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Defer reading for a few minutes and have a go 
at this sequence of problems. We'll discuss these 
problems later. 

Problem 1 
Find a prime number which is one less than a 
perfect square. 

Problem 2 
Find another prime number which is one less 
than a perfect square. How many other such 
primes are there? 

Problem 3 
Find a prime number which is one more than a 
perfect square. 

Problem 4 
Find another prime number which is one more 
than a perfect square. How many others are 
there? 

Problem 5 
Find a prime number which is one less than a 
perfect cube. 

Problem 6 
Find another prime number which is one less 
than a perfect cube. How many others are there? 

Problem 7 
Find a prime number which is one more than a 
perfect cube. 

Problem 8 
Find another prime number which is one more 
than a perfect cube. How many others are there? 

Introduction 

Question 1 
What exactly do we mean by "mathematical 
talent' '? 

Question 2 
How can we recognize it? 

Question 3 
What can we do to encourage its development? 

If mathematics teaching were a science, it might 
be reasonable to try to answer these three 
questions in the given order. As things are, 
mathematics teaching is not (yet) 1 a science: it 
remains a craft. So one should not be surprised 
at the suggestion that the questions may be best 
tackled in the reverse order: first look for rich, 
challenging material that encourages 
mathematical thinking; while using such 
material, observe the different approaches used 
by individual students and try to assess their 
requirements and talents in the light of their 
performance; finally, make use of this 
experience to refine one's ideas of what does, 
and what does not, constitute "mathematical 
talent.' '  Those who work with young children 
often have their own tried and trusted ways of 
nurturing whatever mathematical talent is present 
in their classes, but are far less sure how one 
can reliably assess the degree of talent present in 
any given individual and are usually most 
reluctant to define exactly what they mean by 
"mathematical talent." 

I have seen this kind of pragmatism work 
extremely well in individual classrooms and 

1This fact is reflected in the subtitle of Hans Frendenthal's thought-provoking book, Weeding and sowing: preface to a science 
of mathematical education (Reidel I 978). 
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schools. However, my thumbnail sketch has 
ignored the most basic question of all. 
Question 3 '  
How do we distinguish between rich, challenging 
material that encourages mathematical thinking 
and material that is unsuitable? 
Once this crucial question has been asked, it is 
clear that our response to the first three 
questions is bound to depend on our ideas of 
what mathematics itself is really about and of the 
kind of students we are inclined to call 
"talented. " 
Question 4 (a) 
Which students are we mainly concerned about? 
That very select group, la creme de la creme? 
Or the much larger group of all those who 
belong to the "cream" and who crop up 
regularly in most high schools? 
Question 4 (b) 
What do we understand by "mathematics"? 
How do we decide whether an activity at a given 
level is or is not genuinely mathematical? How 
should the fact that one is working with 
youngsters affect the style and content of the 
mathematics? 

One way forward? 

The aspect of mathematics which appeals most 
strongly-perhaps at all ages-is the way in 
which elementary calculations and constructions 

can be used to resolve non-trivial problems.2 All 
attempts to encourage students interested in 
mathematics must therefore exercise and extend 
students' ability to perform the relevant 
calculations or constructions. A good basic 
training in routine techniques is thus 
fundamental. Sadly, many of the talented 
students in our classes have only been expected 
to perform these routine techniques in the 
simplest imaginable contexts. 

One cannot assume that "talented" students 
will somehow make up for our own limited 
expectations by making their own spontaneous 
generalizations. (For example, the resolution of 
the problem sequence above is entirely 
elementary, but seems to be totally 
unexpected-even for good college students 
majoring in mathematics. No one seems to have 
alerted them to even the most obvious 
connections, such as that between factorizing 
numbers and factorizing polynomials.) This 
immediately suggests one very simple way in 
which ordinary class teachers carr make a 
significant contribution to the development of 
mathematical talent. We shall come back to this. 

