
Playing with c x (1 - x) 

J. Dale Burnett 

I have had fun playing with the function c x ( I -
x). The activities have at least a three-fold nature: 
one is to explore some characteristics of this func­
tion; another is to demonstrate various computer soft­
ware packages useful for facilitating such explora­
tions; and finally there are the educational issues 
involving what occurs and does not occur in school 
classrooms. 

Exploration of the function c x ( I - x) breaks into 
two components: one examines the mathematics, the 
other develops an appreciation of the contexts where 
one might expect to find such a function. The con­
texts also split into parts: science, mathematics and 
education; similarly with the exploration: graphing, 
algebra and dynamic properties are all of interest. 
This splitting, and splitting again, is itself a meta­
phor for this article and for the ways in which one 
might conceive knowledge. Part of the intent is to 
make this metaphor explicit, arguing that such ex­
plicitness is an important pedagogical principle. Let's 
share the secrets with our students. The investiga­
tion is divided into three sections. The first section 
examines the function using a variety of computer 
software. The second section looks at the same func­
tion from a biological perspective, and the third sec­
tion builds on some features that were noted during 
the study of population dynamics. This latter section 
opens up an entire new uni verse of mathematical top­
ics. 

I emphasize that this is written not about a thor­
ough analysis of this function. Rather it is about some 
suggestions for mathematics. 

Section 1 Quadratic Functions 

Let's begin with some simple algebra and graphing. 
Let y = c x (] - x) 

What does the graph of this equation look like? 
Even this question can immediately lead to alter-

native conceptions and approaches. One approach is 
to simply find out. Thus, at least to begin with, one 
doesn't even try to imagine what the graph might be. 
Let's just let the technology show us. 

The most likely activity for many students and 
teachers would involve use of a graphing calculator. 
Fair enough. Numerous workshops have been offered 
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and many articles written about the use of such de­
vices in mathematics classrooms. I will explore other 
possibilities, possibilities that use more powerful 
tools. These tools already exist, but their use in class­
rooms is relatively rare. I am referring to the laptop 
computer, supplemented by sophisticated software 
packages. I will use four such software packages in 
the remainder of this paper: Zap-a-Graph, Microsoft 
Excel, Mathematica and STELLA. 

Zap-a-Graph 

Zap-a-Graph is a software package for graphing 
mathematical functions. It is relatively easy to use 
since usually the user need only change the values of 
a set of predefined parameters. Here is an example 
using our equation. 

Using the pull-down menu for Zap-A-Graph gives 
us the following choices: 

Edit •1r� ·-Tnmsform Erose Grid Options Color 

Point. .. 1S 

Line •.. ► 
-!r. ,c,ll y 01!"2 + bl! + c 

Cubic ..• It ► y • 0(1< - p)"2 + Q 
Quortic ... ► y = e(K - rll(K - r2) + d 

n(y + k) = (H ,- h)"2 
Circle ••• H = oy·z +by+ C 
Ellipse ... 
Hyperbolo ..• ► 

Second Degree ... s 

The third choice corresponds to the form c x ( I - x), 

although even this recognition requires a certain level 
of symbol sophistication. Here is the dialogue box 
after I select that choice, with the values that I re­
quire now entered into the appropriate boxes. 

B 
Change 

Fonn 

ENTER THE COEFFICIENTS fOR 
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Selecting the Plot option results in the following 
display: 

10 

-10 -5 10 

Another approach is to play a bit with the algebra 
of the equation and see what develops. Multiplying 
the factors gives 

y = ex - cx2 

A quick diversion. The above consideration of y 

= c x ( J - x) and y = ex - cx2 indicates that different 
canonical forms can serve different purposes. The 
first form is useful for noting the roots of the equa­
tion. Clearly, y is O when x is O and 1. The second 
form indicates the polynomial nature of the expres­
sion, emphasizing in this case that we are consider­
ing a polynomial of degree 2. Are there other forms 
that have other interesting properties? Note the dif­
ferent forms used by Zap-a-Graph in the various pull­
down menus. It is interesting to speculate on what 
might happen if a teacher asked a class to examine 
the different forms provided by Zap-A-Graph and 
recommend when each form might be used. 

