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Problem solving has received a major focus in 
elementary mathematics curricula during the '80s, 
and emphasis on this major area will grow as cur-
ricula are planned for the '90s. More than ever, el-
ementary students need to be equipped with the abil-
ity to solve the various problems they encounter in 
school as well as outside the classroom. "Good prob-
lem solvers possess a broad understanding of the 
concepts involved in a problem" (Irons and Irons 
1989). 

Attitudes to problem solving are also of consider-
able importance. "Many students have rather intense 
effective reactions to mathematical problem soly-
ing" (McLeod 1988). Unless teachers establish a 
positive climate, children will be reluctant to meet 
the challenge of the unknown. "The problem solver 
needs enthusiasm to proceed with the solution. En-
thusiasm signifies the willingness to accept a chal-
lenge or set one's own challenge" (House, Wallace 
and Johnson 1983). 

Teachers can play a significant role promoting 
problem-solving skills. Many students are the prod-
ucts of earlier curricula when problem solving didn't 
receive the emphasis it does today. Also, many stu-
dents had elementary teachers who themselves had 
negative reactions to the solution of all but the most 
routine of problems. 

In my work with teacher-interns, I encounter very 
few who are willing or able to take this approach 
at the outset. Even though they are college gradu-
ates, many of them math majors, they, too, search 
for the infallible equation and are just as afraid as 
their students will be of appearing foolish. Teacher 
educators, then, have to model and encourage 
general problem solving behavior. (Noddings 
1989) 

Problems with Multiple Solutions 
Many education students encountered standard-

textbook problems when they were in elementary 
school. Often all the problems of a particular set 
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focused on a recently studied computational process 
featuring the use of a particular equation format. Stu-
dents were seldom challenged to solve process prob-
lems. "A process problem is one that cannot be sim-
ply solved by translating the one or more number 
sentences. Process problems emphasize the think-
ing processes for obtaining problem solutions" 
(Charles and Lester 1984). 

A positive attitude toward problem solving is im-
portant for teachers and their pupils. Of equal im-
portance is the willingness to accept a challenge. 
Pupils who are reluctant to solve problems may be 
encouraged by the fact that several possible solu-
tions exist, and that finding even one of them is re-
warding. Other pupils are challenged to find all the 
solutions, and they feel rewarded when they use a 
strategy that will ensure complete success. 

Situations that allow students to experience prob-
lems with "messy" solutions or too much or not 
enough information or that have multiple solu-
tions, each with different consequences, will bet-
terprepare them to solve problems they are likely 
to encounter in their daily lives. (Romberg 1989) 

Problems that have more than one solution tend 
to foster aproblem-posing mindset because they 
are not as limited as one-answer problems. (Mo-
ses, Bjork and Goldenberg 1990) 
Children will find mathematics rewarding and 

challenging only if their teachers are equipped to 
meet the needs of incorporating excellent problems 
in their lesson plans. "Because excellent problem-
solving questions are seldom created `on the spot,' 
teachers will benefit from writing lesson plans that 
include questions they can use at crucial moments" 
(Cemen 1989). Of equal importance is the teacher's 
understanding of the importance of problem solving 
in the mathematics curriculum. 

If a teacher conceives of mathematics solely in 
terms of speed, accuracy and one right answer, 
then it is unlikely that such a teacher will stimu-
late students to monitor their solution processes, 



estimate answers, search for alternate solution 
methods, pose problems, or engage in similar 
worthwhile activities. (Grouws and Good 1989) 

The factor of multiple solutions is related to the 
strategy factor. Problems having only one solu-
tion may or may not be more difficult than prob-
lems having multiple solutions. However, if a stu-
dent is asked to find all solutions, a natural 
question is "How can I be sure that I have all so-
lutions?" The effect of multiple solutions on the 
difficulty of the problem needs to be further re-
searched. (LeBlanc, Proudfit and Putt 1980) 

Example Problems and 
Extensions 

In this section, three problems will be presented, 
one featuring each of the pictorial, symbolic and man-
ipulative modes. Following the examination of the 
several solutions for each of the problems, ways to 
revise the problems will be suggested. Solution pat-
terns will also be included for the revised problems. 