Our habit of teaching routine techniques in a 
very restricted way is one reason why problem 
competitions and enrichment materials which are 
officially aimed at mathematically talented 
students frequently tum out to be most unsuitable 
for our own talented students.3 But the main 
reason for this mismatch seems to be that those 

2In his fascinating autobiography, Disturbing the universe (Harper and Row 1979) Freeman Dyson tells how, as a boy, he 
worked through the seven hundred or so problems in Piaggio's Differential Equations (G Bell 1920). Piaggio's book is quite 
different from modern texts. The author presents an absolute minimum of theory. Instead of waiting until a technique or 
method can be fully justified, he explains what he can and encourages the reader to "have a go"-the details of the complete 
picture becoming more clearly visible as one proceeds. Of course, one misses many important points first time through. But 
the book was important for Dyson not just as a way of mastering differential equations but also because it enabled him, 
through the joy of calculation, to fall in love with mathematics. Harold M. Edwards makes a related point in the Preface to 
his beautiful history of Fennat 's Last Theorem (Springer 1977): "As even a superficial glance at history shows, Kummer and 
the other great innovators in number theory did vast amounts of computation and gained much of their insight in this way. I 
deplore the fact that contemporary mathematical education tends to give students the idea that computation is demeaning 
drudgery to be avoided at all costs . ' '  

31 am aware of two common strategies for stretching the most talented young mathematicians. Neither of these strategies 
seems to work very well with ordinary talented students. One approach involves presenting simplified treatments of selected 
tQpics from higher mathematics. But though the formal technical prerequisites may be kept well under control, such material 
often makes quite unreasonable assumptions about what is, and what is not, familiar, meaningful or interesting to bright high 
school students. Many such presentations have the additional weakness that the ratio of text to exercises is all wrong, as 
though talented students had less need of exercises! As a result these valiant efforts to make higher mathematics accessible are 
often best appreciated by adult mathophiles. The other approach involves competitions based on problems that are easy to state 
and whose content is elementary, but which are hard to solve (or hard to solve in the time allowed). I love these questions , 
but use them relatively rarely. They are a bit like those texts which claim to have no formal prerequisites other than a little 
"mathematical maturity."  The trouble in both cases is that students with the necessary "maturity" are singularly hard to find. 
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who set the competition problems and write the 
booklets are chiefly interested in the ' 'truly 
exceptional student. "  But this is, almost by 
definition, the kind of student most of us never see! 

The answer of most teachers to Question 4(a) 
is likely to be determined as much by this simple 
fact of life as by any rigidly held educational 
principle: it is natural to be most concerned for 
the kind of talented students we come across 
regularly in our own institutions. Their talent 
may make little impression in competitions 
designed to identify la creme de la creme, but 
that does not lessen our responsibility for 
fostering the talent we know they have. If their 
talent is modest when compared with the very 
best, their numbers are so much greater that they 
present us with no less of a challenge. 
Moreover, given the right kind of material, such 
students are capable of some remarkable 
mathematics. 

Most of the talented students I work with 
enjoy mathematics, but are not (perhaps never 
will be) ready to do battle with hard competition 
questions.4 Instead they need lots of experience 
of tackling intuitively appealing problems which 
allow them to get started, which nevertheless 
remain strangely opaque, but slowly become first 
meaningful, then promising and finally 
transparent, as a result of intelligent groping. 

The problem sequence at the beginning (taken 
from my book, Mathema.tical Puzzling, Oxford 
University Press 1 987) illustrates one way of 
achieving this. Any student interested in 
mathematics immediately tries to answer the 
questions (especially if they are posed orally to a 
group of students) . It is only when they fail to 
answer some of the harmless-looking questions 
(or when they discover that their own over-hasty 
answers are rejected by their peers), that they 
begin to realize there is something to explain­
even if they are not at all sure what. By this 
point they are sufficiently committed not to back 
off in the face of a problem they would 
otherwise instinctively classify as being ' 'too 
hard . "  

Mathematics is a much messier business than 
most textbooks are willing to admit. Basic 

techniques are important; so a part of 
mathematics instruction must certainly consist of 
applying standard procedures to · solve familiar­
looking problems or writing out solutions in a 
specified deductive form (as in geometry). But 
where did the solution come from in the first 
place? And how did one decide which standard 
algorithm to use? 