Microsoft Excel 

In addition to using graphing software, another 
approach is to think of using spreadsheets to explore 
mathematical topics. Spreadsheets may be used to 
obtain tables and graphs for a function. Using Excel, 
for example, one can quickly set up the necessary 
formulas. We will begin by setting c = I (a simple 
first choice-the value is stored in cell A2) and let x 

vary from -10 to +10 (another simple choice). Let's 
see what happens. Here are the cell formulas: 
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:□ 
A B 

1 C !X 

2 I 

3 -10 

4 i•B3+1 

Using the fill-down command, one quickly ob­
tains these values: 

,IJ UJorksheetl � 

A I B I C I D I E I 
I C I X 

' 
I ex i ex-2 ! u • ex - cx·2 ! 

2 1 ' ' I I 
3 ! -10 ! -10 l 100 ; -110 I 

4 I -9 I -9 I 81 ! -90 I 

5 i -8 i -8 ' 64 ! -72 ! 

6 
I -7 

I -7 l 49 ! -56 i 
7 -6 -6 36 : -42 I 

8 I -5 I -5 25 l -30 
9 I -4 I -4 16 I -20 ! 

10 I -3 I -3 9 : -12 : 

I I I -2 I -2 4 ! -6 ! 
12 ' -I -1 1 I -2 I 
13 : 0 : 0 0 ; 0 ' 

14 ! 1 ! 1 1 I 0 I 

15 I 2 I 2 4 ' -2 I 

16 I 3 I 3 I 9 I -6 I 

17 4 : 4 i 16 I -12 I 
18 I 5 ! 5 I 25 I -20 I 
19 I 6 I 6 I 36 I -30 I 

20 I 7 I 7 I 49 -42 i 
21 i 8 i 8 i 64 ! -56 I 
22 : 9 I 9 : 81 I -72 I 

23 I 10 I 10 I 100 -90 
.... . ' ' 

This provides a tabular representation of the func­
tion, and it deserves examination because it shows 
the arithmetic detail of the function. A discussion of 
the relative merits of the equation, the table and the 
graph might prove interesting because they are sim­
ply different representations of the same idea. 

It is relatively easy to obtain the corresponding 
graph: 

0 

a:> "' V 

-20 
I I I 

-40 

-60 

-80 

-100 

-120 

Yes, it is a parabola. It is always reassuring to get 
the same result using different approaches. Much of 
science has progressed using this principle, and it is 
a critical feature of most work involving computers. 
One should always ask, "How do I know that the 
result that the computer has displayed is correct?" 
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Obtaining the same result using different software 
packages goes a long way toward providing a satis­
factory answer to the question. This is rarely empha­
sized in school where, quite often, only one software 
package is available. 

One could pose many questions at this point. One 
such question could involve obtaining a clearer pic­
ture of what happens near the x-axis. Ideally, at least 
from my perspective, the students will learn to ask 
most of these questions themselves, with the teacher 
acting more as a gentle catalyst and as a resource. 
Notice how the emphasis shifts from getting answers 
to asking questions. 

One might also wonder, what are the roots of this 
function? A close look at the graph suggests that these 
would be x = 0 and x = 1. These both check by sub­
stituting back into the original equation. It is not al­
ways clear why one might want to know these val­
ues, except that we have a formula for obtaining them 
and thus feel that we should use it whenever we can. 
Why do we care what the roots are? 

We can also explore the behavior of the function 
for a wider range of x values. Let's try this. For open­
ers, let's look at the graph when x varies from -100 
to +100 in steps of 10. 

0 
0 0 

-2000 
a:, '° 
I l 

0 0 0 0 O O 
N -0 (D 0 

-4000 

-6D00 

-8D00 

-10000 

-12000 
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The table gives more accurate values: 

A I B I 
l C x_ ! 
2 1 j 

-100 
4 ' -90 i 

5 -80 j 

6 -70 i 

7 -60 i 

8 -so 

9 -40 i 

10 -30 i 

11 -20 i 

12 -10 i 

� 0 i --
14 ! 10 
15 207 
1 6  30 ' 

17 i ---,fo i 

18 50 ' 

19 60 
20 70 
21 I BO ---;-

� �-7-
90 ' 

..12.... 100 i 

?A I i 

C 

ex 

-100 
-90 
-80 
-70 
-60 
-so 

-40 

-30 
-20 
-10 
0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 

I D 

! cx-2 

I l 0000 
8100 

, 6400 
1-4900 
i 3600 

2500 
; 1600 
I 900 
i 4-00 

100 
i 0 
; 100 

400 

-i-
900 

1600 i 

2500 
' 3600 
! 4900 
: 6400 

8100 
10000 

i 

t E I 
; \J: CX - CX

0

2 I -
I 

i -10100 
I -8190 I I -
I -6480 I 

I -4970 I 
I -3660 

I 

I -2550 I 
I -1640 

! 
t -930 i 

-420 i 

i -11 0 i 

! 0 i 
-90 

i -380 
! -870 -
I -1560 j 

i -2450 i 

I -3540 I 

i -4830 i 

i -6320 i 

I -8010 l.-
-9900 ! 

