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The ability to use the "zoom in" and "zoom out'' fea
tures of a graphing calculator enables us to focus on the 
important parts of a graph. As the examples given be
low show, the zooming features can be particularly use
ful when we are trying to solve equations or inequali
ties, as well as when trying to detennine if two algebraic 
expressions define the same function. In viewing the 
graphs which arise from algebraic expressions, we 
need to know not only when to begin zooming but 
also when to stop. We can best make such practical 
decisions by using theory appropriately. To illustrate 
the procedure, we begin with five "zooming in" ex
amples, and then give four "zooming out" examples. 

Zooming In 
Example 1 shows how zooming in on a "flat" part 

of a graph may reveal numerous x-intercepts and, thus, 
numerous zeros of the corresponding function. 

Example 1 

Use a graphing calculator to solve the equation 
1000x4-1780x3 + 1187.9x2 -352.262x+ 39.1644= 0. 

Solution 

The real number solutions of the equation are the 
x-coordinates of the x-intercepts of the graph of y = 
1000x4 -1780x3 + 1187.9x2- 352.262.x + 39.1644. 
Using the default setting of a TI-82 graphing calcu
lator, we obtain the graph in Figure 1. How many 
times does this graph intersect the x-axis? The an
swer is not clear by inspecting Figure 1. 
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Figure 1 

Xmin=-10 

Ymin=-10 

.. ... ·- - - - - - -

Xmax= 10 

Ymax = 10 

Xscl = I 

Yscl = 1 

If you zoom in once (with both zoom factors set at 
10), you find a graph like the one shown in Figure 2. 
Here, it looks as if there is a flat part of the graph which 
runs along an interval of the x-axis, but it is not clear 
whether the graph ever falls below the x-axis. 

Figure 2 

Xmin=-1 

Ymin =-I 

. 

Xmax= 1 

Ymax = 1 

\ J 

Xscl = 1 

Yscl = 1 

Tracing to a point near the middle of the flat part 
and then zooming in again, you get the graph in Fig
ure 3. Using the trace feature again, you find a point 
on the graph with coordinates given by x = 
0.45106383 and y = -2.215 x 10-6• Since this 
y-coordinate is negative, it seems as if the graph must 
cross the x-axis at least twice. (In fact it must, by 
applying the Intermediate Value Theorem for con
tinuous functions.) Additional use of the trace fea
ture on Figure 3 reveals enough sign changes of the y
values to indicate that the graph crosses the x-axis at 
least four times. 

What would happen if you zoomed in and traced 
again? Would you find that the graph crosses the x
axis six (or possibly eight) times? How many x-in

tercepts are concealed within the "flat" parts of the 
graphs in Figures 1-3? How much zooming in is 
enough? The answer, in this case, depends on a theo
retical result. According to one statement of the Fun
damental Theorem of Algebra (Dobbs and Peterson 
1993, 164-65), an nth degree polynomial has, count
ing multiplicities, exactly n complex roots. Thus, at 
least for this example, you have zoomed in enough. 
You have concluded that the given equation has four 
solutions and each of these is a real number. This can 
also be seen by inspecting Figure 4. (By the way, the 
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Figure 3 Figure 5 

Xmin = -0.346808511 Xmax = 0.546808511 Xscl = 1 

Ymin=-0.1 Ymax = 0.1 Yscl = 1 

Figure 4 

� -

V "V' 

Xrnin = -0.35 Xma.x = 0.5 Xscl = 1 

Ymin = -0.0001 Ymax = 0.0001 Yscl = l 

solutions are really rational numbers, namely x = 0.43, 
0.44, 0.45 and 0.46.) 

The method in Example I needs to be fine-tuned in 
case the underlying polynomial has a multiple root 
Examples 2 and 3 show how the Factor Theorem, 
together with zooming in, deals with such situations. 

