, an in
crease in one causes an increase in the other, or a 
decrease in one causes a decrease in the other). Sec
ond, a distinction is made between mental develop
ment and cognitive development. The intention is to 
distinguish between overall mental development, 
which might include feelings and intuitions, and the 
more restrictive conceptual domain of cognitive de
velopment. The charting conventions follow those 
outlined by Roberts et al. 1983. 

The psychological literature of the last decade has 
increasingly focused on cognitive approaches and the 

literature on learning emphasized individual's build
ing upon their previous knowledge and experience. 
The cognitive emphasis has also expanded to encom
pass not only strict rational and logical perspectives 
but also emotional, affective and social components. 
Psychology is becoming both more holistic and more 
philosophic (for example, is knowledge constructed 
or discovered?) as professionals (for example, Solo
mon 1986) begin to reflect on the conceptual under
pinnings of many of their ideas. 

In addition to receiving contributions from phi
losophy, cognitive science (as the new discipline is 
called), has been strengthened by ideas from com
puting science. At first glance, this development 
seems remarkable, since one field is concerned with 
human ideas and nature while the other is ostensi
bly interested in machines and electricity. The term 
"artificial intelligence" is familiar to most people 
(Winston 1977; Haugeland 1985), and the term "ex
pert system" is beginning to appear in the educa
tional literature (Hayes-Roth et al. 1983; Van Hom 
1986). However, lest the novice become enamored 
too quickly with these new ideas, cautionary notes 
have also appeared (Weizenbaum 1976; Dreyfus and 
Dreyfus 1986). 

Thus cognitive science is practising what it 
preaches: the discipline itself is synthetic, building 
on any relevant bit of knowledge. One branch of 
computing, system dynamics, has taken the idea of 
modeling and simulation, combined it with the bio
logical concepts of feedback and used the idea to 
construct conceptual as well as computer-based 

Figure 1 .  Causal Loop 
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models of phenomena. One of the first applications 
of this approach to reach the public's attention was 
the Club of Rome's famous publication Limits to 

Growth (Meadows et al. 1972), which attempted 
to construct a model of the world showing interac
tions among population, agriculture, industry, pol
lution and natural resources. The same approach 
clarified the complexities of mental development. Di
agrams and models should not be viewed as right 
or wrong but as appropriate or inappropriate for a 
given purpose or function. As the function changes, 
so may the model. Thus the previous model is ex
plicated to reveal various kinds and interactions of 
development. 
Synthesis in the Individual Learner 

Figures 2, 3 and 4 illustrate a particular perspec
tive on learning. 

Mental 
Development 

+ 

Figure 2 

+ 
Receptivity 
to Event 

Figure 2 shows how a person's knowledge is posi
tively related to the individual's receptivity to new 
events, which in tum is positively related to their 
knowledge. The net effect is a "constructive circle" 
in which learning begets more learning. ' 'Receptivity 
to an event" is closely related to Vygotsky's (1962, 
1978) concept of ' 'zone of proximal development. ' '  

Both nodes clearly require amplification, and new 
nodes and causal arrows need to be identified. One 
might assume that,,knowledge consists of knowledge 
about using computers and about the specific lan
guage of Logo, as well as "other Knowledge" that 
may have a bearing on the present situation. The 
Other Knowledge may be very important. Existing 
knowledge about Logo may be zero: the individual 
may never have heard or seen it before. Existing 
knowledge about computers is not likely to be zero 

(most people have at least heard of them and have 
seen pictures of them) but it may be very limited (the 
person may not have actually touched one or watched 
someone else use one). (See Figure 3.)  

We now have three knowledge nodes or "con
tainers,"  plus one receptivity node. Thus the Logo 
node contains the amount of Logo knowledge that 
the user brings to the task (assumed to be zero). We 
now insert a brief exogenous variable: the instruc
tional event. This event consists of a brief demon
stration of the Logo commands "FORWARD" and 
"RIGHT."  

An alternative representation may place more fo
cus on the centrality of the Logo experiences. Con
sider Figure 4. 

The effectiveness of this instruction depends upon 
(1) what the student already knows, (2) the student's 
attitude toward Logo and (3) the student's generic 
ability to learn. All three factors are ' 'within the stu
dent. " External factors include (I )  the teacher's at
titude toward Logo, (2) the teacher's attitude toward 
the student, (3) the teacher's understanding of Logo 
and-(4) the actual instructional sequence. The addi
tion of these nodes further complicates the situation, 
but the nodes may. be important. Constructing a pleas
ing diagram is less important than constructing an 
adequate explanation. 

Clearly, the effectiveness of instruction should not 
be viewed as a simple topic. We immediately real
ize that instruction is enhanced when 
1 .  students can relate the instruction to what they 

already know, 
2. students are positively disposed toward the topic, 
3 .  students are positively disposed toward learning, 
4. teachers are positively disposed toward the topic, 
5 .  teachers are positively disposed toward the 

student, 
6. teachers have a firm understanding of the topic, 

and 
7. the instructional sequence takes the above into 

account. 
The preceding summary is important not because 

it is particularly novel or complex but because it per
mits us to grasp the nature of the complexity "at a 
glance." Many people will consider the model in
complete, but additional information can be added. 
Another difficulty with the above approach is the ease 
with which we can construct alternative representa
tions with little basis for choosing among them. Then 
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Figure 3 
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again, it may be that the alternative representations 
are equally appropriate. 

Let us consider some of the details that might in
dicate that the first experience with Logo will be suc
cessful. First, the chances are quite good that novices 
(preschoolers or adults) will relate the commands 
FORWARD and RIGHT to their existing real-world 
experience of moving about. Indeed, this approach 
is no accident and was specifically built into the de
sign of the original Logo. Drawing is also an early 
experience for virtually all children. The particular 
terminology and certainly the syntax may be new, 
but the general context should strike a responsive 
chord in most learners. Thus the first condition is 
likely to be met, at least to some degree. However, 
the student's initial attitude toward Logo is more dif
ficult to estimate and is likely related to whatever 
attitudes the student may possess regarding com
puters. Attitudes may be positive, negative or neu
tral. A strongly negative attitude may well affect the 
outcome. The student's attitude toward learning is 
also important. A positive attitude ( . .  learning some� 
thing new is fun") is a substantial asset; on the other 
hand, a negative attitude ("school is boring") is a 
handicap. With young children, all three factors are 
often positive, perhaps explaining the level of suc
cess of introducing young children to Logo. 