Let's try-1,000 to +1,000 (in steps of 100). 

-200000 

-400000 

-600000 

-800000 

-1000000 

-1200000 

Yet appearances can be deceiving (Goldenberg 
1988). The scale of both axes has been changing. All 
graphs should be thought of as being drawn on rub­
ber. The "shape" of the graph is in large part a prop­
erty of the scales of the two axes. That is, the equa­
tion determines the ''essential" features (for example, 
a parabola opening down), but the shape of this fig­
ure, in terms of how narrow or wide it is, is a prop­
erty of the scale of the axes. 

Another issue that deserves early mention is no­
tational conventions. The idea of a standard, to be 
used worldwide by all mathematicians, has had a 
seductive lure to it. Teachers of mathematics, and 
their students, have also wished for such a standard. 
We are not even close to such an ideal. For example, 
there is not even widespread agreement on how to 
write the numerals: zero, one and seven are written 
differently in many European countries from the 
conventions of North America. Early computers ex­
acerbated the difficulties. It was common to see the 
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asterisk(*) to represent multiplication and** to rep­
resent exponentiation because there was no provi­
sion for superscripting. Spreadsheets added more dif ­
ficulties, because their notational conventions, while 
making sense within a spreadsheet environment, rep­
resented further departure from textbook and hand­
written standards. Some view this as a weakness. I 
prefer to think of it as a strength (Burnett 1987). 

We should become comfortable with a variety of 
conventions. As more software tools appear, the 
number of ways that we decide to represent com­
mands, procedures and ideas will increase. In the past, 
different conventions were the result of different cul­
tural factors and evolved on a time scale consistent 
with change in that culture. This is still true today, 
but now culture also includes the effects of technol­
ogy, which not only places new demands on conven­
tions but also has accelerated the time scale for ac­
commodating these changes. One of our tasks as 
educators is to help students gain flexibility in han­
dling different symbol systems. Another task is to 
help them deal with rapidly changing situations. 

Mathematica 

Recall that we have been looking at the equation 
y = c x ( 1 - x). So far, we have restricted ourselves to 
the special case of c = I .  

In the terminology of mathematics, x (and y) are 

Now let's look at the case where c varies from 
-lOO to+l00: 

In the next figure, c varies from -IO to + l 0 and x 

varies from -200 to +200: 

called variables, c is called a parameter. What is the ,00000 ,.______..:::-= 
difference between a parameter and a variable? They 200000 

both vary. 
Here are some graphs of y = c x ( I - x) where y is 

the vertical axis, c is the axis along the left side of 
the base and x is the axis along the right side of the 
base. 

For the first figure, c varies from -IO to+ l O and x 

varies from -20 to +20: 
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Now imagine that we are at "eye level" and that c 

varies from -2 to +2 and x varies from -4 to +4: 

20 

0 

-20 

-2 
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Here is the same figure with the axes drawn to a 
different scale: 

Essentially what we see in each figure is an infi­
nite number of parabolas, some opening down ( when 
c is positive) and some opening up (when c is nega­
tive). Each previous parabola drawn using Zap-a­
Graph or Excel is simply one possible vertical "slice" 
from the surtace. The three-dimensional representa­
tion is a much more comprehensive and powertul 
way of envisioning this mathematical situation, 
namely as a surtace rather than as a curve. Technol­
ogy makes this possible. 

What do we see? Open up, open down, roots, 
steepness, curvature. Let's play with the notions of 
steepness and curvature for a bit: calculus. 

What is the derivative of this surface? What does 
it look like? One can ask Mathematica to compute 
the derivative of an algebraic expression. If we define 
a function F by typing in the following expression: 

F[x_]: = c x (1 - x) 

then type 

D[F[x],x] 

we receive the following result: 

C (] - X) - C X 

Once again, we must use a slightly different set of 
notational conventions for specifying a function. 
These conventions are necessary because one must 
take a different set of factors into account when de­
signing a software environment from those that one 
must consider when using pencil and paper. 

We can then plot this function, obtaining the 
following: 

In this case, c varies from -IO to + IO and x from -20 
to +20. What do you see? Does this figure make sense? 

The above activities give the complete picture for 
the equation y = c x ( I - x) for all possible values of 
x and c. It is also easy to imagine rotating this figure 
dynamically, such as many CAD programs illustrate. 

