
Computer Programming in the Schools: 
Emphasizing Structure—An Example 

Using "Inebriated Turtles" 

J. Dale Burnett 

Dale Burnett is a professor of computer education at the University of Lethbridge, Lethbridge, Alberta. 

The following account should be interpreted at many levels. Life and "artificial life" are too complex 
to permit simpleminded generalizations and conclusions. 

This article itself is a complex product. Obtained by incorporating one software package (Logo) into an-
other (Word 4.0), and with structural flowcharts inserted from a third (More 3.0), it exemplifies some of 
the possibilities that are now within the reach of students and teachers with access to computers. 

The vehicle I used for exploration was the Logo programming language. The activity I describe ii; thus 
a Logo programming exercise designed to solve the problem: How can you construct a set of Logo proce-
dures that direct the turtle to perform a random walk within an enclosed space? 

I look at random walks because this exercise provides an opportunity to develop an appreciation of ran-
domness. What does it mean to talk about degrees of randomness? Are there different types of randomness? 
What do you notice when you look at a random path? Looking at randomness is also a way of expioring 
a new topic. How do you go about it? There are obviously many ways. What follows is a description of 
my first steps. 

These procedures were originally written using Terrapin Logo for use on an Apple IIe. However, the ex-
amples of screen displays that follow were created using Logo (LCSI version 1.0) on a Macintosh computer. 
Some changes to the procedures may be necessary depending on the version of Logo that you use. This ac-
count builds on ideas from Turtle Geometry by Abelson and diSessa (pp. 56-57). . 

The concept of randomness may be approached from either end of the continuum of randomness.. Thus 
one may either begin with 

1. "pure" random behavior and slowly impose constraints, or 
2. "pure" nonrandom behavior and slowly impose randomness. 

First Approach 

Here I follow the first alternative (I leave the second for your consideration). 

TO SIMPLE.RANDOM.WALK 
RT RANDOM 360 
FD RANDOM 20 
SIMPLE. RANDOM. WALK 

END 

3 



Here are two samples of screen displays that were created by typing SIMPLE.RANDOM.WALK. 

With Terrapin Logo, Ctl-G will stop the stagger. Other versions have a similar program-interrupt feature. 
The "endless" feature results from the third line in the SIMPLE.RANDOM.WALK procedure, where the 
program calls itself (forever!). The term for a program calling itself as a subprogram is recursion. 

A principle for exploration is wherever there is a constant, substitute a variable. 

TO SRW :MAX.DEGREE.TURN :MAX.STEP.SIZE 
RT RANDOM :MAX.DEGREE.TURN 
FD RANDOM :MAX.STEP.SIZE 
SRW :MAX.DEGREE.TURN :MAX.STEP.SIZE 

END 

SRW stands for SIMPLE.RANDOM.WALK. Abbreviations are important when the name of a procedure 
must be typed repeatedly. :MAX.DEGREE.TURN and :MAX.STEP.SIZE are variable inputs. Meaningful 
labels for variables are also important, as they help one understand the logic of the procedures and aid in 
debugging. They should not be shortened. If you are not familiar with the idea of variables, refer to a Logo 
reference book for more information. 

Try different values for :MAX.DEGREE.TURN and :MAX.STEP.SIZE. This permits you to control the 
degree of randomness. You may wish to save/print some pictures. 

SRW 360 100 

4 

SRW 360 50 



SRW 360 25 

SRW 180 50 

SRW 45 50 

SRW 360 10 

SRW 90 50 

SRW 20 50 

5 



Notice how the turtle's path begins to approximate a curved line as the degree of randomness in the turn 
is restricted. If one were to restrict the randomness in the right turn to zero, the path would become a straight 
line. This example indicates a weakness in the randomness associated with the orientation of the turtle. It 
is better in the intuitive sense if the randomness were to fluctuate about zero (that is, permit right and left 
turns to occur with equal frequency) rather than about a restriction between 0 degrees and some other (posi-
tive) number. This is easily accommodated. 