1. Find all the squazes, each of a different azea, that 
can be made on a 4 by 4 (25-dot region) area. 

Diagram 1 shows the eight possible solutions if 
one isrestricted to awhole-number solution for each 
area. The dotted lines within some of the squares are 
included as an aid to verify the area. 
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Diagram 1 

If the initial problem was revised to feature a 3 by 
3 array, the solutions would be indicated by the top 

five squares in Diagram 1. Similarly, a 2 by 2 array 
would yield the top three squares in Diagram 1. Dia-
gram 2 shows the seven additional squares that can 
be made on a 6 by 6 array. A 5 by 5 array would 
generate all the squares in Diagram 1 as well as the 
top three squares in Diagram 2. 
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The following table provides a numerical sum-
mary of all the squares that can be made on arrays of 
ever-increasing dimensions. Students can be encour-
aged to look for patterns and to predict the number 
and types of squares for arrays of larger dimensions. 

Size of array Number of 
squares 

Total number 
of squares 

1x1 1 1 
2x2 1+2 
3x3 3+2 5 
4x4 5+3 8 
5x5 8+3 11 
6x6 11+4 15 
7x7 15+4 19 
8x8 19+5 24 
9x9 24+5 29 
lOx 10 29+6 35 

2. Find all the ways that bicycles, tricycles and wag-
onscan be made from 20 wheels if there is at least 
one of each kind and no wheels are left over. 

The following chart shows the four possible solu-
tions. The suggested strategy is to begin with one 
wagon (the vehicle with the largest number of 
wheels) and to consider the required number of each 
of the other vehicles to reach the final total of 20 
wheels. 
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Bicycles Tricycles Wagons 
5 2 1 
2 4 1 
3 2 2 
1 2, 3 

A simple way to revise this problem would be to 
change the total number of wheels. The following 
table shows the possible solutions for numbers of 
wheels from 16 to 23. The problem featuring 16 
wheels has only two solutions, while the problem 
with 23 wheels has 8, the largest number of solutions. 

Wheels Bicycles Tricycles Wagons Vehicles 
16 3 2 1 6 
16 1 2 2 5 
17 5 1 1 7 
17 2 3 1 6 
17 3 1 2 6 
18 4 2 1 7 
18 1 4 1 6 
18 2 2 2 6 
19 6 1 1 8 
19 3 1 1 7 
19 4 1 2 7 
19 1 3 2 6 
19 2 1 3 6 
20 5 2 1 8 
20 2 4 1 7 
20 3 2 2 7 
20 1 2 3 6 
21 7 1 1 9 
21 4 3 1 8 
21 1 5 1 7 
21 5 1 2 8 
21 3 1 3 7 
22 6 2 1 9 
22 3 4 1 8 
22 4 2 2 8 
22 2 2 3 7 
23 8 1 1 10 
23 5 3 1 9 
23 2 5 1 8 
23 6 1 2 9 
23 3 3 2 8 
23 4 1 3 8 
23 1 3 3 7 
23 2 1 4 7 

Another variation could be made in the kinds of 
vehicles chosen. What might be the results if each 
vehicle had an odd number of wheels (for example, 
unicycles, tricycles and five-wheeled pentikes)? Stu-
dents should also be encouraged to look for patterns 
in the numerical charts. 
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3. Make a square with the two lazgest tangram pieces. 
Find how many ways a square of the same size 
can be made with other arrangements of tangram 
pieces. Sketch each way by drawing lines azound 
the chosen sets of pieces. Each way must use a 
different set of pieces. 

Students attempting this problem would benefit 
by having a sheet of paper containing a number of 
congruent squares, the size of each to accommodate 
the squaze made by the two largest tangram pieces. 
Diagram 3 shows the five possible congruent 
squares. 
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Diagram 3 

A variation of this problem would be to ask 
students to use tangram pieces to make all the 
different right-angled isosceles triangles. Dia-
gram 4 shows the 12 possible triangles. Inter-
estingly, five different sizes of these triangles 
exist. Children would probably benefit by having 
a sheet of paper containing outlines of the 12 
triangles. 

An extension of either version of the tangram 
problem featuring the symbolic mode could be 
accomplished by having students draw each of 
the five squares and the twelve right-angled 
isosceles triangles on squared paper. Suppose 
that the measure of the edges of each square is 
four units and the measures of the triangles are as 
follows: 

A hypotenuse 4 units 
B—D equal edges 4 units 
E—I hypotenuse 8 units 
J—K equal edges 6 units 
L equal edges 8 units 

Students can then calculate the areas of the 
squazes and triangles as well as the azeas of [he indi-
vidual tangram pieces in each illustration. These 
measures could then be compared with the meas-
ures of the actual plastic tangram pieces and 
combinations. 
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