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A diamond is a girl 's best friend! -Marilyn Monroe 
quote 

There are twelve different ways of putting 
together five unit squares edge-to-edge. The 
results are the Pentominoes. (Pentomino is a 
registered trademark of Solomon W. Golomb 
who introduced them (Golomb 1954).) They are 
shown in Figure 1-1 with their single-letter 
names. 
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Figure 1 -1 
Note: Pentomino is a registered trademark 

of Solomon W. Golomb 
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The pentominoes can be used to construct 
many interesting shapes. On the other hand, 
there are shapes which are impossible to 
construct. The reason is sometimes obvious but 
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often non-trivial. While some impossibility 
proofs are elegant, others are unavoidably 
complex. 

One such shape is the diamond with a hole at 
its centre, as shown in Figure 1-2. Proposed by 
R. M. Robinson, it was proved by S. Earnshaw 
that its construction is impossible. The full proof 
was unpublished, but a four-page summary of 
the eight-step solution was presented by Golomb 
( 1965, 69-73), who challenged his readers to 
find a simpler proof. 
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Figure 1 -2 

This paper presents a simpler argument which 
proves more-that the construction is impossible 
unless the hole is on the edge. In other words, 
there are no holes inside a diamond! 

The approach is indirect. It will assume that a 
construction is possible with the hole inside and 
derive a contradiction. 

Let us introduce some terminology. A 
pentomino is said to be interior if it is placed so 
that it does not cover any edge squares. A 
square is said to be interior if it is either the 
hole or covered by an interior pentomino. Note 
that the centre is always interior. 



A pentomino is said to be spectral if it is 
placed so that it connects an edge square to one 
of the four squares adjacent to the centre. Only 
I, L, N, V, W and Z can be spectral. Finally, 
two spectral pentominoes are said to be 
neighboring if they cover at least one common 
point. 

All 20 edge squares are to be covered. Each 
of F, W and X can cover three of them, each of 
N, P and Y two, and each of I, L, T, U, V and 
Z one. The total count is 2 1 ,  so that there is no 
immediate contradiction, but there is some useful 
information. 

□ Observation I . I .  There is at most one interior 
pentomino. There are at most six interior 
squares. 

□ Observation 1 .2. If there is an interior 
pentomino, it is one of I, L, T, U, V, Z. 

We shall divide the proof of our main result 
into three parts, the first two devoted to proving 
the following auxiliary results. 

D Theorem A. There is exactly one interior 
pentomino. 

D Theorem B. The interior pentomino is one of 
I, V, Z. 

Proof of Theorem A 

Suppose there are no interior pentominoes. Then 
the hole must be at the centre and there will be 
four spectral pentominoes. Figure 2-1 illustrates 
a placing of L, N, V and W as the four spectral 
pentominoes. 

Note that the remaining part of the diamond is 
partitioned into four regions. In order for them 
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Figure 2-1 

to be filled with the remaining pentominoes, the 
number of squares in each region must be 
divisible by five. While this is true for the 
regions between L and W, and between N and 
V, it is not the case for the regions between L 
and N, and between V and W. 

Routine search reveals that only three pairs, L 
and W, N and V, and I and Z, can define 
regions with a number of squares divisible by 
five. It follows that no matter which four 
pentominoes are spectral, at most two of the 
regions can be filled with pentominoes. 

Therefore, we must have at least one interior 
pentomino. By observation 1 . 1 ,  there is at most 
one interior pentomino. Hence, there is exactly 
one interior pentomino and the proof of 
Theorem A is completed. 

A most important result follows immediately 
from Theorem A. 

D Corollary 2 . 1 .  Each of F, W and X must 
cover three edge squares while each of N, P 
and Y must cover two edge squares. 

The technique used in proving Theorem A also 
yields an additional result. 

D Lemma 2.2. V and I cannot be neighboring 
spectral pentominoes, nor can V and Z. 

Proof: Routine search reveals that, no matter 
how V and I are placed as neighboring spectral 
pentominoes, the number of squares in the 
region between them is always two or three 
more than a multiple of five. Even if the hole is 
in this region, the rest of it still cannot be filled 
with pentominoes. The same holds for V and Z. 
Figure 2-2 shows two placings of V as spectral 
neighbors of I and Z, respectively. 
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Proof of Theorem B 

We shall prove that each of I, V and Z is either 
interior or spectral. It then follows that one of 
them must be interior. Otherwise, all three will 
be spectral and V must be a neighbor of I or Z. 
This is impossible by Lemma 2.2. 

