Linda's Trisection

Linda Chiem

Editor's note: Linda is a student at St. Mary's High School in Calgary. On her own initiative, she came up with the following procedures for trisecting a segment and trisecting an angle. Student initiatives should be encouraged. I am prepared to seriously consider student work for inclusion in delta-K.

Trisecting a Segment

Trisect $\overline{\mathrm{AB}}$

1. Construct equilateral triangle ABC .
2. Find centre O of $\triangle A B C$ (bisect $\overline{A C}$ and $\overline{B C}$).
3. With radius $\overline{\mathrm{OA}}$, draw circle.
4. With radius OA and centre at A , intersect circle at D and F. With centre at B, intersect circle at E.
5. Draw $\overline{\mathrm{FD}}$ and ED . Label intersection of $\overline{\mathrm{AB}}$, as M and N .
6. $\overline{\mathrm{AM}}=\overline{\mathrm{MN}}=\overline{\mathrm{NB}}$.
$\therefore \overline{\mathrm{AB}}$ has been trisected.
Note: This construction is similar to the construction of a regular hexagon.

Proof

Prove that $\overline{\mathrm{AM}}=\overline{\mathrm{MN}}=\overline{\mathrm{NB}}$ given the above construction.
$\angle \mathrm{CAB}=\angle \mathrm{CBA}=60^{\circ}$
ADBECF regular hexagon
$\angle \mathrm{DBE}=120^{\circ}$
$\angle \mathrm{EDB}=\angle \mathrm{BED}=30^{\circ}$
$\triangle \mathrm{ADB}$ is isosceles
$\angle \mathrm{ADB}=120^{\circ}$
$\angle \mathrm{DBN}=\angle \mathrm{DAB}=30^{\circ}$
$\angle \mathrm{DNB}=120^{\circ}$
$\angle \mathrm{SNB}=60^{\circ}$
$\angle B S N=60^{\circ}$
$\therefore \triangle$ SNB is equilateral
similarly $\triangle R A M$ is equilateral and $\triangle S N B \cong \triangle R A M$
$\angle \mathrm{DNB}=\angle \mathrm{MNS}=120^{\circ}$
similarly
$\angle \mathrm{RMN}=\angle \mathrm{TRM}=\angle U T R=$
$\angle S U T=\angle N S U=120^{\circ}$
\therefore polygon TUSNMR
regular hexagon
$\overline{\mathrm{RM}}=\overline{\mathrm{M}} \overline{\mathrm{N}}=\overline{\mathrm{N}} \overline{\mathrm{S}}$
$\overline{\mathrm{RM}}=\overline{\mathrm{AM}}$ and $\overline{\mathrm{N}} \overline{\mathrm{S}}=\overline{\mathrm{N}} \overline{\mathrm{B}}$
$\therefore \overline{\mathrm{AM}}=\overline{\mathrm{M}} \overline{\mathrm{N}}=\overline{\mathrm{NB}}$
$\triangle \mathrm{ABC}$ equilateral Δ constructed regular hexagon isosceles $\triangle \mathrm{DBE}$ constructed regular hexagon isosceles $\triangle \mathrm{ADB}$ sum \angle 's in Δ supplementary \angle 's sum L's in Δ \angle 's all 60°
since $\triangle \mathrm{DBE} \cong \triangle \mathrm{ADF}$ vertical \angle 's
regular hexagon equilateral Δs substitution

Trisecting an Angle

Trisect $\angle \mathrm{ABC}$

1. Construct isosceles $\triangle \mathrm{BDE}$.
2. Draw $\overline{\mathrm{DG}}$.
3. On $\overline{\mathrm{DG}}$, mark off three congruent segments.
4. Construct SE.
5. Copy $\angle \mathrm{DSE}$ at R and P ; extend lines to intersect $\overline{\mathrm{DE}}$ at M and N .
6. Construct $\overline{\mathrm{BM}}$ and $\overline{\mathrm{BN}}$. $\angle \mathrm{ABC}$ is trisected.