Example 2 

Using a graphing calculator to solve the equation 
x1 - 13.x6 + 69.9999.x5 - 201.9993.x4 + 336.998lx3 -

324.9975x2 + 167.9984x - 35.9996 = 0. 

Solution 

As in Example 1, we first try to find all the real 
number solutions, by investigating the x-intercepts 
of the graph of y = x1 - 13.x6 + 69.9999xL201. 9993.x4 
+ 336.998lx3 - 324.9975x2 + 167.9984x - 35.9996. 
An initial view of this graph is shown in Figure 5. As 
you can see, the graph seems to have flat parts on the 
x-axis near x = 1 and x = 2; also, it appears that the 
graph narrowly misses hitting the x-axis near x = 3. 
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By changing the window settings, you can obtain 
the graph in Figure 6. Although this view of the graph 
does not resolve the question, it does confirm our 
impression that we need to zoom in near x = 1, x = 2 
and x = 3. By zooming repeatedly, you can check 
that there are solutions at x = 1, x = 2, x = 2.99 and x 

= 3.01. No matter how much more you zoom in (or 
out), you will not find any evidence of additional real 
number solutions. 

Figure 6 

Xmin=0 

Ymin=-0.2 

Xmax =4.7 

Ymax =0.2 

Xscl = I 

Yscl = I 

According to the Fundamental Theorem of Alge
bra, the given seventh-degree polynomial has seven 
roots. If we have found all the real solutions ( 1, 2, 
2.99, 3.01), you might suppose that three nonreal 
complex solutions remain to be found. However, ac
cording to the Conjugate Root Theorem (Dobbs and 
Peterson 1993, 168), nonreal complex zeros of a poly
nomial with real coefficients come in complete con
jugate pairs, although 3 is not an even number! What's 
wrong? 

In fact, there are no nonreal complex solutions 
in this example. We actually already have all seven 
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solutions-all that is needed is a more careful appli
cation of the Fundamental Theorem of Algebra and 
the Linear Factor Theorem (Dobbs and Peterson 1993, 
165). The point is that nth degree polynomials have 
exactly n roots if the roots are counted according to 
their multiplicities. In this example, 1 is a root with 
multiplicity three, 2 has multiplicity two, and 2.99 
and 3.01 each have multiplicity one. Thus, we have 
found the even solutions, since 3 + 2 + 1 + 1 = 7. 

The above conclusions about multiplicity could 
possibly be conjectured by studying Figure 6, al
though the differences in behavior near x = 2 and near 
x = 3 may not be geometrically evident from that fig
ure. But these differences can be determined alge
braically by using the Factor Theorem, as follows. 
Let's consider x = 1. By substitution, you can check 
that x = 1 satisfied the given equation. So, by the 
Factor Theorem (Dobbs and Peterson 1993, 141), x-

1 is a factor of x7 
- 13.x6 + 69.9999x5 - 201.9993.x4 + 

336.998}x3 - 324.9975x2 + 167.9984x-35.9996. By 
division, you find the quotient, .x6 - 12x5 + 57 .9999x4 
- 143.9994x3 + 192.9987x2 - 131.9988x + 35.9996. 
Next, by substitution, you can check that x = 1 is a 
root of this sixth -degree polynomial. So, by the Fac
tor Theorem, x = 1 is a root of the given seventh
degree polynomial of multiplicity at least two. Con
tinuing in this way, you find that x7 

- l 3.x6 + 69 .9999x5 
- 201.9993x4 + 336.998lx3 - 324.9975x2 + 167.9984x 
- 35.9996= (x-1)3(x4- 10x3 + 36.9999x2 - 59.9996x 
+ 35.9996). By calculation, you can check that x = 1 
is not a root of .x4 - 10x3 + 36.9999x2 - 59.9996x + 
35.9996. Thus, the process of successive divisions 
stops, and 1 is indeed a root with multiplicity three. 
The other assertions are verified similarly. 
Example 3 

Use a graphing calculator to solve the equation 
.x6+ 2.989x5 + 2.96699x4 + 0.96697x3 

- 0.01103x2 -
0.OOOOlx = 0. 
Solution 

This example is somewhat similar to Example 2. 
It turns out that -1 is a root of multiplicity three, while 
-0.001, 0 and 0.01 are each roots with multiplicity 
one. Thus, the only solutions (real or complex) are 
x = -1, -0.001, 0 and 0.01. 