Let's stop to catch our breath. What has happened 
so far? 

First, we have used the technology to do all the 
labor. It has drawn the graphs and even computed 
the derivative. 

Second, the technology has permitted us to think 
at a higher level of abstraction. Instead of thinking 
about a single quadratic expression, we have exam­
ined a continuous family of possibilities, moving 
from a consideration of two-dimensional graphs to 
three-dimensional graphs. 

Third, to use the different software packages, we 
have had to learn the notational conventions of each. 

Fourth, the emphasis has been on visualization, 
particularly "deep visualization" with its strong em­
phasis on understanding. There has been no atten­
tion to manual skills. Mathematics education must 
include activities that help us to "see," to understand 
and interpret what we see. Envisioning Information 
(Tufte 1990) exemplifies this concern for meaning­
ful representation. This emphasis represents a sig­
nificant departure from the current curriculum that 
still devotes a major amount of effort to the develop­
ment of manual skills, skills that may no longer be 
necessary (Burnett 1992). 

But technology is not the answer. It is a tool for 
exploring ideas. The tool still requires a human op­
erator. Exploration requires an active mind. What 
does one "see" when one views the above surfaces? 
What new questions come to mind? 

Mathematics is about asking questions. Leaming 
is about asking questions. Have you asked any good 
questions lately? 
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Now that we are rested, let's explore this equation 
in a couple of other ways. One is to note its use in 
nonmathematical contexts, particularly biology and 
ecology. Students often ask, "Why are we studying 
this?" Section 2 provides an introductory answer to 
this question for the case of the functionf(x) = c x ( 1 
- x). Another approach is explore the mathematics of 
this equation in a different light, the light of itera­
tion. Such explorations require technology to pro­
vide the labor-intensive calculations. Section 3 pro­
vides an entry into a whole new world of 
mathematics, one currently of interest to many of the 
world's leading mathematicians. 

Section 2 Biology 

I remember reading that biology was the study of 
dead things. It was a cynical attack on science edu­
cation, but one that had an aspect of truth to it. Per­
haps there is some comfort in the realization that other 
parts of the school curriculum are also under pres­
sure to change. What many school students fail to 
realize is that the study of biology also involves the 
study of artificial things, things that were never liv­
ing or dead (Levy 1992). Enter the world of math­
ematical modeling and simulation. 

A sound strategy for entering a new field is to 
begin with something simple. Let's consider the pop­
ulation dynamics of a single species, for example, 
rabbits. 

Let P(n) represent the population of rabbits at time 
n. Clearly. the actual value of P(n) depends on many 
factors: weather, availability of food supply, number 
of predators, disease and so forth. It also depends on 
the number of rabbits around at time n - I. A very 
simple first approximation to this situation is the fol­
lowing function: 

P(n) = c P(n - 1) 

Notationally, this expression can be a bit confus­
ing: do the brackets symbolize the argument of the 
function P, or multiplication? Thus it is usual to 
switch to a form of subscript notation. Notational 
conventions are not just a function of technology, 
they have always been with us: 

pn 
= C Pn , I 

At the same time, it is a good idea to change the 
meaning of P from a whole number representing the 
total number of rabbits to a proportion of some arbi­
trary large upper limit of rabbits. Thus P now takes 
values between O and l .  Proportions are often easier 
to deal with because we all know what a proportion 
of 0.8 means (that is, 80 percent of the maximum 
possible population), whereas a value of 3 million 
rabbits still leaves a person with a sense of"So what?" 
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Is that a large number, a small number or a typical 
number?This same principle applies to many figures 
we receive when the media discuss the economy and 
our present preoccupation with budgets. A department 
is asked to trim $2 billion from its budget. Is this a large 
number, a small number or a reasonable number? 

If c is 1, the population remains constant, since P,, 

= Pn .1· 
If c is larger than l ,  it is fairly easy to see that the 

population grows without bound. This may make 
sense for a while, but, at some point, other factors 
such as a dwindling food supply should start to kick 
in. The model does not seem realistic. Indeed, at some 
point, the proportions will exceed a value of l, which 
is meaningless. If c lies between O and 1, the popula­
tion continues to dwindle and eventually will be frac­
tional. Negative values of c make no sense in this 
context. Thus the model needs to be adjusted to pre­
vent the case of runaway growth. We need a term 
that reduces the growth as P gets large. One approach 
is to add a second multiplicative term, ( 1 - P): 

Pn = C Pn . I ( J - P,. . 1) 
This is the same equation that we have been discuss­
ing in the preceding sections. 