TO SRW :MAX.DEGREE.TURN :MAX.STEP.SIZE 
RT ( :MAX.DEGREE.TURN / 2) —RANDOM :MAX.DEGREE.TURN 
FD RANDOM :MAX.STEP.LENGTH 
SRW :MAX.DEGREE.TURN :MAX.STEP.SIZE 

END 

Do you appreciate what is happening in the first line of the procedure? Let's see what effect this change 
has on the paths of the turtle. 

SRW 360 50 SRW 180 50 

Do you see the difference? Do you understand the difference? Do you have a preference for one version 
of the SRW procedure? Why or why not? What would happen for SRW 20 50? 

Here is what actually happened. 

Are you surprised? Why? Why not? 
Many people find the wrap feature, where the turtle disappears off one side of the screen and reappears 

on the other, to be annoying during such an exploration. This can be obviated by creating a room and placing 
the turtle inside it. 

6 



Second Approach 
Making a (rectangular) room is easy. 

TO DRAW.ROOM 
CLEARSCREEN 
HT 
PU 
SETXY :LEFT.SIDE 
PD 
SETXY :RIGHT.SIDE 
SETXY :RIGHT.SIDE 
SETXY :LEFT.SIDE 
SETXY :LEFT.SIDE 
PU 

END 
DRAW.ROOM —100 100 50 (-50) 

:LEFT.SIDE :RIGHT.SIDE :TOP :BOTTOM 

:BOTTOM 

:BOTTOM 
:TOP 

:TOP 
:BOTTOM 

Note the use of variables! It is now easy to change the size of the room. 
At first glance this is a much more cumbersome procedure than the familiar local geometry procedure 

of REPEAT 4 [FD 50 RT 90]. Looking ahead, we are going to need some way of testing whether or not 
the turtle is "hitting a wall." Logo does not have apixel-detection primitive, so we will have to trick the 
computer into acting as if it had such a primitive. This can be accomplished by testing the x and y coordinates 
of the turtle's position against the known values of the boundaries of the room. Thus we want to make these 
coordinates explicit. 

Placing the turtle inside the room is also easy. 
TO PLACE.TURTLE :TURTLES.X.COORD :TURTLES.Y.COORD 

PU 
SETXY :TURTLES.X.COORD :TURTLES.Y.COORD 
PD 
ST 

END 
PLACE.TURTLE 0 0 

7 



Now set up a master procedure that calls these three ideas. 

TO SETTINGI 
DRAW.ROOM —100 100 50 (-50) 
PLACE.TURTLE 0 0 
SRW 360 30 

END 

It is often useful to visualize the structure of such a procedure. Here is an example of a chart that does this. 

SETTINGI 

DRAW.ROOM 

PLACE.TURTLE 

SRW SRW 

This diagram is read as follows: procedure SETTINGI calls procedure DRAW.ROOM, then procedure 
PLACE.TURTLE and then procedure SRW. Procedure SRW in turn calls itself (recursion). In Logo jargon, 
the task has been broken into "mind-size" chunks. Conceptually, the idea is to call one procedure, SETTINGI, 
which then calls a sequence of other procedures successively to draw a room, place the turtle in it and then 
iterate a random walk. 

Try this by typing SETTINGI. 

At least two problems immediately become apparent: 
1. Ctl-G is a clumsy way to stop the turtle. 
2. The walls have no effect! 

Let's tackle the easy one first. 

Third Approach 
One way to stop a turtle is to have it run out of gas (alcohol?)! Thus you must alter the main procedure 

to include a variable indicating the number of turtle steps you want the little fellow to take. 
By editing SETTINGI, and changing its name to SETTING2, I am able to modify the original procedure 

without having to retype the entire procedure. Altering the name (by changing the suffix to 2) leaves the 
original procedure intact in case I wish to go back to it later. It also gives me a form of development trail 
as new ideas occur to me. 

8 



TO SETTING2 :TOTAL.NO.OF.STEPS.TO.BE.TAKEN 
INITIALIZE 
DRAW.ROOM 
PLACE.TURTLE 0 0 
SRW2 :TOTAL. NO.OF.STEPS.TO.BE.TAKEN 

END 

The new procedure incorporates two ideas. One is maintaining a counter that will keep track of the number 
of steps that the turtle takes. The second is to create a separate procedure that will establish all the necessary 
initial values for running the procedures. 