Much of the time we have very little idea how 
students find their solutions. As long as they 
continue to succeed one may argue that it does 
not matter. But once we find them beginning to 
struggle, it becomes all too tempting to cheat by 
making the route from the problem to its 
solution so short and direct that very little 
mathematical thinking is required. Students 
certainly need to master basic techniques, but 
mathematical thinking only really begins when 
the student has to select and coordinate a number 
of such basic steps to solve challenging multi­
step problems. 

A regular diet of even the simplest multi-step 
problems can have a dramatic effect on student 
perceptions and performance. As an indication of 
what happens when we fail to provide such a 
diet as part of our ordinary teaching, consider 
the following problems set to a large sample of 
15-year-olds in the United Kingdom. 

Question A 
Area = 1/3 
square centimetre 
Length = ?  

- Length � 

'--------11 ¥ 
Question B 
PQ is parallel to RS 
y = 2x 

What is the size 
of angle PRS 
in degrees? 

R 

Though each of these problems requires the 
student to identify an intermediate step, one 

Q 

s 

4Why not? The satisfaction which motivates those who do respond to hard competition problems stems from the prospect of 
occasional hard-won success. That, in its tum, presupposes extensive failure. Once the perceived prospect of success sinks 
below some personal threshold, the game loses its appeal. The talented student who has rarely been challenged by hard 
problems and who does not realize how important "failure" is in mathematics, only has to see a hard problem for the 
perceived prospect of success to sink way below his (inflated) threshold. 
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could scarcely call them hard! Yet success rates 
are abysmally low. 5 Such levels of incompetence 
are certainly not preordained: they are the result 
of years of systematic training in anti­
mathematical thinking. Our persistent failure to 
set appropriately challenging problems ensures 
that many highly talented students simply lose 
interest in mathematics, while others perform so 
far below their potential level that their talent 
becomes almost invisible. 

In my experience very few talented students­
even those who have been well-taught-respond 
well to the kind of material that is often 
advocated for the most able. 6 These students 
need problems, or sequences of problems, which 
have a strong intuitive appeal, which make 
minimal technical demands while stretching 
students' own powers of calculation, and which 
above all force them to ' 'think mathematically.' ' 
(This kind of thinking is subtly different from 
the process of ' 'seeing through' ' simple puzzles 
and generally requires extended periods of 
engagement.) My two books, Mathematical 
Puz.zling and Discovering Mathematics (Oxford 
University Press 1987) represent two rather 
different responses to this challenge. 

Discovering Mathematics is the more ambitious 
of the two in that it tries to convey to the 
talented high school student how one goes about 
exploring a substantial mathematical problem on 
one's own. It does this, not by talking about 
mathematics, but by involving the reader in 
extensive calculations, in making (often false!) 
conjectures and in checking and revising those 
initial guesses until the reader arrives at 
something requiring proof. Many teachers have 
enjoyed working through this material and have 
found the experience not only refreshing but also 
helpful in clarifying their own ideas in relation 
to Question 4(b). 

Mathematical Pu:a.ling has similar aims but a 
very different format. In spite of its emphasis on 
problems and on calculation, Discovering 
Mathematics presupposes a willingness to read 
"text. " Mathematical Pu:a,ling avoids "text" 
and consists largely of problems. The messages 
it seeks to convey (about the nature of mathematics, 

about the importance of looking for "connections," 
about being willing to experiment and explore, 
about the need to use one's judgment in making 
sense of a question, etc.) are therefore implicit 
in the choice and the wording of the problems 
and in the way they are grouped together. The 
material has been developed with various groups 
of 10- to 14-year-olds over the last ten years­
though much of it has been used to good effect 
with much older students. 