Three teacher factors were also identified. The 
teacher's attitude toward Logo is important. A 
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I nstructional 
Event 

skeptical or negative rating may be a powerful de
terminer of the outcome. We should not assume that 
the computer or Logo is a positive enough factor to 
compensate for a teacher who does not believe in 
using it. Similarly, teacher attitudes toward partic
ular students should not be ignored. Sometimes 
teachers may feel that they are teaching the whole 
class, but this is not the case. Students filter the in
fonnation as though it were directed at them. If previ
ous events indicate that the teacher does not respect 
or value a particular student or students, then the 
teacher's impact is diminished, if not eliminated. A 
lesson that "looks good on videotape" may be en
tirely negated by an event that occurred two weeks 
earlier in the classroom. 

The teacher's understanding of Logo is also im
portant. Teaching a subject that one does not under
stand is indeed difficult; this applies to Logo. Finally, 
the particular instructional sequence is important and 
will be discussed later. 

Self-Control 

I have already acknowledged the contributions of 
Jean Piaget: I will now do the same for Carl Rogers. 
Although Rogers has written many books, I will 
quote from one, Freedom to Learn for the Eighties. 
The introduction contains this statement: 
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It [the book] appears in a peculiar time in our his
tory when many are saying that we must teach only 
the "basics," that we must tell children what is 
right and wrong, that we must teach them to obey 
and follow. . . . They hold that students are in 
school to be taught, not to discuss problems or 
make choices. (Rogers 1983, 1-2) 

Rogers (1983, 18) states that "the primary task 
of the teacher is to permit the student to learn." He 
then distinguishes between meaningful learning and 
learning that has no personal meaning and only oc
curs "from the neck up." Rogers says that mean
ingful learning has five characteristics: it has a quality 
of personal involvement, is self-initiated, is perva
sive, is evaluated by the learner, and has meaning 
as its essence. 

Other authors have noted this distinction between 
meaningful and meaningless learning. I wish to high
light for a moment the second characteristic-that 
of self-initiation. Noss (1984) focused on the related 
issue of ownership. Either by design or by default, 
many students engaged in Logo activities have had 
opportunities to ask their own questions, to set their 
own tasks and to explore their own ideas. Such events 
are rare-a sad reflection of our present educational 

.. 
Generic Learning-to-Learn 

Ability 

system. As a result, we have little information on 
what occurs in such situations. However, the find
ings of a number of studies in which this was allowed 
to occur (Watt 1979; Noss 1984; Lawlor 1985; Car
michael et al. 1985) all point in a positive direction. 

Sharing 

Maslow (1970) acknowledged the importance of 
sharing in his hierarchy of motives by placing it just 
after basic physiological and safety needs. Yet, my 
experience shows that most educators view Maslow's 
hierarchy as something to be memorized for a psy
chology exam rather than as something to consider 
in designing the curriculum. The Logo community 
may, in part, be responsible for resurrecting the idea 
of sharing. As a result, many of the exciting events 
surrounding Logo experiences have a highly social 
flavor to them. Researchers gathering data on this 
dimension are impressed by its richness (Carmichael 
1985). Others have failed to look for it, have not no
ticed it or have set up an environment to prevent it 
from happening (since it might contaminate the 
results). 

The issue has broader implications. What is the 
role of sharing in the school environment? What are 
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the relationships between sharing and individualized 
instruction and cheating? How much of the school 
curriculum explicitly gives students an opportunity to 
share? If this number is low, then why would we ex
pect our graduates to be adept at sharing or working 
together? The potential for sharing occurs at many 
levels as well : there can be sharing among classmates 
working on the same task. There can be sharing 
among students of different classes or grade levels. 
For example, Grade 6 students could work with 
Grade 3 students, or gifted students could work with 
students with learning disabilities. It is naive to as
sume that the primary domain of learning is at the 
level of the subject matter. Finally, there is the shar
ing between student and teacher. One of my favorite 
anecdotes from Papert's Mindstorms is that of a stu
dent who, working with his teacher on a problem, 
suddenly says, "You mean you really don't know!" 
Teacher 

What is the primary function of education and what 
is the role of the teacher in facilitating this function? 
The first question is dangerous because it appears 
to imply a single answer. Perhaps a more appropri
ate question is "What are some of the principal func
tions of education?" This question at least leaves the 
door open for new ideas that may have been missed 
in an earlier formulation. One such idea is "learn
ing how to learn ." Novak and Gowin (1984) asked 
"How can we help individuals to reflect upon their 
experiences and to construct new, more powerful 
meanings?" (p. xi). They go on to say: 

Whereas training programs can lead to·desired be
haviors such as answering math problems or spell
ing correctly, educational programs should provide 
learners with the basis for understanding why and 
how new knowledge is related to what they already 
know . . . .  (p. xi) 
Perhaps we have passed through an era when 

American behavioristic perspectives have held sway 
(What can students do? What are your behavioral 
ohjectives'? What are the scores on standardized 
tests'?) and are entering an era, also with a strong 
American flavor, when we ask "What do students 
understand?" '  The difference in perspectives is fun
damental . Unfortunately. much of our current prac
tice is based on a perspective that may be outmoded 
philosophically. psychologically and educationally . 

The shift toward understanding is not as simple 
as learning a new instructional technique. What is 
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learning? How do students learn? What is the proper 
relationship of teacher to student? Alternative teacher 
roles vie for attention: distributor of facts, organizer 
of drill programs and seatwork, facilitator, en
courager, and fellow explorer. 

The teacher has an important role to play. For ex
ample, it is an error to assume that the synthesis 
within the mind of a student first exposed to Logo 
occurs naturally and spontaneously. The teacher can 
facilitate learning by bringing some of these poten
tial connections into explicit awareness. Thus FD 100 
may be related to FD 50 or to BK 100 or to FD-100. 
Relationships to movement commands in English or 
to another language may be observed. How would 
you tell someone from Japan to go forward? How 
would you tell Logo turtle to go forward? Explor
ing relationships among numbers may provide an ex
cellent introduction to mathematics and the relative 
magnitudes of different numbers. Turtle steps and 
metric units may be viewed as analogous. How would 
you tell a robot to go forward? Now the class can 
discuss robotics for a while. 

Connections abound. The secret is to look for 
them. Another example of looking for connections 
occurs at the meta level of problem solving when 
the teacher suggests that a student "play turtle" in 
order to figure out how to draw a particular figure 
with a sequence of Logo commands. Other sugges
tions such as breaking a complex problem into a num
ber of simpler subproblems or developing an overall 
structure to the solution can be related to other non
Logo activities such as writing a term paper, bak
ing a cake or studying for a history exam. 

