
Checking Polynomial Arithmetic

Casting Out 9's Reincarnated 

Murray L. Lauber 

Casting out 9·s is a centuries-old method for 
checking computations With the introduction of 
calculators and computers, it has lost most of its 
value But, as we shall see, it is not a completely 
antiquated procedure. A generalization of it can be 
used to check polynomial arithmetic, that is, com
putations involving adding, subtracting, multiplying 
and dividing polynomials. In addition, it has some 
affinities v.;ith a type of code currently used in de
tecting and correcting errors in messages transmit
ted by computers. 

A Brief Review of Casting Out 9's 

To understand the basis of casting out 9·s, let us 
take a short excursion into the world of modular 
arithmetic. In the language and notation of modular 
arithmetic, an integer, a, is congruent to another 
integer, b, modulo n, n a counting number, if 
a=b+kn. or a-h=kn, where k is an integer That is, a 
and h differ by a multiple of n. This is written 
a:::b(mod n) For example, using n=9, we know that 
33=6(mod 9) because 33=6+(3*9). Another ,vay of 
understanding this is to observe that 6 is the remain
der when 33 is divided by 9. We will refer to the 
number less than 9 to which an integer is congruent 
modulo 9 as the mod 9 equivalent of the integer. 
For example, the mod 9 equivalent of 33 is 6. The 
process of finding the mod 9 equivalent of a nwn
ber is appropriately referred to as casting out 9's be
cause it subtracts a multiple of 9 from the number. 
For exan1plc, to find the mod 9 equivalent of 33, we 
subtract 3*9, or cast out three 9's, from 33. 

Briefly, the method of checking computations 
,\ith integers by casting out 9's is done as follm:vs. 
Each number in the computation is changed to its 
mod 9 equivalent by casting out 9's to obtain an 
analogous problem modulo 9. In fact computations 
can be checked as well by casting out 8 ·s. Ts or any 
other counting number. For nwnbers represented in 
base 10, the particular beauty of casting out 9's is 
that it can be done simply by summing the digits of 
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the numbers involved, recursively if necessary, to 
obtain single-digit numbers. Once the mod 9 
equivalent of each of the numbers in the computa
tion has been found, the computation is done using 
these single-digit numbers. The answer to this sim
ple computation is then compared to the mod 9 
equivalent of the ans\'ver to the original more com
plex computation, again using the method of swn
ming digits. Some examples arc given in Table l .  

A fuller exploration of casting out 9's is  included 
in an article in The Mathematics Teacher (Lauber 
1990). As noted in that article, casting out 9's has 
its analogues in other bases, for example, casting 
out Ts in base 8 arithmetic, casting out 4 's in base 5 
arithmetic, or, in general, casting out (b-1 )'s in base 
b arithmetic. A variant of this general analogue, 
casting out (x-1 )'s, is of particular use in checking 
polynomial arithmetic. We will focus specifically 
on integral polynomials, that is, polynomials with 
coefficients that arc integers, but the analogue ap
plies also to all real polynomials and even to those 
with complex coefficients. 

What Is Casting Out (x-1)'s? 

An integral polynomial in x may be thought of as 
a number base x. Consider, for example, the num
bers 634 ?(base 10), 634 ?(base 8) and the polynomial 
p(x) = 6x3+ 3x2+4x+ 7. In expanded form, these may 
be written as follows. 

634 7(base 10) = (6* I 03)+(3* I 02)+( 4 * I o 1 )+(7* l oO) 
6347(base 8) = (6*83)+(3*82)+(4*8 1 )+(7*80) 

In base 8, the number eight would be denoted by 
the digits 10 The digit 8 is used here to avoid con
fusion. 

p(x) = (6*x3)+(3*x2)+(4*x1)+(7*x0) 

Clearly, if x = I 0, then p(x) just becomes (6* 103)+ 
(3* 102)+(4* 10 1 )+(7* 10°) or 6347(base 10), and, if 
x=8, p(x) becomes 6347(base 8) This illustrates the 



basic parallel between polynomials and numbers 
written in base 10 or some other base. 