The opening example 

At first sight, the opening example may look like 
a sequence of routine problems designed to test 
students' familiarity with prime numbers and 
powers. Though such an impression is 
superficial, it certainly reflects two very 
important general features of the problem 
sequence, namely, 
-that each problem is accessible to and should 

evoke an immediate response from any student 
interested in mathematics, and 

-that the content is entirely elementary and the 
initial demands on the student are restricted to 
calculating (preferably mentally) efficiently and 
accurately. 
On a deeper level the problems emphasize the 

following points 
• the importance of being willing to search 

systematically and intelligently for numbers 
with the required properties; 
(for example, Problem 2, is 8 prime? 15? 
24? . . .  ) 

• the need for mental fluency; 
(what is 132? what is 63? how does one test 
quickly whether an unfamiliar number, like 
143, is prime?) 

• the inadequacy of merely guessing; 
(is 143 really prime? how about 2 17? or 5 1 1 ?) 

• the virtue of reflecting on the results of one's 
own calculations. 
(why do powers of odd numbers obviously 
never work?) 

However, there is far more to the problems 
than this, as the sting in the tail of the even-

5Only one student in 20 managed to answer the first question correctly and one in 10 managed the second. Yet the studies 
from which these examples are taken steadfastly refuse to draw the obvious conclusion that these statistics say far more about 
the way they have been taught than about children's inherent ability . 

6See note 3 
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numbered parts soon shows. Problems 2, 6 and 8 
are meant to make students suspicious. How they 
respond will depend very much on their previous 
experience. Many behave uncritically and pick 
the first vaguely prime-looking number as ' 'the 
answer" (for example, with Problem 2, many 
able students choose 143-or even 63); they then 
simply ignore the crucial question "How many 
are there?" Others are much more careful, but 
(perhaps because they have never been 
challenged to look for something which may not 
exist) remain totally unsuspecting-even after 
two or three similar searches (such as Problems 
2, 6 and 8) draw a complete blank.7 

Many teachers object to the wording of Problems 
2 ,  6 and 8. If only one such question were 
asked, I would probably agree that it would be 
thoroughly unfair (unless, of course, one knew 
that the students were used to keeping their wits 
about them). I see little educational value in trick 
questions designed to catch people out. 

But in this setting, the doomed searches 
generated by Problems 2 ,  6 and 8 and the group 
discussion to which they should give rise 
represent one of the many ways in which one 
can help able students 
• to see that there is more to mathematics than 

simply getting the right answer. 
In this case it is precisely the three "rogue" 
Problems 2, 6 and 8 and the unexplained contrast 
between these and Problem 4 that force students 
• to begin to think about the mathematics behind 

the problem sequence as a whole and to look 
for a genuine explanation which distinguishes 
between the two kinds of observed behavior. 
The habit of "wanting to explain," rather than 

being content just to "get the right answer,"  is 
far from natural. It has to be educated. Without 
it students never develop that independence and 
autonomy which allows them to take control of 
their own activity: they remain dependent on 
others to provide them with problems to solve 
and to validate or correct, the answers they 
come up with. It is for this reason, rather than 

because of some belief in the deductive character 
of "real" mathematics, that one of our prime 
objectives should be to cultivate the habit of 
wanting to explain in our talented students. I 
would therefore restrict the use of Problems 2, 6 
and 8 to students who are familiar with the basic 
factorization8: (*) x2 - 1 = (x - l)(x + 1). 

This is not to say that one expects such 
students to spontaneously translate the verbiage 
of the first two problems into symbolic form. 
They won't! At least, not until their failure to 
answer Problems 2, 6 and 8 has left them with a 
puzzle which commonsense methods have failed 
to resolve. Once the relevance of the familiar 
identity ( *) is noticed, it is but a short step to 
suspect, and then to discover, the less familiar 
algebraic factorizations for x3 ± 1. 

