# Linda's Trisection

## Linda Chiem

Editor's note: Linda is a student at St. Mary's High School in Calgary. On her own initiative, she came up with the following procedures for trisecting a segment and trisecting an angle. Student initiatives should be encouraged. I am prepared to seriously consider student work for inclusion in delta-K.

# Trisecting a Segment



#### Trisect **AB**

- 1. Construct equilateral triangle ABC.
- 2. Find centre O of  $\triangle ABC$  (bisect  $\overline{AC}$  and  $\overline{BC}$ ).
- 3. With radius OA, draw circle.
- 4. With radius OA and centre at A, intersect circle at D and F. With centre at B, intersect circle at E.
- 5. Draw FD and ED. Label intersection of AB, as M and N.
- 6.  $\overline{AM} = \overline{MN} = \overline{NB}$ .
  - $\therefore \overline{AB}$  has been trisected.

Note: This construction is similar to the construction of a regular hexagon.

### Proof

Prove that  $\overline{AM} = \overline{MN} = \overline{NB}$  given the above construction.

 $\angle CAB = \angle CBA = 60^{\circ}$ ADBECF regular hexagon ∠DBE = 120°  $\angle EDB = \angle BED = 30^{\circ}$  $\triangle$ ADB is isosceles  $\angle ADB = 120^{\circ}$  $\angle DBN = \angle DAB = 30^{\circ}$  $\angle DNB = 120^{\circ}$  $\angle$ SNB = 60°  $\angle BSN = 60^{\circ}$  $\therefore \Delta SNB$  is equilateral similarly  $\Delta RAM$  is equilateral and  $\Delta$ SNB  $\cong \Delta$ RAM  $\angle DNB = \angle MNS = 120^{\circ}$ similarly  $\angle RMN = \angle TRM = \angle UTR =$  $\angle$ SUT =  $\angle$ NSU = 120° ∴polygon TUSNMR regular hexagon  $\overline{RM} = \overline{MN} = \overline{NS}$  $\overline{RM} = \overline{AM}$  and  $\overline{NS} = \overline{NB}$  $\therefore \overline{AM} = \overline{MN} = \overline{NB}$ 

 $\triangle ABC$  equilateral $\triangle$ constructed regular hexagon isosceles  $\Delta DBE$ constructed regular hexagon isosceles  $\triangle ADB$ sum  $\angle$ 's in  $\triangle$ supplementary  $\angle$ 's sum  $\angle$ 's in  $\triangle$  $\angle$ 's all 60°

since  $\triangle DBE \cong \triangle ADF$ vertical  $\angle$ 's

regular hexagon equilateral  $\Delta s$ substitution



- 1. Construct isosceles  $\triangle BDE$ .
- 2. Draw DG.
- 3. On  $\overline{DG}$ , mark off three congruent segments.
- 4. Construct SE.
- 5. Copy ∠DSE at R and P; extend lines to intersect DE at M and N.
- 6. Construct  $\overline{BM}$  and  $\overline{BN}$ .  $\angle ABC$  is trisected.

delta-K, Volume 33, Number 1, December 1995