It should be clear, then, that casting out (x-1 )'s 
from a polynomial in the variable x is the analogue to 
casting out 9's from a number in base 10. It should be 

apparent as well that the parallel in polynomial arith
metic to summing digits in base IO arithmetic is sum
ming the coefficients of the polynomials involved. To 
illustrate, consider the following examples. 

Casting Out 9's 

(a) By finding the remainder when dividing by 9: 
6347 = (705*9)+2 

(b) By summing digits recursively: 
6347 ➔ 6+3+4+7 = 20 ➔ 2+0 = 2 

Casting Out (x-1 )'s 

(a) By finding the remainder when dividing by x-l :  

Synthetic division of 6x3+ 3x2+4x+ 7 by x-1 
yields a remainder of 20: 

6 3 
-0 -6 

6 9 

4 
-9 
13 

(b) By summing the coefficients: 
6+3+4+7 = 20 

7 
- 13 

20 

Table 2 gives three examples of checking 
computations with integral pol)nomials by casting out 
(x-l)'s, employing the method of summing the 
coefficients. The problem of addition of polynomials in 
(a) probably does not require further explanation. In (b ), 
the product (3x3+ 2x2-3x+6)(2x2+ 7x-3) is checked. 
The sum of the coefficients of 3x3 + 2x2 - 3x + 6 is 
3+2-3+6 = 8. The sum of the coefficients of2x2+7x-3 
is 2+ 7-3 = 6. The product of these sums, 8*6, is 48. 
The reader may check that the product of the two 
polynomials is 6x5+25x4-xLtsx2+5lx-18. The 
sum of the coefficients of this product is 
6+25-1-15+51-18=48. Thus the mod(x-1) equiva
lent of the product of the two polynomials involved 
is equal to the product of the mod(x-1) equivalents 
of the two polynomials. (It may be instructive to re
late that, in my first attempt at finding this product, I 
quickly discovered, through casting out (x-l)'s, that 
the answer was incorrect.) 

Checking division of polynomials is illustrated in 
(c) in Table 2. The reader may verify that when 
3x5-2x4+x3--4x2+6x+9 is divided by x2-3x+7, the 
quotient is 3x3

+ 7x2
+ I 5x-8 and the remainder is 

-75x+65. This may be restated in terms of the divi
sion algorithm as follows. 
3x5-2x4+x3--4x2 +6x+9= 
(3x3+7x2+ I 5x-8 )(x2-3x+7)+(-75x+65). 
The corresponding statement mod(x-1 ), 
13 = [(-39)*5] + 208, 1s true. To ease 
computation, this statement could be further 
converted to its mod 9 equivalent using casting 
out 9's, but some care is needed in finding this 
mod 9 equivalent of -39 because it is negative. 
Its mod 9 equivalent may be found as fol
lows: -39 ➔ -(3+9) = -12 ➔ -(1+2) = -3. 
But -3 = 6(mod 9) because -3=6+(-1)(9). The 
reader is invited to complete the construction of 
the mod 9 equivalent o f  the statement 
13=[(-39)*5]+208. 

Why Casting Out (x-1)'s Works 

There are several possible levels of mathematical 
justification for summing coefficients to check 
polynomial arithmetic. We will examine two of 
them. The first is direct, bypassing the ideas of 
modular arithmetic and casting out (x- l )'s. Con
sider, for example, the product of a third degree 
polynomial p(x) = ao+a1 x+a2x2+a3x3 and a second 
degree polynomial q(x) = bo+b1x+b2x2. 
Then 
p{x)q(x)= [ ao+arx+a2x2+a3x3 \ I b0+b 1x+b2x2 ) 

Using the commutative, associative and distributive 
properties, we-obtain 
p(x)q(x) = / ao+a1x+a2x2+a3x3 I b0 

+ [ a0+a1 x+a2x2+a3x3 \ b1x 
+ / a0+a1 x+a2x2+a3x3 ) b2x2 

= l aobo+a1 bQX+a2boX2+a3bQX3 ) 
+ I aob1x+a1b 1x2+a2b1x3+a3b 1x4: 