In the next example, matters become somewhat 
complex. 
Example 4 

Use a graphing calculator to solve the equation 
.x4 + x3 - X - 1 = 0. 
Solution 

The graph of y = x4 + x3 
- x - 1 in Figure 7 sug

gests that there are solutions near x = -1 and x = 1. 
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By substitution, it is easy to verify that x = -I and 
x= 1 are indeed solutions. Using division, as in Examples 
2 and 3, you can check that r1 = -1 and r2 = 1 are each 
roots of multiplicity one. So, by the Fundamental 
Theorem of Algebra, two roots are still missing. The 
two missing roots-let's call them r3 and r4-satisfy 
.x4 + xLx-1 = (x + l)(x- l)(x- r3)(x- r4), according 
to the Linear Factor Theorem. By division, r3 and 
r4 are the roots of x4 + x3-x-1 

= xi + x + 1. (x+l) (x-1) 
Hence, by the Quadratic Formula, r3 and r4 are given 
by -1 + ..f!J. No amount of inspection of the graph 

2 
in Figure 7 would reveal these nonreal complex 
solutions. In summary, the solution set of the given 
equation is {-1 1 -l+v3i -1-vJi}· 

' ' 2 ' 2 
Figure 7 

Xmin =-4.7 

Ymin=-3.1 

Xmax =4.7 

Ymax = 3.1 

Xscl = I 

Yscl = I 

The analysis in Examples l-4 was pos.sible in part be
cause each of the functions being graphed was a polyno
mial. As Example 5 shows, "zooming in" can be applied 
to solve equations involving nonpolynomial functions, 
even though the algebraic theory of such functions is 
more complicated than that of polynomials. 
Example 5 

Using a graphing calculator to find the real num
ber solutions of the equation X" = :rcx . 

Solution 

The solutions that we seek are the x-coordinates 
of the points of intersection of the graphs of y = .xn 
and y = :rrx. As you can see from Figure 8, these graphs 
do not intersect at any point satisfying 0 s x s 2, but 
they seem to be coincident for the x-values from 
slightly greater than 2 to at least 3. Are they really 
coincident or do the curves intersect at only some of 
the points indicated in Figure 8? How many points 
of intersection are there? 
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Figure 8 

Xmin =-4.7 

Ymin = 0 

Xmax =4.7 

Ymax =20 

Xscl = I 

Yscl = 2 

One way to proceed would be to "zoom in" on 
these graphs near x = 2.5, as shown in Figure 9. By 
continuing to zoom in, you find a point of intersec
tion at x == 2.3821791. In addition, it is clear that there 
is another intersection point at (n, 1!"). Additional 
zooming does not reveal any further solutions. 

Figure 9 

J 

Xmin = 2.03 Xmax = 2.97 Xscl = 1 

Ymin = 16.74193548 Ymax = 18.74193548 Yscl = 2 

Figure 10 

Xmin =-4.7 

Ymin =-3.l 

Xmax=4.7 

Ymax= 3.1 

Xscl = I 

Yscl = 1 
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There is another way to proceed which is more 
like the method used in Examples 1-4. The solutions 
of the equation X" = ,rx are the same as the solutions 
of X" - 1!' = 0. The graph of y = X" - 1!' in Figure 10 
indicates two x-intercepts, corresponding to the two 
solutions which were found above. 

It is natural to ask if the equation X" = 1!' has more 
than the two solutions found above. The answer is 
"no." The reason depends on calculus and is part of 
some interesting history recounted in (Sved 1990). 