TO INITIALIZE 
MAKE 
MAKE 
MAKE 
MAKE 
MAKE 
MAKE 
MAKE 

END 

"NO.OF.STEPS.TAKEN 0 
"LEFT.SIDE (-100) 
"RIGHT. SIDE 100 
"TOP 50 
"BOTTOM (-50) 
"MAX.DEGREE.TURN 360 
"MAX.STEP.SIZE 30 

The input variable TOTAL.NO.OF.STEPS.TO.BE.TAKEN specifies the value of the number of steps 
that you want the turtle to take and the variable NO.OF.STEPS.TAKEN acts as the counter that will be 
incremented by one each time the turtle takes a step. LEFT.SIDE, RIGHT.SIDE, TOP, and BOTTOM refer 
to the sides of the room. MAX.DEGREE.TURN and MAX.STEP.SIZE refer to the parameters controlling 
the degree of randomness the turtle will exhibit. 

DRAW.ROOM must also be modified to change the way the room's dimensions are specified. 

TO DRAW.ROOM2 
CLEARSCREEN 
HT 
PU 
SETXY :LEFT.SIDE :BOTTOM 
PD 
SETXY :RIGHT.SIDE :BOTTOM 
SETXY :RIGHT.SIDE :TOP 
SETXY :LEFT.SIDE :TOP 
SETXY :LEFT.SIDE :BOTTOM 
PU 

END 

Finally, SRW must be modified to keep track of the number of steps that the turtle takes. 

TO SRW2 :NO.OF.STEPS.TO.BE.TAKEN 
RT (:MAX.DEGREE.TURN / 2) —RANDOM :MAX.DEGREE.TURN 
FD RANDOM :MAX.STEP.SIZE 
MAKE "NO.OF.STEPS.TAKEN :NO.OF.STEPS.TAKEN + 1 
IF :NO.OF.STEPS.TAKEN = :NO.OF.STEPS.TO.BE.TAKEN STOP 
SRW2 : NO.OF. STEPS.TO. BETAKEN 

END 

9 



The corresponding procedural flowchart is: 

INITIALIZE 

DRAW.ROOM2 

SETTING2 

PLACE.TURTLE 

SRW2 SRW2 

Although there has been a number of changes to the Logo procedures, the logical flow of the task remains 
essentially the same. 

Here is an example of running SETTING2 30. 

The "running out of gas" feature is working, but the walls still need more substance. 

Fourth Approach 
Let's now return to the problem of penetrable walls. 
One way to approach the problem is to take an imaginary step first and then test if the potential position 

is outside the wall. If it is, you want to do something about it. Otherwise you simply take the step. Taking 
an imaginary step is a way of tricking the computer. The idea is to hide the turtle, put the pen up (so the 
turtle does not leave a trail), take a step and determine whether or not you are still inside the room. If you 
are, then the step will be okay, so you back up, put the pen down, show the turtle and retake the step. If 
you are outside the room, then do not take the step. Instead, one possibility is to back up, rotate the turtle 
by 180 degrees, put the pen down, show the turtle and try again. 

10 



Let's look at the structural chart first. 

INITIALIZE 

DRAW.ROOM2 

PLACE.TURTLE 

SETTING3 

SRW3 

The actual procedures are 

IMAGINE.STEP 

BOUNCE 

TAKE.STEP 

SRW3 

TO IMAGINE. STEP 
MAKE "PRESENT.HEADING HEADING 
MAKE "PRESENT.X XCOR 
MAKE "PRESENT.Y YCOR 
PU 
HT 
FD :STEP.SIZE 
MAKE "TOO.FAR OUT.OF.BOUNDS? 
BK :STEP.SIZE 
PD 
SETXY :PRESENT.X :PRESENT.Y 
SETHEADING :PRESENT.HEADING 

END 

TO OUT.OF.BOUNDS? 
IF XCOR > :RIGHT.SIDE OUTPUT "TRUE 
IF XCOR < :LEFT.SIDE OUTPUT "TRUE 
IF YCOR > :TOP OUTPUT "TRUE 
IF YCOR < :BOTTOM OUTPUT "TRUE 
OUTPUT "FALSE 