We have approached the question of simple popu­
lation dynamics from an algebraic perspective. We 
might just as easily have approached it from a geo­
metric perspective. What we are looking for is a graph 
that increases for a while and then decreases. One 
such curve is a parabola that opens downward. Once 
again, we can end up with the same equation. 

Let's look at a third approach using a simulation 
modeling package called STELLA II. STELLA is 
an acronym for Systems Thinking, Experiential 
Leaming Laboratory, with Animation. It takes a par­
ticular approach to modeling, known as system dy­
namics. The original Club of Rome report (Mead­
ows et al. 1972), one of the first documents to warn 
us of the dangers of unlimited industrial expansion, 
used this approach. The current version of STELLA 
uses a small set of icons that can be placed anywhere 
on the screen and joined to other icons to create a 
flow model. 

Two of the four icons represent movement of in­
formation; the other two represent movement of some 
conceptual quantity. 

Source of � 
Information 

Information � 
Flow 

Level � 
Variable 

Flow � 
Regulator 
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First, we create a level variable (like a bathtub) 
that contains the level of proportion of rabbits. We 
simply select the Level Variable icon, drag it onto 
the screen and type a name to give the icon an iden­
tifying label. 

Proportion of Rabbits 

□ 

It is simply a box that will show how full it is over 
time. Opening the box (by double clicking on it) 
brings up a dialogue box where the user specifies the 
initial value for this level. I will start with it half full: 

.. INITIRL(Proportion_of_Robbits) = ••• 

Next, we need to specify the rate of increase in 
rabbits. This is accomplished by means of a flow in­
dicator: 

Proportion of Rabbits 

65 
Grow'th 

The icons are intended to represent a tap (regu­
lator) that controls the rate of growth of the rab­
bits. The "cloud" symbol on the left simply means 
that there is a source of rabbits to begin with. The 
feedback connector arrow joining the level indi­
cator to the tap is the heart of the model. This per­
mits one to use the current level as a variable 
controling the tap for the next cycle. Opening the 
tap calls up another dialogue box where the equa­
tion can be typed in: 

7f Growth=- ... 

Proportion_o LR ob bits .. ( 1-P rop ortion_oLRobb its I 

20 

We still need to include the constant c which is 
intended to take all external factors into a global 
growth constant: 

Proportion of Rabbits 

C: 

Opening up the circle icon permits me to specify the 
initial value of c (as 2). 

A brief digression on acceptable values for c is 
appropriate. Clearly, c must be greater than 0, since 
negative values make no sense in this context (all 
proportions must remain positive). But if c is too 
large, the proportions may rise above 1, which also 
is nonsense. The product of P( 1 - P) is a maximum 
whenP is 0.5. This maximum is 0.25. Becausec times 
0.25 cannot exceed I, c cannot exceed 4. Thus we 
may substitute any value of c between O and 4 into 
the model. A discussion of the boundary conditions 
of any mathematical situation is an important aspect 
of mathematical understanding. 

There is one final step. The model as currently 
specified represents growth without end. We also 
need to include a "death" factor. This is also repre­
sented by another tap, indicating the outflow. 

Proporlion of Rabbits 

C 

Now that the model is constructed, we need to run 
the simulation. STELLA maintains a graph of the 
values as the simulation is run over a specified time 
(for example, 20 cycles). 

With c set to 2 and the initial value for the Propor­
tion of Rabbits set at 0.1, we obtain the following 
graph, where the population level quickly approaches 
a value of 0.5. The final display looks like this: 

delta-K, Volume 32, Number 2, March 1995 



Proportion of Rabbits 

C 

It is important to realize that the viewer watching the 
computer screen sees the level rise to the halfway 
level and then remain constant (it is also possible to 
ask for a graph that shows how the level changed 
over time): 

1 : Proporllon of R¥>b1ts 
1: 1.00 ··············•··· ..... ·····················,·r··············· 

1 : 

1: 

0.50 .................. ,.... -+-----+,---
I 

...... ················ ·········•··············'•··············· 

I 
i 

o.oo-+------i-------;----
o.oo 5.00 10.00 

Leaving the structural equations unaltered, one can 
play with different initial values for the proportion 
of rabbits, and with the value of c, the constant. Let's 
see what happens if we play with different values of 
c. Here is the graph when c is 0.5. 

1 : Proponion of R�l>its 

1: 

1: 

1: 

1.00 

o.:so 

·······················r···· .. ················T········· 
i i 
i i ·············••·••······j························j········· 
i ! 
i • 
! 