Zooming Out 

An ultimate type of intersection of two graphs oc
curs when they are coincident This corresponds to 
equality of the functions being graphed. A currently 
popular method of verifying identities, especially 
trigonometric identities, is to check coincidence of 
the graphs of the left- and right-hand sides of an al
leged identity. As you saw in Example 5, the appar
ent coincidence of portions of graphs in a figure gen
erated by a graphing calculator may disappear when 
you take a closer look by zooming. Similarly, as Ex
amples 6-8 show, zooming out can be used to distin
guish between functions whose graphs may appear 
to be coincident when using a particular viewing 
window. 

Example 6 

Suppose you view the graphs of y = x3 and y = Jx2 
- 2.99x + 0.99 on a graphing calculator with window 
setting Xmin = 0.9, Xmax = 1.1, Xscl = 0.1, Ymin = 
0.7, Ymax = 1.4 and Yscl = 0.05. Based on these 
graphs, would you conjecture that the functions! and 
g, given by fix) = x3 and g(x) = 3x2 - 2.99x + 0.99, 
are equal? If so, zoom out to see if the new graphic 
evidence reinforces or disproves your conjecture. If 
possible, give a theoretical explanation for your new 
conclusion. 

Solution 

Figure 11 shows the graphs off and g when viewed 
with the given window setting. To the naked eye, it 
appears that these graphs are coincident, and so one 
might conjecture on the basis of this evidence that 

f = g. However, if you zoom out, you obtain the graphs 
shown in Figure 12. Here, it is clear that the graphs 
off and g are distinct, and so f :;t:. g. 

The same conclusion can be reached theoretically 
in a couple of ways. First, since the function h = f- g 
is a third-degree polynomial, the Fundamental Theo
rem of Algebra tells us that h has at most three zeros. 
In particular, h is not identically zero, and so f :;t:. g. 
Second, f and g are unequal because they have 
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different limits as x➔ -oo . Indeed, by the Leading 
Term Test (Dobbs and Peterson 1993, 152), 

lim f (x) = -oo but lim g (x) = lim 3x2 = oo. 
X➔ -oo x-+ -oo X➔ -<Xl 

Figure 11 

Xmin=--0.9 

Ymin = 0.7 

Figure 12 

Xmin =0 

Ymin =-2.45 

Example 7 

Xmax =1.1 

Ymax =1.4 

Xmax.= 2 

Ymax = 4.55 

Xscl = 0.1 

Yscl = 0.05 

Xscl = 0.1 

Yscl = 0.05 

Follow the instructions of Example 6, for the 
functions/and g given by f(_x) = ex and g(x) = 1/6 x3 + 

1/2x2 + x + 1 with the initial window setting Xmin = 

-1, Xmax = I, Xscl = 1, Ymin =-2, Ymax = 10 and 
Yscl = 1. 

Solution 

Figure 13 shows the graph off and g when viewed 
with the given window setting. To the naked eye, it 
appears that these graphs are coincident, and so one 
might conjecture on the basis of this evidence that 
f = g. However, if you zoom out, you obtain the graphs 
shown in Figure 14. Here, it is clear that the graphs 
off and g are distinct, and so f :;I! g. 

The same conclusion can be reached theoreti
cally. Indeed,! and g are unequal because they have 
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different limits as x➔-oo. Of course, lim fl.x) = 0. 
x➔ -oo 

However, by the Leading Tenn Test, lim g(x) = 
x➔ -oo 

lim 1
/6 x3 = -oo . 

X➔-CXI 

Figure 13 

Xmin =-1 

Ymin=-2 

Figure 14 

Xmin=-10 

Ymin =-56 

Example 8 

. 