+ [ a0b2x2+a1 b2x3+a2b2x4+a3b2x5 i 

= aobo+ I a1bo+aob 1 l x+ 1 a2bo+a1b1+aob2 l x2 

+ l a3bo+a2b 1 +a1 b2 l x3 

+ [ a3b 1+a2b2 i x4+a3b2x5 
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The sum of the coefficients of p(x)q(x) is 
a0b0+ I a 1 b0+aob 1 l + /a2b0+a1 b 1 +a0b2 f 

+ I a3bo+a2b1+a1b2 l + I a3b1+a2b2 l +a3b2 
This sum is equal to / a0+a1+a2+a3 \ i ho+b1+b2 \, 
which is just the product of the sum of the coefficients 
of p(x) and the sum of the coefficients of q(x) 

This demonstration that the sum of the coeffi
cients of the product of p(x) and q(x) is equal to the 
product of the sums of their coefficients can be gen
eralized to polynomials of any degree by induction. 
A similar argument can be constructed pertaining to 
the sum or difference of two polynomials. Thus the 
method of summing coefficients can be used to 
check polynomial arithmetic involving combina
tions of multiplication, addition and subtraction. 
Because by the division algorithm, division can be 
stated in tenns of multiplication and addition, divi
sion of polynomials can also be checked by this 
method. 

Another level of justification employs the no
tions of modular arithmetic. Its focus is initially on 
casting out (x-l)'s rather than summing coeffi
cients. It is based on the following theorem: 

Theorem: Let p(x) and q(x) be polynomials with 
integral coefficients and n be a natural number If a 
r and s are integers such that p(a) = r(mod n) and 
q(a) = s(mod n), then 

(a) [p(a)+q(a)] = (r+s)(mod n): 
(b) p(a)q(a) = rs(mod n). 

A proof of (b) uses the definition of congruence 
modulo n given earlier along with the associative 
and distributive properties as follows: 

p(a) = r(mod n) and q(a) =s(mod n) 

= > {p(a)=r+kn for some !nteger k, and 
q(a)=s+jn for some int eger J 

= 
> p(a)q(a)=(r+kn)(s+jn) 

= > p(a)q(a)=rs-rjn-kns-kjn2 

= >p(a)q(a)=rs+ (rj+ks • kjn)n 
= >p(a)q(a) =rs(mod n) 

The proof of part (a) is left to the reader. 
This theorem may be restated in terms of remain

ders after dividing by n. Part (b), for example, says 
basically that the remainder when the product of 
p(a) and q(a) is divided by n is the same as the 

20 

product of the remainders when p(a) and q(a) are 
each divided by n. That is, if we cast out n's before 
taking the product, we will get the same result as if 
we cast out n's after taking the product. 

Putting a=x and n -=x-l in the above theorem, 
and assuming x is an integer, justifies casting out 
(x-l)'s as a way of checking computations involv
ing integral polynomials. What remains to be dem
onstrated is that casting out (x-l)'s from a 
polynomial, that is, finding the remainder when we 
divide it by x-l, is the same as summing its coeffi
cients. This is quite easy to do. The remainder theo
rem guarantees that if a polynomial p(x) is divided 
by (x- l ), then the remainder is p( l). The only other 
observation needed is that p( l )  is just equal to the 
sum of the coefficients of p(x). This follows 
because any power of l is just equal to 1. For exam
ple, if p(x) = 3x5-2x4 �x3-4x2 +6x·9, then p( l )  = 

3-2+ 1-4+6-9. 
Each of these methods of justification has its 

own appeal. The latter is more general in one sense 
because it applies neatly to polynomials of any de
gree. But it has deficiencies as well. For example, it 
cannot be used to justify casting out (x-l)'s as a 
means of checking computations with nonintegral 
polynomials because, strictly speaking, the theory 
of modular arithmetic applies only to integral quan
tities. The first justification, though not so tidy, has 
the advantage of being generalizable to all real 
polynomials, and even to complex polynomials. 