The teacher should be aware of numerous poten
tial connections: the relating of Logo commands to 
one another, the relating of Logo to other non-Logo 
environments, the relating of Logo problem solving 



to generic problem solving. Everyone should be alert 
for connections between the specific situation and 
other knowledge. As a result, the student should see 
that learning Logo is much like learning anything 
else. The synthesis should include not only low-level 
activities such as learning how to use Logo language, 
but higher meta-level activities such as debugging, 
planning, organizing, problem solving, attitude 
awareness, communicating and sharing approaches 
and strategies. The basics of education may be at the 
other end of the continuum from where we have been 
looking. It may be very difficult to show some of 
these connections empirically. That does not neces
sarily mean they do not exist but that our current re
search procedures are at fault. 

Education also benefits from a little faith. On the 
other hand, researchers must continue their efforts 
to provide further insights into our understanding of 
the learning process. 
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Programming in Logo develops problem solving 
skills and affects cognitive processes in young chil
dren (Clements and Gullo 1984). Having middle 
school children write Logo procedures that simulate 
certain mathematical algorithms and processes may 
also be a worthwhile endeavor. 

First, the process sharpens a child's understanding 
of the mathematical concept or algorithm. Before a 
procedure can be written, the mathematics are ana
lyzed or broken down into small "mind-sized bites. " 

Second, programming broadens the child's under
standing of Logo and leads to a greater appreciation 
of the power of Logo. Children discover that Logo 
can do many things besides drawing designs, geo
metric figures and graphs. 

A Developmental Sequence 

Using Logo to enhance a mathematical concept in
volves four steps. The first two steps focus on the 
mathematics and reinforce and clarify the mathema
tics for students; Steps 3 and 4 focus on Logo. To 
complete these steps, students may need to consult 
a Logo manual or ask for guidance. The experience 
will both develop their skill in programming and 
broaden their understanding of Logo's capabilities. 

Focus on Mathematics 

Step 1 . Analyzing the Mathematics 
Before students write a Logo procedure to perform 

a mathematical task, they must be able to break the 
mathematical process down into its components. 
Computer scientists call this process "stepwise 
refinement." Figure l illustrates the process. 

For example, to find the mean set of numbers, stu
dents might analyze the problem by 

Figure 1. Stepwise Refinement 

Problem 

Subproblem 1 Subproblem 2 Subproblem 3 

Subproblem 2 . 1  Subproblem 2 .2 
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1 .  calculating the sum of all numbers in the list, 
2 .  dividing the sum by the number of elements 

in the list, 
2 . 1 .  counting the number of elements in the list, and 
3. printing the results. 

Figure 2 represents this process using the stepwise 
refinement chart. 

Step 2. Write a Pseudo Code 

After analyzing all the components, students should 
be encouraged to write a pseudo code correspond
ing to the mathematical steps. Based on the exam
ple of the mean, a pseudo code would look something 
like the following: 

TO MEAN 

• get sum 
• count number of elements 
• divide sum by the count 
• output the result 

END 

This is just one example of a possible format for 
a pseudo code. You may prefer a different style. 
What is important is that students structure their anal
ysis of the mathematical process into a logical step
by-step algorithmic-like statement. The focus here 
is still on the mathematics. The step is an attempt 
to state in a succinct form the mathematical process. 
Additionally, the step serves as a transition to focus 
on Logo. 

Focus on Logo 

All the Logo procedures in this article are written 
in Apple Logo, a product of Logo Computer Sys
tems (LCSI) Inc. It is assumed that the students have 
a reasonably good understanding of Logo including 
tail recursion. 

Step 3. Logo Match to Pseudo Code 

The first attempt at writing a Logo procedure to 
perform the mathematical task could be a relatively 
straightforward translation of the pseudo code into 
Logo. The pseudo code developed in Step 2 can be 
translated as follows: 

TO MEAN :ALIST 

MAKE " S  ADDUP :ALIST 

MAKE " C  COUNT :ALIST 

MAKE " R  :S / :C 
OUTPUT :R 
END 

Note that ADDUP is used as an operation in line 
2. ADDUP, from the context, appears to be an oper
ation that calculates the sum of a list of numbers. 
ADDUP is not a Logo primitive and should be given 
to students as a tool procedure, perhaps included in 
a STARTUP file. There is one version of ADDUP: 

TO ADDUP :ALIST 
IF EMPTYP :ALIST [OUTPUT O] 
OUTPUT SUM FIRST :ALIST ADDUP BUT

FIRST :ALIST 
END 

Figure 2. Stepwise Refinement for Finding Means 
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Figure 3. Pseudo Code and Logo Match in Parallel 

Step 2. Pseudo 
TO MEAN 

• get sum 
• count number of elements 
• divide the sum by the count 
• output the result 

END 

A worthwhile exercise for students is to do Steps 
2 and 3 side-by-side on a page (see Figure 3). 

The pseudo code and the Logo match may not al
ways correspond as closely as in Figure 3 .  Minor 
adjustments to format may be required for some 
tasks. However, if the pseudo code is a detailed state
ment of the mathematical process, Logo statements 
can usually be written to match it step-by-step. 

Logo "purists" will be dismayed by the extensive 
use of global variables in this approach. The situa
tion was a trade-off, I wanted a strategy that would 
make the transition from mathematics to Logo a small 
step. Steps 2 and 3 seem to do this. I am prepared 
to trade some purism for simplicity. Step 4 restores 
some of the "pure" Logo. 
Step 4. More Elegant Logo 

In Step 4, encourage students to ask "Can I write 
this procedure in a better way?" The purpose is to 
write a more elegant procedure. Students should con
sider shortening statements, combining statements, 
using different commands or operations, taking a 
completely different approach and so on. 

A more elegant procedure for our example of the 
mean might combine all of the steps into one line: 
TO MEAN " ALIST 
OUTPUT (ADDUP :ALIST) / COUNT :ALIST 
END 

In writing a more elegant Logo procedure, students 
should be encouraged to eliminate as many MAKE 
statements as possible. (Note the removal of all 
MAKE statements in the final MEAN procedure.) 
After students work through this four-step process 
with different mathematical concepts, you may wish 
to explain the difference between local and global 
variables in Logo and the advantages and disadvan
tages of each. 
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Step 3. Logo Match 
TO MEAN :ALIST 
MAKE " S  ADDUP :ALIST 
MAKE " C  COUNT :ALIST 
MAKE " R :S I :C 
OUTPUT :R 
END 

With some experience, students may translate the 
pseudo code (Step 2) into a Logo procedure that is 
somewhat ' 'better' '  than a straight line-by-line trans
lation. However, Step 4 still needs to be emphasized 
because a search for a more elegant procedure should 
never end. (To illustrate this point, refer to the ex
ample of the median in the following section.) 