Students who get this far can then be 
challenged to formulate, and to try to resolve, 
the two general questions of which Problems 1, 
2, 5, and 6 and 3 ,  4, 7 and 8 are special cases. 
• For which values of m, n is mn - 1 prime? 
• For which values of m, n is mn + 1 · prime? 

These questions are on a much higher level 
than the original problems; but the earlier, more 
simple-minded problems do seem to help 
students to respond appropriately. The trivial 
case "n = 1" has to be noticed and excluded 
(usually later rather than sooner). The questions 
could then be tackled by generalizing the 
elementary algebraic factorizations alluded to 
above. However, even very able students are 
likely to spend quite a long time experimenting 
with special cases before they realize this. 

Like most mathematical problems, the 
questions as stated are ambiguous. The colloquial 
formulation leads one to think in terms of 
"sufficient" conditions on m and n which will 
guarantee the primeness of mn ± 1, whereas 
mathematically one can only hope to obtain 
"necessary" conditions (which may or may not 
turn out to be "sufficient"). It may take some 
time for this distinction to emerge, but it leads 
naturally to a discussion of the fundamental 
method of analysis, in which one supposes that 

7Hundreds of keen 17-year-old students specializing in mathematics who were given ten days to tackle Problems 1 ,  2, 5, 6 
enlisted the help of their home computers. Faced with a negative output, they merely reported, "The prime numbers must be 
very large. "  Barely a dozen of these able students smelt a rat. 

8Some very able students are perfectly capable of seeing that 32 - I = (3 - 1)(3 + 1), 42 - 1 = (4 - 1)(4 + 1), etc. is 
part of a general pattern, whether or not they have any formal acquaintance with algebra. But most talented students need 
some fluency in algebra if they are to discover the factorizations for x3 ± 1 ,  and for mn ± 1 ,  for themselves. 
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one has an entity of the required kind-for 
example, a prime number of the form 
"mn - I" -and proceeds to analyze the 
possibilities for the numbers m and n. 

For example, mn - I = (m - 1) 
(mn - 1 + m11 - 2 + . . .  + m + I), so if 
m" - 1 is prime then we must obviously have 
m - I = 1. Moreover, if n = a x b is 
composite, then 2axb - I = (2°)b - I = 
(2a - 1)(2a(b-l) + 2a/b-2) + . . . + 2• + 1), 
Hence if 211 

- 1 is prime, n must itself be 
prime. 

The miracle of the method of analysis is that, 
if pushed far enough, the resulting "necessary" 
conditions often turn out to be ' 'sufficient' '  as 
well (as in the classical analysis of primitive 
pythagorean triples: positive integers x, y, z with 
no common factors satisfying x2 + y2 = z2) .  In 
our case, elementary algebra has led to the 
necessary condition that "if m11 

- 1 is prime 
(n � 2), then m = 2 and n is prime. " One 
naturally hopes that the condition "n is prime" 
may tum out to be sufficient to guarantee the 
primeness of 2n - l .  Well, does it? 

A similar analysis of the second general 
question (When is mn + I prime?) leads first to 
the observation that either m = 1 or m is even 
(Why?), and then to the observation that n must 
be a power of 2. (Suppose n = a x b with 
b � 3 odd, then mn + 1 = (m0)b + 1 = . . . . ) 

Restricting to the simplest case where m = 2, 
we therefore know that, if 211 + 1 is to be 
prime, then n must be a power of 2. But is the 
condition n = 2k sufficient to guarantee the 
primeness of 211 + 1? 

There is no need to stop there. A discussion of 
Mersenne and Fermat primes can lead on to 
more efficient ways of testing for primeness, 
based on Fermat 's Little Theorem (aP =a  (mod p)) 
or Lucas' test. All of this involves masses of 
calculation, but it is calculation that achieves 
results the students would have previously 
assumed to be beyond them. The limited vision 
of most talented students means that the initial 
phase of any activity needs to appear relatively 
straightforward; but if one is to broaden that 
vision, then one must somehow lead them on 
from these simple beginnings to higher things. 
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