........................ � ..................... ··i· ........ . 

! 
i 

I 
I 
I I ························!························!········· 
I I 

I i I I I 
! 

o.oo...J..--=====i=====-i-== 

a P�•I 
0.00 S.00 10.00 

TirN 
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With such a low value of c, even a proportion of 0.1 
is not sustainable. 

Setting c = 1 yields the following graph: 

I : Proportion of R.t>btts 
1: 1.00 ························.-······················•y·•······· : j 

t: 

I ··················:···· ························1········· 
i 
i 

0.50 . . ......... ..... ....... . ................. .... l. .. 
i 
! ············· .. ········1············ ·· · .. T ...... 

! i 

1: o.oo+------r-----.,....-
0.00 

a P•IJ' I 
5.00 10.00 

TirM 

This is a little better, but the proportion of rabbits is 
still declining. Let's continue up in steps of 0.5. The 
next case is for c = 1.5: 

I: Proportion of R.a.bbiU: 

1: 

I: 

1.00 ...... .•...•....• T ................. T .... . 

I I 

I ' 
. ............. , ................ .. 1 . . .. . 

I I 
I i 
I I 
I I 

o.�o ··········· .. · .. ···· ··r·············,.··· ..... i. 
I I 
i i 
! ··········i 

I 

i 
, : o.oo+------,------,--

0.00 
a PMJ< 1 

5.00 10.00 
r.,,. 

For c = 1.5, the proportion of rabbits increases stead­
ily to a value close to 0.3. Recall the graph for c= 2: 

1 : Proportion of R�bbits 

1: 1.00 ············ .. ····· .... r ....................... r ...... . 
I : 
! ! 
I I 
: I ·······••··•···········l••····················••I••······ . i 

l 
1: 0.50 ···················-+-----.,....-

I 
I ···-·· ················1······ ................. ....... . 
i 
I 
I 

l 
1: o.oo+------;------,--

aP09<l 
0.00 5.00 10.00 

nno 
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Here the proportion of rabbits increases steadily to a 
value of 0.5. Now consider the case where 
C = 2.5: 

1 : Proportion of R.abbtts 

1.00 

I: 

·······················'t··· ................... , ......... . 
i j 
I I 
I I 
I I 

I I ·· .. ····!···················· ···I······ .. , 

! i 

I: O.OOT"""-----+------+--
0.00 

a P1i�1 
5.00 10.00 

n,,. 

The pattern here is slightly different: there is a mild 
form of oscillation during the first few cycles before 
the proportion stabilizes at a value near 0.6. 

Here is the graph for c = 3.0: 

1: o .oo+------1.-----....----
0.00 

a P"f'1 
5.00 10.00 

Ttm. 

The pattern here is dramatically different. The popu­
lation of rabbits appears to cycle through a set of 
values, without converging toward a limiting value. 

22 

Here is c = 3.5: 

l:PrapcrtiatlefR..W,U 

I: 1.00 •·············· · ··· ···· ···· ···· ···· ·· ....... ....... . 

1: 

o.oo+-----.-----...... ---
0.00 

a .... , 
5.00 10.00 

Tnw 

Expand the number of cycles from IO to 100 to 
get a better picture of what happens in the long run: 

1 : P,-opcirtion or R�bib: 

1: 1.00 

1: 0.50 .... · · 

···•···· ..... , ..... ! ............. . , ........ , ... ····················t·""'"''' 
j ! I 
' ' 

o.oo+-----.-------+-----.---
0.00 25.00 50.00 75.00 

This appears cyclical, but it is difficult to tell by just 
looking at the graph. The software also provides a 
corresponding table. Here is a section of the table 
for the periods from 70 to 78: 

Timf- Proportion of Rabbits 

70.00 0.87 

71.00 0.38 

72.00 0.83 

73.00 a.so 

74.00 0.87 

75.00 0.38 

76.00 0.83 

77.00 a.so 

78.00 0.87 

Examination of the table reveals a cycle of period 4. 
Finally, let's look at the graph and a portion of the 

table for c = 3.9: 

1 : Proportion of R�bits 

I: 1.00 

1: o.so 

·······••-.•··················· ···1····· 

-··-T- l.... 
i 

' l I 
I I 

I: 

l I 
o.oo-1----'---+-----+------;'-

o.oo 25.00 50.00 7S.OO 
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Tim� Proporiion of Rabbits 

70.00 0.10 

71.00 0.35 

72.00 0.89 

73.00 0.39 

74.00 0.93 

75.00 0.25 

76.00 0.73 

77.00 0.77 

78.00 0.70 

79.00 0.82 

80.00 0.57 

81.00 0.96 

There is no discernible pattern at all! The popula­
tion dynamics do not settle down, as in the other 
cases. The only parameter that has been altered is 
the value for c. Yet the mathematics of this model 
leads to chaotic behavior as c approaches 4. The 
chaos is inherent in the mathematics; it is not due 
to complications in the model caused by other 
factors. 