Students soon discover that the four-step process 
does not always result in a Logo procedure that will 
do exactly what was expected. A bug may have crept 
in during the transition from pseudo code to Logo. 
The pseudo code itself may contain errors, such as 
missing steps. Possibly the analysis of the 
mathematics was incorrect. Therefore, a continual 
evaluation or monitoring of each step and the total 
process must be practiced. Figure 4 illustrates the 
process of monitoring. 

More Examples 

To illustrate the outlined four-step process of in
tegrating Logo into mathematics, two additional non
graphic examples are outlined. One deals with divi
sors (factors), the other with the median. 

Factors 

The problem is to find all the factors of a whole 
number, n. 
Step 1 .  Analysis 

A factor of n is a whole number that divides evenly 
into n. One method of obtaining all the divisors of 
a number is to check for divisibility (remainder = 
0) by all whole numbers less than or equal to n. If 

divisibility occurs, list the divisor as a factor; other
wise try the next whole number. Except for n itself, 



Figure 4. Dynamics of the Four-Step Process 

Problem 

Analysis Pseudo Code 

check code 

evaluation clarification 

check divisors of whole numbers up to n/2 because 
no number between n/2 and n will divide evenly into 
n. A child thinking through the concept of a factor 
in this way clarifies the concept in his or her mind. 
Step 2. Pseudo Code 

There are several ways the analysis could be trans
lated into succinct logical steps. Here is one 
possibility: 
TO FACTORS of n 

• start with divisor of 1 
• if divisor > n/2, print n as a factor and stop 
• otherwise get remainder when n/divisor 
• if = 0, list divisor as a factor 
• otherwise, repeat with divisor 1 greater 

END 
Step 3. Logo Match 

TO FACTORS :NUM :DIV 
IF :DIV > :NUM / 2 [PRINT :NUM STOP] 
MAKE " R  REMAINDER :NUM :DIV 
IF :R = 0 [PRINT :DIV] 
FACTORS :NUM :DIV + 1 
END 

The pseudo code and the Logo match do not cor
respond as closely as in the example of the mean 
described earlier. The initial divisor, 1 (line 2 of the 
pseudo code), is incorporated as the second input to 
the procedure. A sample execution of FACTORS 
might be: FACTORS 36 l .  Different versions of 
pseudo code may result in a greater or lesser degree 
of correspondence in the Logo match. 

More Elegant Logo 

Logo Match 

no yes 

Step 4. More Elegant Logo 

The first improvement would be to combine lines 
3 and 4 and remove the MAKE command: 
TO FACTORS :NUM :DIV (assign :DIV the 

value 1)  
IF :DIV > :NUM / 2[PRINT :NUM STOP] 
IF REMAINDER :NUM :DIV = 0 [PRINT :DIV] 
FACTORS :NUM :DIV + 1 
END 

This version places the factors in a vertical for
mat. A more elegant procedure should print them 
horizontally with a space or a comma between each 
factor. Changing the THEN portion of line 3 to 
[(TYPE :DIV CHAR 32)] would cause this to 
happen. 

As it stands, FACTORS is rather limited in its use
fulness. To be used in another set of procedures, say 
for finding common factors, FACTORS needs to be 
an operation or outputting procedure. Unfortunately, 
PRINT or TYPE cannot simply be replaced by OUT
PUT since OUTPUT also stops the procedure. This 
is a case in which students will likely need your 
assistance. 

One way around the dilemma is to store each fac
tor in a list, and output the list when all the factors 
have been determined. The following procedure, 
while longer, is more elegant; results can be used 
as input to other procedures in which factors are 
needed. 
TO FACTORS :NUM 
MAKE " FACTS [ ]  
GET.FACTORS :NUM 1 
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OUTPUT SENTENCE :FACTS : NUM 
END 
TO GET.FACTORS :NUM :DIV 
IF REMAINDER :NUM :DIV = 0 [MAKE 

" FACTS LPUT :DIV :FACTS] 
IF :DIV < :NUM / 2[GET.FACTORS :NUM 

:DIV + I] 
END 

Sample Output 
?PRINT FACTORS 16 
I 2 4 8 16 

LPUT is the operation storing each factor as it is 
generated into the list, FACTS. Notice that, since 
a list was created, the output is automatically in 
horizontal form. 

Median 

I dealt with the concept of the median in a previ
ous issue of delta-K (Cathcart 1986). Some of the 
ideas presented in that article can be incorporated 
into the four-step process. 

Step 1 .  Analysis 

For the median to be found, the data needs to be 
sorted. The number of elements in the data list must 
be determined. If this number is odd, the middle 
number is the median. Otherwise, the median is the 
average of the middle two numbers. 

Step 2. Pseudo Code 

TO MEDIAN 
• sort input list 
• count number of elements in input list 
• check if number of elements is odd or even 

• if odd, pick middle element 
• otherwise find mean of middle two numbers 

• output result 
END 

Step 3. Logo Match 

TO MEDIAN :ALIST 
MAKE " SL SORT :AUST 
MAKE " C  COUNT :AUST 
TEST (REMAINDER :C 2) = 0 
IFTRUE [EVEN] 
IFFALSE [ODD} 
OUTPUT :R 
END 
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This procedure calls two subprocedures, EVEN 
and ODD. SORT is a tool procedure that sorts data 
into ascending order. This procedure should be given 
to students as a tool. (See Cathcart 1986, for a list
ing of a sort procedure.) 
TO EVEN 
MAKE " F ITEM :C / 2 :SL 
MAKE " K  ITEM :C / 2 + 1 :SL 
MAKE " R  MEAN LIST :F  :K 
END 
TO ODD 
MAKE II R ITEM :C / 2 + .5 :SL 
END 

Step 4. More Elegant Logo 

A first attempt to write a more elegant procedure 
may result in the following: 
TO MEDIAN :AUST 
MAKE II C COUNT :AUST 
IF (REMAINDER :C 2) = 0 [OP EVEN] [OP 

ODD] 
END 
TO EVEN 
OP MEAN LIST ITEM :C / 2 :AUST ITEM :C 

/ 2 + 1 :AUST 
END 
TO ODD 
OP ITEM :C / 2 + .5 :AUST 
END 

With these procedures, SORT would be used as 
an input to MEDIAN. That is, PRINT MEDIAN 
SORT :AUST. This example shows how trying to 
modify a procedure, while retaining the basic strat
egy, may blind a programmer to a far more elegant 
solution. By detennining the median with pencil and 
paper, it is possible to simply strike out the first and 
last elements of the sorted data. Continue this pro
cess until only one or two elements are left. If one 
element remains, it is the median. If two elements 
remain, the average of these two is the median. Ac
tually, if only one element remains, the median is 
still the average of the number. To illustrate: 
Case 1 :,i)')f 16 � � � 

16 is the median 
Case 2 :,i.i 9!}6 � ){ 

12.5 is the median 
This suggests a recursive procedure. A much more 

elegant procedure for calculating the median, then, 
would be as follows: 



TO MEDIAN :ALIST 
IF OR ((COUNT :ALIST) = 1) ((COUNT :ALIST) 

= 2) [OP MEAN :ALIST] [OP MEDIAN BF BL 
:ALIST] 

END 

Line 2 (IF-THEN portion): if there are one or two 
elements in the data list, output the mean and stop. 

