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Heron of Alexandria (60 A.D.?) was a Greek mathematician. His mathematical works, included in Metrica,
deal with mensuration of rectilinear figures and solids. His unique contribution to mathematics, however,
is his famous relation for the area of a triangle in terms of its sides. Heron’s formula states:

Given a triangle with sides equal in length to a, b and ¢, and s its semiperimeter, then the area of a triangle
is V s(s - a)(s - b)(s - ©)

This article presents an analytical geometrical demonstration of the relation.
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Let ABC be the triangle with sides AB = ¢, BC = a and CA = b, and coordinates of A = (0,0), B =
{c,0) and C = (b cosA, b sinA). Then, by coordinate geometry, the area X of the triangle is given by:
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From triangle ABC, by cosine rule, we have
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From 1, area X = % be.2v s(s — a)(s - b)(s - ¢
be

X = v s(s - a)(s - b)s - )

Thus Heron’s formula for the arca of a triangle is demonstrated.
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