Polynomial Codes-An Outgrowth 

of Modular Arithmetic 

Although it is too big a topic to cover in this 
article, it is of interest that the concept of quotient 
rings, a generalization of modular arithmetic, and 
employing some of the same basic notions as the 
procedure of casting out (x-l)'s, fonns the basis for 
powerful error correcting/detecting codes for com
puter messages. There are some parallels, as well as 
some differences, between polynomial codes and 
casting out (x-l)'s. Polynomial codes do not have 
the capability of checking computations, but they 
are capable of detecting and correcting errors in the 
bits of "words·· transmitted in computer messages. 
Polynomial codes are more powerful than casting 
out (x-l)'s in that they are capable of correcting as 
well as detecting errors. They are also of more prac-



tical significance because they serve a larger role in 
our technological society. For brief descriptions of 
the nature, along with some examples, of pol)no
mial codes and other error detecting/correcting 
codes, refer to Laufer (1984, 1-61, 476-85), Lax 
(1991, 209--64), Biggs ( 1989, 375-98) and Gersting 
( l  987, 339-67). 

Conclusion 

Casting out (x-1 )' s has a lot of potential as a sub
topic of polynomials in the high school mathemat
ics curriculwn. It could be a very useful tool in the 
mathematical repertoires of high school and college 
students because of its usefulness in checking 
polynomial arithmetic. It has the potential to illus
trate a variety of methods of mathematical justifica
tion. It has value, as well, for illustrating how the 
centuries-old method of checking computations. 
casting out 9's, though now mostly obsolete be
cause of calculators and computers, can be general

ized into the still-useful tool of casting out (x-l)"s. 
In addition, it has significant affinities with the still
more-general notion of quotient rings that form the 

basis of polynomial codes. Perhaps through a brief 
study of casting out (x- l)'s, students' curiosity 
could be inspired to research the polynomial codes 
concept and thus begin to explore some notions 
usually reserved for college or university courses in 
abstract algebra. The progressive levels of generali
zation, from casting out 9's to casting out (x-l)'s to 
polynomial codes, could be used to illustrate how 
mathematics has developed historically, from par
ticular to general, and to demonstrate the increasing 
power that accompanies the movement to higher 
levels of generalization. 
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Table 1 Examples of Casting Out 9's 

Analogous Problem 
Problem Summing Digits Recursively Modulo 9 

164 l +6+4 == 11 I+ 1 = 2 2 
a) X 27 2+7 = 9 0 xO 

4428 4+4+2+8 = 18 1+8 = 9 0 0 

4389 4+3+8+9 = 24 2+4 =6 6 
b) + 2186 2+1+8+6 = 17 1+7 = 8 + 8  

6575 6+5+7+5 = 23 2+3 = 5 5 = 1+4 14 

23.98 2+3+9+8 = 22 2+2 = 4 4 
c) X 4.31 4+3+1 =8 x....8. 

103.3538 1+0+3+3+5+3+8 = 23 2+3 = 5 5 = 3+2 32 
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Table 2 Examples of Casting Out (x - 1 )'s 

Analogous Problem 
Problem Sum of Coefficients Modulo ( x  - I) 

4x4 -2x·' + I ox2 -6x + 3 4-2+10-6+3=9 9 
a) + 7x3 -8x2 - 2x + 6 7-8-2+6=3 ±.]_ 

4x4 + Sx3 + 2x2 -8x - 9 4+5+2- 8+9=12 12 

3x3 + 2x2 -3x + 6 3+2-3+6=8 8 
b) X 2x2 + 7x -3 2+7-3=6 x6 

6x5 + 25x4 - x3 - l 5x2 + 5 Ix -18 -- 6 + 25 - I - 15 + 5 I - I 8 = 48 48 

Dividend 3x5 -2x4 + x3 - 4x2 + 6x + 9 --3-2+1- 4+6+9=13 13 
c) Divisor: -i-- x2 -3x + 7 1-3+7=5 -'-

Quotient: 3x-' + 7x2 + X -50 3 + 7 + I -50 = -39 -39 
Remainder: -15 Ix+ 359 -151 + 359 = 208 208 

OR 

3x5 -2x4 + x3 - 4x2 + 6x + 9 = ( 3x3 
+ 7x2 + x - 50) (x2 - 3x + 7) + (- 15 lx + 359) 

is analogous to 
13 = (- 39) (5) + 208 

[which is true] 
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