Line 2 (ELSE portion): if there are more than two 
elements, strip away the first and last and repeat the 
process. 

Summary 

A four-step process for integrating Logo program
ming into mathematics consists of 
1. analyzing the mathematics, 
2. writing a pseudo code for the mathematical 

process, 

3. writing a Logo code to correspond to the pseudo 
code, and 

4. writing a more elegant Logo procedure. 

Some steps may be repeated or revised as the pro
cess develops. This action may be needed to correct 
the code or to re-analyze the problem due to initial 
misconceptions or omissions. 

If students follow the four steps, they will likely 
sharpen their understanding of the mathematics in
volved, broaden their knowledge of Logo, increase 
their appreciation of Logo and hone their program
ming skills. 
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In the mid-l 970s, like many other teachers, I be
came excited about the educational possibilities of 
the then-new microcomputer technology. This inter
est led, in 1979, to an Innovative Leaming Project 
designed to explore the uses of the microcomputer 
in a high school physics class. In 1984, I designed 
a curriculum for a locally approved course called 
Scientific Studies and Computing. The groundwork 
for the curriculum was taken from those aspects of 
the Innovative Leaming Project that offered the most 
interesting and constructive learning experiences. 

Scientific Studies and Computing is, in all senses 
of the words, a science course. All of the objectives 
defined in the curriculum emphasize the nature, the 
knowledge and the processes of science. However, 
the curriculum displays one major difference from 
the regular science course: students in this course 
become the teachers; their pupils are the computers. 

To fulfill the requirements of the course, students 
complete two science projects. The student chooses 
a topic from science and develops a computer ap
plication for science within that topic. Since the stu
dent is placed in one long problem solving situation, 
the meta-lessons become the most important learn
ing experiences. 

After selecting a topic, the student prepares a pro
ject proposal. The proposal outlines the science con
tent that the student expects to learn. The proposal 
also outlines the nature of the computer involvement 
in the project. Upon approval, students select the type 
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and sequence of activities necessary to complete the 
project. My role is mainly that of a resource person 
who ensures that the students are on task while in 
the classroom. Neither task is particularly easy. 

First, students often choose topics outside my range 
of expertise. In such cases, if the problem is com
plicated, I may do quite a bit of background read
ing. Second, what appears to be an unproductive 
approach on the surface may have several extremely 
beneficial long-term effects. If students give the im
pression that there is some design behind their ac
tivity, then I usually let them pursue it. On the other 
hand, students often perceive that the six to ten weeks 
allowed for a project is a long time and that to catch 
up on a little homework during class would not be 
a serious misuse of time. I do not permit this. 

Initially, I was quite uncomfortable with the struc
ture, or lack thereof, and to some extent I remain 
uneasy. Subconsciously, I want the students to be 
involved in activities that produce tangible results 
of their efforts everyday. Consciously, I realize that 
problem solving techniques evolve from a wide va
riety of behaviors. Therefore, I refrain from con
tributing when it is not essential. Indeed, students 
often request help, not because they are unable to 
solve a problem, but because they want reassurance 
that they are on the right track. In such cases, it would 
be easy to steer them in the direction I think their 
project should go. I try to give them the courage to 
proceed, although there is some doubt as to the 
outcome. 

However, not all activities are unstructured. Stu
dents must have taken a 20-level science course as 
a prerequisite to ensure that they have some science 
background. During the first weeks of class, I es
tablish the groundwork for science. Most students 
are rather naive when it comes to this activity. I first 
establish the nature of science by discussing such 



activities as hypothesizing, interpreting, classifying, 
analyzing and problem solving. 

Second, I introduce students to the Apple Ile and 
computer programming. While experience with com
puters and programming is recommended, it is not 
compulsory. To ensure that students have the fun
damentals of BASIC programming, I give short 
programming assignments at the time that I discuss 
several of the science processes. For example, when 
discussing data and data analysis, I give students a 
parallel programming problem. This program re
quests the user to "input" several pieces of para
metric data, find the mean of this data, find the 
standard error and display the results in a prespeci
fied fashion on the video display terminal. 

Obviously, students will have a wide range of pro
gramming experiences. Problems, such as the one 
discussed earlier, will challenge some students and be 
extremely simple for others. Peer tutoring is encour
aged and students regularly consult each other on 
programming techniques. Mini-lessons on program
ming (which most students require), are presented 
throughout the course. Books on programming are 
available in class, and students quickly become fa
miliar with the resources and devise solutions to most 
of the programming tasks specific to their projects. 

Selecting a project topic is very difficult (anyone 
who ever selected a thesis topic can relate to this 
task). Moreover, students inevitably perceive their 
project as a program that will teach the user all the 
neat information they have accumulated in prepar
ing their project, a sort of computer assisted instruc
tional program (CAI). On the contrary, their task is 
to create an application or utility program, a pro
gram, in other words, that makes the computer a use
ful tool to a scientist in the area of science from which 
the project originates. 

The application of computers as scientific tools is 
a difficult concept for students to grasp. The most 
effective way to teach this concept is to use past 
projects that demonstrate several successes and 
failures. Even so, continued reinforcement is required 
to remind students that the nature of the computer 
application decides the ultimate validity of their 
projects. A computer application that attempts to do 
interesting things in science may have several 
programming flaws and yet be viewed much more 
favorably than a slickly programmed application that 
has a less scientifically valid application. 

Here are some examples. The first time the course 
was offered, a student with considerable program
ming experience who was quite fluent in BASIC 

wanted to carry out a titration simulation. He wrote 
a good proposal describing a simulation of titration 
using graphics and a considerable amount of user in
teraction. Several discussions throughout the develop
ment of his project suggested that he was going not 
in the direction of his original proposal but more in 
the direction of a tutorial. When the project was pre
sented, most of the graphics were found in a beauti
fully prepared title screen. The main routines of the 
program were merely a titration calculation sequence 
and a problem generation sequence. User interaction 
was limited to entering data to complete the calcu
lations for the pH value of the unknown acid or base. 