It is also possible to include other factors, notably 
the lynx, to make the model more realistic. Here is a 
sample model that comes with the STELLA software 
package: 

H,ru 
hart' duths 

Here is a sample graph run for this model: 

1 : Harts 

1 : 59773.05 · · · · · · .. · · · 

1: :50:562.29 

••. 1· ••..•.• 

1: 41351.52+-----�:;.__--�-....::..:....__ 
0.00 IB.00 
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Although the model is considerably more com­
plex, the graph is more regular and periodic than in 
the simpler case of c x ( 1 - x) when c was set to 3.9. 

One must distinguish between the complexity of 
the model, which is a biological issue, and the com­
plexity of the output, which may be due to the com­
plexity of the model or it may due to the inherent 
complexity of the mathematics. Because we have lit­
tle experience with iterating functions, we have yet 
to acquire a sophisticated intuition of what to expect 
under different conditions. Certainly, most people, 
including most mathematicians, did not suspect that 
iterating a function as simple as c x ( I - x) could lead 
to such chaotic results. 

I will take one more quick look at the mathemat­
ics underlying the simple model where c took on dif­
ferent values between O and 4. Such an investigation 
leads into a new topic-the study of chaos. 

Section 3 The Unexpected 

This section is a brief introduction to the math­
ematics of chaos. Let's return to the function 

f(x) = c x (1 - x) 

and examine its behavior under iteration. We have 
two tools at our disposal, Microsoft Excel and 
Mathematica. Let's begin with a spreadsheet ap­
proach and then see if Mathematica can provide some 
additional insights. 

The only parameter we will change will be c. In 
the following examples, we will begin with an initial 
x value of 0.9. We will examine three different func­
tions: 

j(x) = 2 x ( I - x) 
f(x) = 3.5 x (1 - x) 
f(x)=3.9x(l-x) 

Although these functions only differ by a small amount, 
their behavior under repeated iteration is unexpected. 

Setting c = 2 in Cell A2, setting the formula 
=$A$2*B3*( l-B3) in cell C3, setting 0.9 in cell B3, 
setting the formula =C3 in cell B4, and then filling 
down results in the following table and correspond­
ing graph: 

A I B I C I 
1 c ! x i ex( 1-x) ; 
z 2 

-, --------, ----·------T-

3 1 o 9 o. 1 �----L 
4 2 0.1 8 0.30 . 

-

� -----�--: __ 0.30 0.42 +-6 4 ; 0.42 0.49 ! .. 
J._ ----- S ____ j -- 0.49 _ 0.50 -' 

a 5 i a.so o.5o r· 
._...2.._ 7 0.50 0.50 ;-

10 8 0.50 0.50 ·-
t t 9 0.50 0.50 
t 2 1 0 0.50 0.50 
t3 11 0.50 0.50 
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0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 +---+--+----lr---+----1,---+---+--+---+-

First, it is important to note that we are no longer 
dealing with parabolas. We are looking at the behavior 
of a function.under repeated iteration, where the value 
of the function at cycle n becomes the argument of 
the function at cycle n + 1. In fact, this is the same 
graph that we obtained earlier when we were using 
STELLA.As a reminder, because c = 2, we are look­
ing at the functionf(x) = 2x( 1 - x). The second point 
to note is that we began the iteration with the initial x 
value of 0.9. The above graph 
is called the orbit of the point 0.9 for the function 
2x( 1 - x). 

Let's look at two more examples using Excel. First 
is the case where c = 3.5, and the first value of x is 
0.9. Here is the orbit of the point 0.9 for the function 
3.Sx( I - x): 

0.9 
0.8 
0.7 
0.6 
0.5 
0.4 

0.3 
0.2 
0.1 

0 ++l++++li-t+t++-t+,t-+++H-++t+t++lt-++++l+t-tt++t-t-tt-1 
LI) 

It is dramatically different from the orbit for the func­
tion 2x( I - x), yet the only difference between the 
two functions is the leading coefficient. 

A review of the table indicates that the iterations 
converge toward a cycle that repeats itself every 
fourth time (that is, 0.87 - 0.38 - 0.83 - 0.50 - and so 
on). 