Xmax =1 

Ymax =10 

Xscl = 1 

Yscl = 1 

'1'=1.(19677'12 

Xmax = 10 

Ymax = 64 

Xscl = 1 

Yscl =I 

Follow the instructions of Example 6, for the 
functions f and g given by f(_x) = sin x and g(x) = 
....J/6 x3 + x with the initial window setting Xmin = -,,:/4 , 

Xmax = 1t/4, Xscl = "/
20

, Ymin = -2, Ymax = 2 and 
Yscl = 1. 

Solution 

Figure 15 shows the graphs of f and g when 
viewed with the given window setting. To the naked 
eye, it appears that these graphs are coincident, 
and so one might conjecture on the basis of this evi
dence that/= g. However, if you zoom out by setting 
Xmin = -J'C, Xmax = n, and not changing the other 
settings, you obtain the graphs shown in Figure 16. 
Here, it is clear that the graphs off and g are distinct, 
and so/ :;I! g. 
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Figure 15 

Xmin = -:rr:/4 

Ymin =-2 

Figure 16 

Xmin=-:rc 

Ymin=-2 

Xmax =:rr:/4 

Yrnax = 2 

Xmax =:n 

Ymax=2 

Xscl =:rr:/20 

Yscl =1 

Xscl =:n/W 

Yscl =l 

The same conclusion can be reached theoretically 
in a couple of ways. For instance, you can check that 
f and g have different limit behavior at -oo ( or at oo ). 
Altematively,/and g are unequal because they have 
different sets of zeros. Indeed,f has infinitely many 
zeros, while the Fundamental Theorem of Algebra 
tells us that g has at most three zeros. 

In the final example, we see how entire intervals 
can be misinterpreted when using a graphing calcu
lator to solve an inequality. The remedy, once again, 
involves zooming out. 

Example 9 

Use a graphing calculator to solve the inequality 
0.lxJ - 3.4x2 -50.7x + 54 < 0. 

Solution 

Using the default setting, we find the graph of the 
equationy = O.lx3- 3.4x2-50.7x + 54 shown in Fig
ure 17. By changing the range settings to those indi
cated in Figure 18, and tracing, we see that this graph 
has an x-intercept at x = 1. Thus, since the solution of 
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the inequality arises from the portion of the graph 
that lies below the x-axis, it appears from Figure 18 
that the solution is the interval (1, oo ). 

Figure 17 

- - - -

Xmin =-10 

Ymin=-10 

Figure 18 
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Ymin=-3.1 
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Xmax =10 

Ymax =10 

-

Xmax=4.7 

Ymax = 3.1 

- - - - - -

Xscl = 1 

Yscl = 1 

Xscl = I 

Yscl =l 

-

1 

Is this the correct solution? Let's zoom out. By 
tracing on the resulting graph, as shown in Figure 19, 
you see that the graph intersects the x-axis a second 
time (atx=-12) and a third time atx=45. So, now it 
seems as if the solution set is (-oo,-12)U(l,45). Is 
this the solution? 

Will additional zooming out show that the graph 
turns around yet again? How much zooming out is 
enough? How many times can you expect the graph 
to turn? In general, first derivative information from 
calculus is needed to analyze turning points. In fact, 
in this example, you have zoomed out enough. The 
solution set is (-oo,-12)U(l,45). 

In closing, it should be noted that both zooming in 
and zooming out procedures are often needed in ana
lyzing one example. For instance, to solve the inequal
ity O.O lx3 - l.0400x2 + 2.0949999x - 1.0 19898 > 0, 
one needs to zoom in near x = 1 to identify the zeros 
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Figure 18 

�='1� 

Xrnin =-46 

Yrnin=-31 

'i=O 

Xmax=48 

Ymax = 31 

Xscl = l 

Yscl =I 

1 

Given the equations 

at x = 0.99 and x = 1.01, while one needs to zoom out 
to detect the zero at x = l 02. 
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7x + 5y- z = 8 and y+ z = 11, find all the ordered natural 
number triplets which satisfy the two equations. 
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