What of this student's learning objectives? Since 
he never studied titration, he certainly had to extend 
the base of his scientific knowledge to carry out the 
project. The output to the computer screen was ex
tremely well-designed and the data handling routines 
were excellent, but the scientific application of his 
program was weak. The project is typical of pro
grams in which students misperceive the nature of 
computer applications in science. 

Another student in the same class, however, com
pleted the best project to date. The student under
taking the project had virtually no computer ex
perience but possessed a great love of astronomy. 
His previous scientific experience was limited to pro
ject work and astronomy projects in the science fair. 
All of the programming skills used in his first pro
ject were picked up in developing his project. What 
made this project succeed? First, the student formu
lated a hypothesis that he wanted to test. Thus, he 
had a clear image of the science involved in his pro
ject. Second, there was a definite role for the com
puter to search the data for relationships verifying 
his hypothesis. Third, he had a clear image of what 
the final product should do. 

The essence of his hypothesis was that the perio
dicity of the fluctuations in size of red giant carbon 
stars was related to the periodicity of the fluctuations 
in the intensity of the light given off in certain areas 
of their spectrum. Data for the periods of fluctua
tion in the size and light intensity in each area of the 
star's spectrum for about 100 red giant carbon stars 
were entered into a data file. The program grew as 
the student's programming experience increased. 

First, he programmed the search sequence to look 
through the data to find stars that gave light in the 
regions of the spectrum specified by the user. Then 
the program plotted the period of the size of the star 
against the period of the light. If the graphed data 
resulted in an approximately straight line, a relating 
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constant was calculated. In this way, he could ex
plore relationships not only between the periods of 
the star's fluctuations in size versus light intensity 
but also between the periods of the intensities of var
ious areas of the spectrum. Many of the program
ming techniques were quite sloppy, mostly due to 
the inexperience of the programer, but the science 
of it was quite exquisite. 

Another excellent program was carried out by a 
student who bred dogs as a hobby. The student was 
quite interested in the genetics of sex-linked charac
teristics. She proposed to develop a program that 
could track sex-linked characteristics throughout a 
breeding sequence of five generations. She had ab
solutely no previous computer experience and several 
times got stuck trying to debug quite convoluted 
programming sequences. In the end, she learned 
about programming as well as about preplanning 
problem solving approaches. 

The program enabled the user to specify the 
characteristic that was sex-linked to specify the 
genetic structure on which the characteristic was 
found. Then the user could choose the genotype of 
the male and female. The computer generated the 
genotypes of the offspring and allowed the user to 
specify which offspring was to be bred for the next 
generation and to specify the genotype of the new 
breeding partner. The computer repeated the process 
until all five generations were traced and then 
presented a summary of the breeding sequence. 

What students found most interesting during the 
in-class presentation was when the program traced 
the incidence of hemophilia in the royal families of 
Britain, Germany and Russia in the late 19th and 
early 20th centuries. 

In some cases, previous programming seemed to 
be a drawback. Many students with programming 
experience viewed the class as a computer class rather 
than a science class. As a result of this confusion, 
several students dropped the class. 

The best programmer in the class almost dropped 
the course. The student could program more profi
ciently in assembly language than most students could 
in a higher level language. What kept this student 
from dropping the class was a discussion about the 
nature of gravity. We discussed the book Flatland, 
and the possibility that gravity could be a distortion 
of our three-dimensional world into the fourth
dimension. The following day, the student presented 
a proposal for his project. He wanted to design a pro
gram that would allow the user to enter the data points 
(ordered triplets) for a "wire frame" diagram of an 
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object in the third-dimension. The program would 
then permit the user to rotate the object to any view 
in that space and then translate that view into one 
from the second-dimension or extrapolate it to a 
higher-order space. For example, if a cube was en
tered in the third-dimension, it could be rotated about 
any of the three orthogonal axes. Then the cube could 
be viewed as it would appear to a person living in 
the fourth-dimension. 

Two factors almost stopped me from approving 
his proposal. First, it lay on the fringes of science 
and really was a project in pure mathematics. Sec
ond, and more critically, the project was very com
plex. However, since the proposal was so clearly 
presented, I decided to allow it. 

The student immediately plunged into researching 
the mathematics of drawing three-dimensional 
projections on a two-dimensional space-the display 
screen. (The techniques for programming this are 
found in BASIC. )  The key is the matrix; a cube, for 
example, is a three-by-eight matrix containing the 
ordered triplets for its comers. To make the cube 
undergo a realistic rotation, a matrix multiplication 
with another matrix (when the trigonometric func
tions occupy the cells rather then numerical data), 
was required. Since this program ran so slowly in 
BASIC, the student translated the entire program to 
machine language. For weeks on end, he was im
mersed either in books on matrix mathematics or in 
books on spatial projections. 

The next problem was that of dimensional trans
lation; it proved much more difficult than he first 
imagined. In the case of matrix mathematics and spa
tial projections, all previous analysis was by 
mathematicians. All the student had to do was fig
ure out what they were talking about and translate 
it into computer language. Because he had to create 
the mathematics before he could begin programming, 
he had limited success. Nonetheless, during the four 
months he spent on the project he did learn an im
mense amount not only about mathematics but also 
about problem solving. 

His presentation included the rotation of a wire 
frame diagram of a simple car. However, the extra
polation of the car into the fourth-dimension did not 
succeed entirely: portions disappeared in the trans
lation because the matrix generated by the mathe
matical operations to translate even a simple solid 
from the third- to the fourth-dimension was so large 
that it required more memory than the computer had 
available. Therefore, much of the data generated by 
the program was lost. As a footnote, about a year 
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and a half later I received a disk and the documen
tation for the completed version of this programming 
that he was preparing to market. 

Students with sufficient programming background 
can undertake projects that involve interfacing the 
computer with laboratory equipment. The gameport 
on the Apple is fairly simple to access from any type 
of program. Several sensing devices are available and 
quite easy to use. Phototransistors, photoresistors, 
thermistors and transistors can be connected to the 
gameport, thus providing a relatively safe (for the 
computer) and easy (for the student) co�nection be
tween the computer and the outside world. 

One student's initial proposal was to develop an 
interface so that the computer, in conjunction with 
a spectroscope, could do spectral analysis. Unfor
tunately, the difficulty was that the light levels from 
the spectroscope were too low to activate the pho
totransistor. After several unsuccessful attempts to 
develop an amplifier to make the system more sen
sitive, the student changed the direction of his pro
ject. As a result, the new project tried to use the 
phototransistor as a light metre. 