END 

OUT.OF.BOUND&~' 

11 



TO SRW3 :NO.OF.STEPS.TO.BE.TAKEN 
RT ( :MAX.DEGREE.TURN / 2) —RANDOM :MAX.DEGREE.TURN 
MAKE "STEP.SIZE RANDOM :MAX.STEP.SIZE 
IMAGINE.STEP 
IF :TOO.FAR THEN BOUNCE ELSE TAKE.STEP 
IF :NO.OF.STEPS.TAKEN = :NO.OF.STEPS.TO.BE.TAKEN STOP 
S R W 3 : NO.OF. STEPS. TO. BE. TAKEN 

END 

TO BOUNCE 
RT 180 

END 

TO TAKE.STEP 
FD :STEP.SIZE 
MAKE "NO.OF.STEPS.TAKEN NO.OF.STEPS.TAKEN + 1 

END 

TO SETTING3 :NO.OF.STEPS.TO.BE.TAKEN 
INITIALIZE 
DRAW . ROOM2 
PLACE.TURTLE 0 0 
SR W 3 : NO.OF. STEPS . TO. B E. TAKEN 

END 

Now we can return to the original problem of studying random motion. The intensity of the randomness is 
determined by the two input variables :MAX.DEGREE.TURN and :MAX.STEP.SIZE to the procedure SRW3. 

Here are a few sample runs of 100 turtle steps, with :MAX.STEP.SIZE 20 and :MAX.DEGREE.TURN 360. 

., 

12 



Increasing the number of steps to 300 yields 

Increasing the :MAX.STEP.SIZE to 40, gives (for 300 steps) 

Let's try this with 10,000 steps!! 

:~ "•" 
i. 

I 

What conclusions do you draw from this? 
Let's return to journeys of 300 steps, leave the :MAX.STEP.SIZE at 30 and vary the 

MAX. DEGREE.TURN. 

MAX.DEGREE.TURN 90 MAX.DEGREE.TURN 30 

13 



Additional Approaches 
Another area for experimentation occurs when the turtle hits the wall. It is possible to write procedures 

that have different "bounce" properties. How many can you think of? 
As a Logo exercise, write some procedures that have the effect of sobering the turtle up! Can different 

turtles have different tolerances to alcohol (or to random procedures)? 

Meta-Approaches 
There are many ways to investigate the turtle's behavior. One approach is simply to run the procedure 

repeatedly, print out the final path and then examine it. This seems like a good approach until you have 
10 or 20 printouts on your lap! 

Another approach is to ignore the paths and just note the destination of the turtle after a preset number 
of steps. You then write ameta-procedure that reruns the main procedure a large number of times, say 500 
or 1,000, and examine the resulting array of dots for a pattern. 

What began as an apparently simple task has exploded into a number of exciting and substantive investiga-
tions. There are at least three distinct levels of investigation: 

1. To construct a set of procedures that work properly 
2. To use these procedures to investigate another topic (randomness) 
3. To construct meta-procedures to run the procedures many times 

There is room for improvement and innovation at all levels. You may see a better way of constructing 
the original set of procedures. You may have a better set of questions to ask about how to examine the nature 
of randomness. You may have a better way of looking at meta-issues. You may even have a set of considera-
tions for looking at this topic in a fourth (or more!) dimension. 

In my case, the sequel was to examine the behavior of "hungry" turtles. One does not live by wine alone! 

Postscript 
As I indicated at the outset, this account may be interpreted at many levels. From a pedagogical perspec-

tive, the same software (More 3.0) that produced the structural flowcharts may be used to produce a series 
of screen displays suitable for presenting the Logo procedures. Such displays can facilitate class discussion 
of the various features the procedures incorporate. These displays may also be printed on a laser printer 
and used as masters for making overheads. Alternatively, with the proper acetate, overheads can be pro-
duced directly on the laser printer. Clearly such an approach can be generalized and extended to other program-
ming tasks and languages. 

Reference 
Abelson, H., and A. diSessa. Turtle Geometry. Cambridge, Mass.: MIT Press, 1981. 

14 


	3 - 14 Computer Programming in the Schools: Emphasizing Structure — An Example Using "Inebriated Turtles"