Let us now consider each of I, V and Z in 
tum. Z is the easiest to handle because it does 
not have any non-interior, non-spectral placings. 

0 Observation 3 . 1. Z is either interior or spectral. 
D Lemma 3.2. / is either interior or spectral. 
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Proof: Figure 3-1 shows the only non-interior, 
non-spectral placing of I. Note that square 1 must 
be covered by W. We cannot cover square 2 
with F by Corollary 2 . 1 ,  so that N must be 
used. This isolates the square marked with a 
cross and it must be the hole. Square 3 must 
now be covered by V and square 4 by F. It is 
easy to see that square 5 is interior. The same 
holds for square 6 by Corollary 2. 1 .  By 
Theorem A, exactly one pentomino is interior, but 
no pentomino can cover both squares 5 and 6. 
We have a contradiction to Observation 1. 1 . 

It is much more difficult to prove that V is 
either interior or spectral. To do so, we have to 
find out more about how other pentominoes must 
be placed relative to one another. 

In Figure 3-2, the shaded squares are called 
the "back" of W and the "back" of F, 
respectively. 

Figure 3-2 
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0 Lemma 3.3. The "back " of W is either 
interior or covered by L. 
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Proof: By Corollary 2 . 1 , there are two 
placings of W, both shown in Figure 3-3. It is 
easy to see that, if square l is not interior, it 
must be covered by L. There are three possible 
ways, one of which is shown. On the other 
hand, Corollary 2. 1 shows that, if square 2 is 
not interior, it must be covered by L as shown. 

□ Lemma 3.4. The "back" of F must be 
covered by N. 
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Figure 3-4 

Proof: By Corollary 2. 1 ,  there is only one 
placing of F. If its "back" is to be covered by 
N, it can only be done in one way, as shown in 
Figure 3-4. On the other hand, if N is placed as 
shown, the placing of F is forced. To prove our 
result, we rule out other placings of N, of which 
there are two. 
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Suppose N occupies a corner as shown in 
Figure 3-5. It is easy to see that squares 1, 2 and 
3 are interior. If square 4 is not, it must be 
covered by V. Note that V cannot fail to cover 
square 5, as otherwise it forces a placing of P 
contrary to Corollary 2.1. Now square 6 will also 
be interior. Moreover, no pentomino can cover 
three of squares 1, 2, 3 and 6. Hence square 4 
is interior. It follows that square 5 is also. 

Only Y can cover all five interior squares, 1, 
2, 3 ,  4 and 5. However, this is forbidden by 
Observation 1 .2. Hence the interior pentomino 
covers four of these five squares and only L, I 
and T can do so. 

If L is interior, then square 5 must be the 
hole. However, by Lemma 3.3, the "back" of 
W will be a seventh interior square, 
contradicting Observation 1.1. If I or T is 
interior, then squares 5 or 1, respectively, will 
be the hole. Now square 6 cannot be interior and 
it is easy to see that it can only be covered by 
L. Once again, the "back" of W will be an 
impossible seventh interior square. 
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Figure 3-6 shows the other placing of N. It is 
easy to see that squares 1 and 2 are interior. 
Suppose square 3 is covered by W. By 
rearranging N and W, we can make them 
occupy the same region but with N occupying a 
corner. We have already shown that this is 
impossible. 

Hence square 3 must be covered by V. Now 
the placing of F is forced and squares 4 and 5 
become interior. The hole must either be square 
2 or 4 as no pentomino can cover both. The 
interior pentomino must cover square 5 and 
cannot cover square 6. Now square 6 must be 
covered by L, and Lemma 3.3 furnishes a 
contradiction. 