Although this project didn't have quite the romance 
of the original, it still had considerable merit. The 
student researched light intensity and luminance. He 
researched how the computer interacted with the pho
totransistor in order to tell his program how to read 
the phototransistor. Then, to translate the value the 
computer read from the phototransistor into an in
telligible number, the student had to understand the 
nature and importance of instrument calibration. As 

a final step, the computer collected and stored the 
data in a format that made it intelligible to a com
mercially purchased graph analysis program. Using 
his own program, the student then collected data for 
luminance versus the separation of light emitted from 
both a point source (a bulb) and a rod source (a flores
cent tube) of light. Subsequent graph analysis of the 
data showed the inverse square law for the point 
source of light and the inverse first power law for 
the rod source. 

At some point in developing any project, the origi
nal excitement of the project wears off. When that 
happens, persistence in problem solving becomes ex
tremely important. Some students have confidence 
in their ability and do not need much encouragement; 
others need regular shots of enthusiasm. Once the 
first project is successfully completed, the difference 
in the students' approach to their second project is 
quite remarkable. Although the second project 
promises to be longer and more difficult than the first, 
students are much more confident of their ability to 
handle the challenge. They are more independent and 
flexible in their approaches to problem solving. They 
are less threatened by peer criticism than they were 
initially. 

How students react to peer criticism is especially 
noticeable during the evaluation stage of the project. 
Projects are evaluated on the basis of three criteria. 
The science aspects of the project comprise 50 per
cent of the final mark. The nature of the computer 
involvement and the final program contribute 30 per
cent to the grade. Finally, an in-class presentation 
of the project, adjudicated by the students, earns 20 
percent. Not only do the students respond more posi
tively to peer evaluation on their second project, but, 
having all been through a peer evaluation, they are 
much more perceptive and constructive in their criti
cisms of others the second time around. 

I would eventually like to have several students 
cooperate in a major project. Each student would de
velop a separate segment of the computer program, 
which would then be merged with students' sections. 
Considerable group planning in both the scientific 
and the computer aspects of project development 
would be realized. Perhaps the potential for disaster 
in this approach looms too large. 

In the meantime, students benefit from their ex
periences in several ways: they increase their prob
lem solving ability, develop persistence, come to 
understand the nature and process of science and 
learn to appreciate the symbiotic relationship between 
science and technology. 
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Student Problem Corner 

Editor 's Note: The problem presented here is suitable for students studying pre-calculus. It explores the con
cepts of exponentional function and quadratic formula. The problem is reprinted with permission from Re
source Problems to Enhance the Teaching of Mathematics, University of Delaware, Newark, Delaware. This 
collection of senior high school mathematical problems is available for $4 U.S. from Willard E. Baxter, 
Department of Mathematical Sciences, 501 Ewing Hall, Newark, De/ware 19716. Phone: (302)451-2653. 

Problem 

A wire hanging symmetrically across a road is anchored at the edges of the road on standards. The standards 
are 16 feet high. The road is 60 feet wide, and the height of the wire at the centre of the road is 10 feet 
above the road. Furthermore, after establishing the coordinate system shown, it is observed that the graph 
of the wire is 

Bx + B-• 
+ 9 y = 2 

y 

( - 30, 16) 

lO 

-30 0 

I .  Find B as an algebraic expression. 

2 .  What special relationship do the two values of B have? 

3 .  Give the first five decimals in the decimal approximation of B. 

4 Can a truck l O  feet wide and 14 feet high pass under the wire? 

Solution 

FORMULA 
- b ± � b2 

- 4ac, where ax 2 + bx + c = 0 
X = -------

2a 
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(30, 1 6) 
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STRATEGY 

Since (30, 16) is a point on the curve, substitute the coordinates into the formula. Express the resulting equa
tion in quadratic form and solve with the quadratic formula. 
Question 1 

ARGUMENT 

B3o + a-30 16 = --- + 9  2 

32 = B30 + B-30 + 1 8  
B30 + B-3o = 14 
B60 - I 4B30 + l = 0 

14  ± .I 142 - 4( 1 )( 1 )  
BJO = - --'�----2 

14 + (m"  
B30 = - -�-

B = 

JO✓ 14 ± 192 
2 

ANSWER 

81 = 

30 ✓ 14 + 192 and 82 = 

30✓ 14 - 192 
2 2 

Question 2 

Since B• + B-•  = ( l /B)• + ( 1 /B) -• ,  we see that B
2 

= 1 /B
1
• 

JUSTIFICATION 

82 = 

3�(14 - 192) (14 + 192) 
2 (14 + 192) 

14 + 192 
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Question 3 
The appended program allows one to approximate the values of B using a bracket-and-halving algorithm. 
We first estimate 

1 4  + •'192 = n = ---'1'--I ,_� 1 3 .92820 

ANSWER 
Using the algorithm, we find that 
B

1 
= 1 .09 176 and B

2 
= 0.9 1 60 1  

Question 4 
y 

1 0  

0 
ANSWER 

I 
I I 
I I I I 

20 
X 

30 

We wish to approximate y when x = 20. Using the accompanying algorithm 

y = 
s�o + s -20 + 9 = 1 1 .98097 

Since the truck is 14 feet high, it cannot pass under the wire. Therefore, the answer is no. 

Program for the Algorithm 

I O  · Intent: Approximate a root of a number. 
10 Evaluate y, when x is 20, in the formula from the problem. 
30 ' Variables: 
40 A$ is the user's answer to input questions. 
50 B is the maximum amount of error to be allowed in the calculation. 
60 E is the index of the root. 
70 I is the counter for calculating the power by repeated multiplications .  
80 L is the lower bound for the root. 
90 M is the midpoint of L and R. 
100 N is the real number whose root is to be calculated. 
1 1 0 P is the E'th power of T. 
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120 ' 
130 ' 
140 ' 
150 ' 

Q is the reciprocal of P. 
R is the upper bound for the root. 
T is the current approximation of the root that is being tested. 