If we change c to 3.9, we obtain the following 
chart: 
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0.9 
0.8 
0.7 
0.6 
0.5 
0.4 

0.3 
0.2 
0.1 

0 ++-H-+++f�f++H-++Hr+t-H++tt+Hl-tt-t+++t-t+tir-t+H 

This time, there is no recurring pattern. The graph is 
said to be chaotic. 

It is possible to explore any function to see its 
behavior under iteration. Devaney ( 1990) provides a 
rich sampling of problems for the beginner, exam­
ples easily within the range of high school students. 

There is also a graphical procedure for examining 
the behavior of any function under iteration. The idea 
is fairly straightforward. Draw both the function of 
interest, call itf(x), and the function g(x) = x on the 
same grid. Then select any point x that you wish to 
begin the iterations with. Locate this point on the 
line y = x. This will be the point (x,x). Draw a verti­
cal line joining this point with the graph of y = j(x). 
This will be the point(x,f(x)). Now draw a horizon­
tal line joining this point to the graph of g(x). This 
will be the point (g(x), g(x)). Now repeat the pro­
cess. Here is an example: 

Consider the function/(xJ = 2x( 1 - x). 
Suppose we begin withx= 0.9. Thenfi:0.9) = 2 x 0.9 
x O. l = 0.18. This represents the starting point of the 
iteration. Here is a graph showing the path of the 
graphical analysis and produced using Mathematica. 
Note that the path quickly converges to a value of 
0.5. This is another way of viewing the situation that 
we previously examined using Excel. 

0.2 0.4 0.6 0.8 
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Now let's re-examine the function f(x) = 3.5x 
( I - x). Once again, we will begin with x = 0.9: 

0.2 0.4 0.6 0.8 

This time the orbit shows a cycle of period 4. 
Finally, let's look atf(x) = 3.9x( I - x), beginning 

with x = 0.9: 

_, 

0.8 / 
' J 

11� J 

/ Ill/\] 
I 

I/� 

I 
/ 

\ 
0.4 

0.2 

0 
ii/ 

I/ 
·� 

' 

\ 
0.2 0.4 0.6 0.8 

The orbit fails to settle down. This is another view of 
mathematical chaos. 

Summary 

Pagels ( 1988) provides a thought-provoking analy­
sis of developments in science over the last decade, 
using the phrase "sciences of complexity" to capture 
this new perspective and identifying a number of 
themes to characterize this new approach to science. 
His first theme is "the importance of the computer .... 
One of the ways that future science will progress is 
by a combination of precise observations of actual 
systems followed by computer modeling of those 
systems" (p. 43). He goes on to include "the computa­
tional viewpoint in mathematics" and then "the rise of 
computational biology" and "the study of nonlinear 
dynamics" and concludes with "the study of complex. 
systems" as other themes characteristic of new ap­
proaches to science. The book ends with the sentence, 
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"The future, as always, belongs to the dreamers." 
What are we doing in education to encourage such 
dreaming? 

There is much concern from many interest groups 
about the present state of our classrooms, and math­
ematics courses take their fair share of the spotlight. 
Suggestions for improvement fall into three main 
categories : 

1. How can we improve our present pedagogy? 
2. What should we delete, to have more time for an 

in-depth exploration of what is left? 
3. What should we add, because the new topics 

represent an important part of our evolving 
knowledge? 

This article falls into the first and third categories. 
While it is true that I have used fairly sophisticated 
software packages as an integral part of my peda­
gogy, the main pedagogical thrust has been an open­
ended exploratory approach with a conscious effort 
to understand this function as much as possible. Thus 
I have attempted to provide a metacognitive perspec­
tive to my own investigations. The article might also 
be viewed as a form of portfolio, a record of my ex.­
plorations to date. This leads naturally into consid­
erations surrounding portfolio assessment and au­
thentic assessment. Perkins (1992) has written a 
stimulating book that attempts to address the issue 
of educational reform. His basic claim is that we need 
to focus on the curriculum and that our criterion 
should be deep, meaningful learning. I would like to 
think that this article represents a tentative begin­
ning toward such an approach. 
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Software 

Mathematica Version 2.2. Wolfram Research, Inc., Champaign, 
Ill. 

Microsoft Excel Version 3.0. Microsoft Corporation, Redmond, 
Wash. 

STELLA Il Version 1.00. High Performance Systems, Inc., 
Hanover, N.H. 

Zap-a-Graph Version 4.2. Brain Waves Software, Fitzroy Har­
bour. Ont. 
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