□ Lemma 3.5. V is either interior or spectral. 
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Proof: V has two non-interior, non-spectral 
placings. The one shown in Figure 3-7 can be 
ruled out as it forces the placing of F contrary to 
Lemma 3.4. 
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Figure 3-8 
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Figure 3-8 (previous page) shows the other 
possibility. Suppose square 1 is covered by W.  
Then the square marked by a cross must be the 
hole. Now squares 2, 3 ,  4 and 5 must all belong_ 
to the interior pentomino, and only T can cover 
all of them, P and Y being ruled out by 
Observation 1.2. By Observation 3 . 1  and Lemma 
3.2, Z and I must cover squares 6 and 7 
collectively. However, neither can cover square 
6. We have a contradiction. 
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The only other pentomino that can be used in 
place of W is P. By Corollary 2 .  1 ,  X must 
occupy a corner. Suppose it takes up its position 
as shown in Figure 3-9. Then square 1 must be 
covered by Y, creating a hole at the square 
marked with a cross. Now squares 2, 3, 4 and 5 
are all interior and only T can cover all of them. 
Thus square 6 is not interior, and it can only be 
covered by L. By Lemma 3.3, the "back" of W 
will create an impossible seventh interior square. 
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Now let X occupy the corner as shown in 
Figure 3-10. As before, squares 1 ,  2, 3 and 4 
are all interior. Suppose square 5 is also interior. 
Then the interior pentomino will cover four of 
these five squares. Only T and L can do that and 
whichever one is interior will also cover square 
6. By Lemma 3.2, I is spectral, but it is easily 
seen that it now has no spectral placings. 
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It follows that square 5 is not interior and it 
must be covered by either T or Z. Figure 3-1 1 
shows Z in place, creating a hole at the square 
marked with a cross. Now no pentomino can 
cover all of squares 1 ,  2, 3 and 4 except Y, 
which cannot be interior. The same contradiction 
is arrived at if T covers square 5 instead. This 
completes the proof of Lemma 3.5 and hence of 
Theorem B. 

Conclusion 

By Theorem A, there is exactly one interior 
pentomino. By Theorem B, it is I, V or Z. 
Hence T is not interior. It has two non-interior 
placings. The first one, shown in Figure 4-1 ,  
can be  ruled out since i t  forces a placing of F 
contrary to Lemma 3 .4. 

The second one is shown in Figure 4-2. Now 
square 1 can only be covered by W. We cannot 
use V as it again forces a placing of F contrary 
to Lemma 3.4. By Corollary 2. 1 ,  squares 2, 3 ,  
4, 5 and 6 are all interior and the interior 
pentomino must cover at least four of them. This 
can only be I, and the hole is at square 4. By 
Lemma 3.5 ,  V must be spectral , but it is easy to 
verify that it now has no spectral placings. This 
completes the proof of our main result. 
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Now that we know there are no holes inside 
the diamond, the natural question is whether the 
hole can be on the edge. This is indeed possible, 
as shown in Figure 4-3, attributed to J .A.  
Lindon (Golomb 1965 , 73). Figure 4-4 shows 
that the hole can be placed more aesthetically at 
a corner. It is left to the reader to decide 
whether Figure 4-5 can be constructed with a set 
of pentominoes and whether eleven pentominoes 
can fit into the diamond covering all 20 edge 
squares. 

A rough diamond . . . A proverb 
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Addendum to There Are No Holes Inside a Diamond 

Diamonds are forever. -James Bond movie title 

The diamond considered in the main part of this 
paper is but one member of an infinite family of 
diamonds. The first five are shown in Figure A-1 ,  
and our diamond is D5, the next in line. If  we 
denote by dn the number of squares in Dn , it is 
an easy exercise to show that 
dn = 2n2 + 2n + 1 .  

o, 
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Figure A-1 

If n = I or 3(mod 5), then dn = O(mod 5) 
and D n can be constructed with pentominoes. D 1 
is trivial since it is just X. Figure A-2 shows a 
construction of D 3• We pose the following 
problems. 

Figure A-2 
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Problem 1 
Construct D3 using F, W, X, N and Y. 

Problem 2 
Construct D 6 using a complete set of 
pentominoes plus F, W, X, P and Y. 

Problem 3 
Construct D8 using two complete sets of 
pentominoes plus F, W, X, N and P. 

Note that the best pentominoes for diamonds, 
F, W and X, are used in each problem. Each 
problem also uses two of the next best 
pentominoes, N, P and Y, and a different pair in 
each case. 

If n • 2(mod 5), then dn = 3(mod 5) and Dn 
cannot be constructed with pentominoes unless 
we leave three holes. This makes the problem 
too loose, but the reader may wish to explore 
for interesting designs. 

If n = 0 or 4(mod 5), then dn = l (mod 5) 
and D n can be constructed with pentominoes if 
we leave only one hole. D

0 
is trivial since no 

pentominoes are required. Figure A-3 shows a 
construction of D 4 with the hole inside, and the 
reader may try to decide if the hole can be at the 
centre. D5 having already been dealt with, we 
pose one final problem. 

Figure A-3 

Problem 4 
Construct D

9 
using three complete sets of 

pentominoes, leaving a hole at the centre. 
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