200 ' BEGIN 
210 CLS 
220 GOSUB 500 
230 L = I 

' Enter values and test boundary for root 
240 IF R - L < B GOTO 290 
250 GOSUB 700 ' Calculate an approximation for the root 
260 GOSUB 800 ' Calculate the power of the approximation 
270 If P > N THEN R = M ELSE L = M 
280 GOTO 240 
290 ' ENDLOOP 
300 PRINT 
310 PRINT " The root is ";R 
320 PRINT 
330 PRINT " Do you want to evaluate the formula? " 
340 A$ = " "  
350 INPUT " Type Y for yes, N for no ";A$ 
360 IF A$ = " Y " OR A$ = " y " THEN ELSE 400 
370 GOSUB 900 ' Calculate y value in formula, given x as 20 
380 PRINT 
390 PRINT " When x = 20 in the formula, y = " ;Y; " feet. " 
400 ' ELSE 
410 ' ENDIF 
420 END 
430 
500 ' SUBROUTINE-Enter values and test boundary for root 
510 INPUT " What is  the real number N whose root you want to find? N = " ;N 
520 INPUT " What is the index of the root " ;E 
530 INPUT " What is the maximum error, you want to allow in the answer " ;B 
540 A$ = " "  

550 IF A$ = " Y " OR A$ = " y " GOTO 660 
560 INPUT " Name a value that is an upper (or lower) bound for N "  ;R 
570 PRINT " The computer will now test the value you just entered. " 
580 PRINT 
590 T = R 
600 GOSUB 800 
610 PRINT P 
620 PRINT 
630 PRINT " Is the value printed above larger (or smaller) than N? " 
640 INPUT " Type Y for yes, N for no. " ;A$ 
650 GOTO 550 
660 ' ENDLOOP 
670 RETURN 
700 ' SUBROUTINE - Calculate an approximation of the root 
710 M = (L + R)/2 
720 T = M 
730 RETURN 
800 ' SUBROUTINE - Calculate the power of the approximation 
810 P = 1 
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820 FOR I = 1 TO E 
830 P = P*T 
840 NEXT I 
850 RETURN 
900 ' SUBROUTINE-Calculate y value in formula, given x as 20 
9 10  T = R 
920 E = 20 
930 GOSUB 800 
940 Q = 1/P 
950 Y = (P + Q)/2 + 9 
960 RETURN 
This program was run on an IBM-PC. 

RUN 

What is the real number N whose root you want to find? N = ? 13 .92820 
What is the index of the root? 30 
What is the maximum error you want to allow in the answer? .000001 
Name a value that is an upper (or lower) bound for N? 1 .5 
The computer will now test the value you just entered. 
19 175 1 . l  
Is the value printed above larger (or smaller) than N? 
Type Y for yes, N for no.? y 
The root is 1 .091767 
Do you want to evaluate the formula? 
Type Y for yes, N for no? y 
When x = 20 in the formula, y = 1 1 .  98086 feet 
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Student Problem Solvers 

Students who solve problems presented in delta-K will have their solutions and names published. The stu
dents listed below submitted solutions to the problems appearing in Volume 26, Number 2, June 1987. The 
solution reaching the editor's desk first was submitted by Craig Langston, a Grade 6 student at Parkmeadows 
School in Lethbridge. Congratulations to Craig and all of the problem solvers. 

Craig Langstron 
John Quantz 
Shannon Boutland 
Lindy Provost 
Cynthia Wolf Child 
Denise Sawchyn 
Cobey Farmer 
Jim Nelsson 
Suzanne Strachan 
Jennifer Edwards 
Tania Janzen 

G.R. Davis 
Lennie Melvin 
Trenna Waldie 
Tany Wadswoth 
Amber Dersch-Schneider 
Heather Moultan 
Carrie Scout 
Tyson Voik 
Jason Myers 
Christie Welsh 
Julie Magson 

For readers who missed the previous issue, here are the original problems, together with Craig Langstron's 
solutions. 

Problem 

Final Clearance 
-by Kevin J. Sherratt 

Near closing time on the last day of a sporting goods liquidation, only $800 worth of equipment was yet 
to be sold: 1 canoe @ $160, 3 tents @ $80, 5 sleeping bags @ $40, 6 camp stoves @ $20 and 8 bush knives 
@ $10. 

The next five customers each spent $160, clearing out the last pieces of equipment. From the given clues, 
find the items that each customer bought. 
CLUES 
- Brad picked up neither bush knives nor tents. 
- Doris bought at least one piece of four different kinds of equipment. 
- Andy and Brad each bought 5 items. 
- Carla bought at least one knife. 
Solution 
-by Craig Langstron 

- Andy has 1 tent @ $80, 1 sleeping bag @ $40, 1 camp stove @ $20, 2 bush knives @ $10 = $160. 
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- Brad has 3 sleeping bags @ $40, 2 camp stoves @ 20 = $160. 
- Carla has l tent @ $80, 2 camp stoves @ $20, 4 bush knives @ $10 = $160. 
- Doris has l tent @ $80, l sleeping bag @ $40, l camp stove at @ $20, 2 knives @ $10 = $160. 
- Eric has 1 canoe @ $160 = $160. 

I canoe = $160 
3 tents = $ 80 
5 sleeping bags = $ 40 
6 camp stoves = $ 20 
8 bush knives = $ 10 

Problem 

Tutors 
-by Karen M. Gibling 

From the following clues, determine on which day of the week each student tutors. 

CLUES 

- Jane tutors later in the week than Tony does. 
- Jane's day is earlier in the week than Bob's day. 
- Frank will tutor on a day that is later in the week than Cathy's. 
- Frank will tutor earlier than will Bob. 
- Frank, Cathy and Bob will not tutor on Monday. 
- Frank cannot tutor on Thursday. 

Solution 
-by Craig Langstron 

Monday Tuesday Wednesday Thursday 

Tony Cathy Frank Jane 
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Bob 
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◄ Erratum 

In R. Scott Erickson's  article ' 'Escher Revisi(ed: Model
ing Gradual Def1Jrmations U�i.-1g Logo," publisned in delta
K, volume 27, number 1 ,  June 1988, the three designs ap
pearing on page 20 are improperly credited. "Razor 
Blades" was crf""-"Cd cf. Carnegie-Mellon University, "Con
sternation" �y Scott'Grady and "Fylfot Flipflop" by Fred 
Watts ar-- designs ·that originated at the Basic Design Stu
dio i:,; William S. Huff, professor of architectural design 
.. c the State University of New York at Buffalo. The de
signs originally appeared in "Metamagical Themas" written 
by Douglas R. Hofstadter and published in Scientific Ameri
can, volume 249, number 1 ,  July 1983. 

R. Scott Erickson, John Percevault (editor of delta-K) 
and the Mathematics Council of The Alberta Teachers' As
sociation apologize to William S. Huff and students at the 
Basic Design Studio and Carnegie-Mellon University. 

Permission to reprint or reproduce in any way the above
mentioned designs must be obtained from Scientific Ameri
can and William S. Huff. 

------------
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