
Two Computing Exercises with
Mathematical Overtones

John G. Heuver

It is sometimes necessary to have exercises that
demonstrate the need for a sound knowledge of
mathematics while teaching the intricacies of com
puter programming. The programming language I
have chosen is Pascal, which was developed by Nik
taus Wirth in the 1970s for the specific purpose of
teaching programming. Pascal is being maintained
and upgraded as a suitable language that works well
on present-day computers. It is not overburdened
with unnecessary detail. Version 7 is apparently the
latest by Borland. One has to keep in mind that in
general a high correlation exists between the main
tenance of software and its effectiveness. The
programming language C is more flexible in the sense
that it allows close control of the hardware and the
interaction with assembler is easier. The use of
pointers in C makes programming more agile. How
ever, to get a good insight in basic programming,
Pascal is simpler because it has fewer trappings and
is less cumbersome in more instances. I have cho
sen the following two examples simply because I am
personally intrigued by the questions they raise.

The 3x + 1 Conjecture

The 3x + 1 problem has been attributed to Lothar
Collatz. Pick a positive integer; when it is odd, mul
tiply it by three and add one, and if it is even, di
vide by two, continuing the process until you end
up with one. The sequence 3, 10, 5, 16, 8, 4, 2, 1
is an example. The program that follows performs
this task for a number entered from the keyboard.
The solution to the question of why the sequence ends
with 1 or, simply put, why it ends in finite time is
still beyond our present-day knowledge. Note that
the entire sequence is not uniquely reversible while
this is the case in the second example.

program COLLATZ;
var

16

a:integer;
begin
writeln('Enter a number.');
readln(a);

else

repeat
if odd(a) then
a:= 3*a + l

a: =a div 2;
write(a:5);
until a = 1;
readln;

end.

The Problem of Cups and Stones

Barry Cipra (1992, 1993) proposed the following
problem. Suppose we haven cups arranged in a cir
cle and k unmarked stones are placed in each cup.
Mark these cups 1, 2, 3 ... , n, clockwise. Pick
all the stones out of the first cup, and put one in ev
ery subsequent cup moving clockwise, leaving your
hand by the cup in which you dropped the last stone.
Pick up all the stones in that cup, and start over again.
This process is simulated in the program that fol
lows with four cups and one stone per cup. Depend
ing on one's type of computer, the number of cups
and stones cannot be increased much beyond 10 and
4, respectively. Otherwise, it takes a long time to
watch the stream of output. The questions that this
problem raises are (I) why does the process end in
accumulating all the stones piled up in the first cup?
and (2) how many moves accomplish this process?
The first question was answered and the second only
solved for the case of two cups. This is not the place
to consider the proofs.

program CIPRA;
type
container = array[l..20) of integer;
var

cups:container;
stones, num, a, b, c, startcup, stonesincup:integer;
begin

b:= O;
num:= 4;
stones:= l;

for a : = 1 to num do

begin
cups[a] : =stones;

end;
startcup: = l ;

repeat
stonesincup: = cups [startcup];
cups[startcup] : = O;

for c: = 1 to stonesincup do
begin

startcup : = startcup + 1 ;
if startcup num then

startcup : = startcup - num;
cups[startcup]: = cups[startcup] + l;

end;
b:=b+l;

for c: = 1 to num do
write(cups[c] :5);
writeln;

until cups[l] = num * stones;
writeln(b:5, 'iterations');
readln;

end.

1111 ;0211 ;0022; 1120; 1030;2101;
2011 ;2002;3100;3010;3001 ;4000;
11 iterations

Conclusion

The problems are meant as exercises in program
ming techniques while focusing on some of the more
subtle questions about the mathematics in the back
ground. The programs can also be used as exercises
for designing a file for printable output. In the 3x + 1
case, a loop can be built to obtain the number of iter
ations, for example, from 2 to 500, while suppress
ing the output of the actual se.quences. Programs for
graphs of mathematical functions are less suitable
because they are easier to do with Maple V, the
mathematics software package developed at the
University of Waterloo, or equivalent software.

Bibliography

Char, B. W., et al. First Leaves: A Tutorial Introduction to Ma
ple V. New York: Springer-Verlag, 1992.

Cipra, B. The Mathematics Magazine. Problem 1388. The
Mathematical Association of America, 1992, p. 56; 1993, p
58.

Engel, A. Elementary Mathematics from an Algorithmic Stand
point. Staffordshire, U.K.: Keele Mathematical Education
Publications, University of Keel, 1984.

Lagarias, J.C. "The 3x + I Problem and its Generalizations.''
The American Mathematical Monthly, 1985.

17

	16 - 17 Two Computing Exercises with Mathematical Overtones

