# Another Proof of Heron's Formula for the Area of a Triangle 

## Gurcharan Singh Bhalla

Gurcharan Singh Bhalla teaches mathematics at Bronx Community College of the City University of New York, U.S.A.

Heron of Alexandria (60 A.D.?) was a Greek mathematician. His mathematical works, included in Metrica, deal with mensuration of rectilinear figures and solids. His unique contribution to mathematics, however, is his famous relation for the area of a triangle in terms of its sides. Heron's formula states:

Given a triangle with sides equal in length to $\mathrm{a}, \mathrm{b}$ and c , and s its semiperimeter, then the area of a triangle is $\sqrt{s(s-a)(s-b)(s-c)}$
This article presents an analytical geometrical demonstration of the relation.


Let ABC be the triangle with sides $\mathrm{AB}=\mathrm{c}, \mathrm{BC}=\mathrm{a}$ and $\mathrm{CA}=\mathrm{b}$, and coordinates of $\mathrm{A}=(0,0), \mathrm{B}=$ $(\mathrm{c}, 0)$ and $\mathrm{C}=(\mathrm{b} \cos \mathrm{A}, \mathrm{b} \sin \mathrm{A})$. Then, by coordinate geometry, the area X of the triangle is given by:

$$
\begin{align*}
\mathrm{X} & =1 / 2\left|\begin{array}{ll}
0 & 0 \\
\mathrm{c} & 0 \\
\mathrm{~b} \cos \mathrm{~A} & \mathrm{~b} \sin \mathrm{~A}
\end{array}\right| \\
& =1 / 2[\mathrm{bc} \sin \mathrm{~A}]
\end{align*}
$$

From triangle $A B C$, by cosine rule, we have

$$
\cos \mathrm{A}=\frac{\mathrm{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}
$$

Therefore

$$
\begin{aligned}
\sin ^{2} A & =1-\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)^{2}=\frac{(2 b c)^{2}-\left(b^{2}-\left(b^{2}+c^{2}-a^{2}\right)^{2}\right.}{4 b^{2} c^{2}} \\
\sin ^{2} A & =\frac{\left(2 b c+b^{2}+c^{2}-a^{2}\right)\left(2 b c-b^{2}-c^{2}+a^{2}\right)}{4 b^{2} c^{2}} \\
& =\frac{\left[(b+c)^{2}-a^{2}\right]\left[\left(a^{2}-(b-c)^{2}\right]\right.}{4 b^{2} c^{2}} \\
& =\frac{(b+c+a)(b+c-a)(a+b-c)(a-b+c)}{4 b^{2} c^{2}} \\
& =\frac{16 s(s-a)(s-b)(s-c)}{4 b^{2} c^{2}} \\
\sin A & =\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{b c}
\end{aligned}
$$

From 1, area $X=\frac{1 / 2 b c .2 \sqrt{\mathrm{~s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}}{\mathrm{bc}}$
$X=\sqrt{s(s-a)(s-b)(s-c)}$
Thus Heron's formula for the area of a triangle is demonstrated.

