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Given the recent public mania over bungee 
jumping, stimulating students' interest in a model of 
that situation should be an easy "leap." Students 
should investigate the connections among various 
mathematical representations and their relation­
ships to applications in the real world, asserts the 
Curriculum and Evaluation Standards for School 
Mathematics (NCTM 1989). Mathematical model­
ing of real-world problems can make such connec­
tions more natural for students, the standards docu­
ment further indicates. Moreover, explorations of 
periodic real-world phenomena by all students, as 
well as the modeling of such phenomena by college­
intending students, is called for by Standard 9: 
Trigonometry. 

What follows is an activity that the author has 
successfully used with Grades 11 and 12 students in 
a precalculus course in which daily use was made of 
graphing calculators. In addition to meeting the ex­
plicit recommendations previously noted, the activ­
ity presents an application of trigonometric functions 
in a nongeometric setting, giving students an oppor­
tunity to apply such functions to a real-world 
situation. 

In Precalculus: A Graphing Approach, Demana 
and Waits ( 1989, 526-27) present a series of prob­
lems aimed at students' development of mathemati­
cal models of harmonic motion followed by damped 
motion. Instead of just using "made up" data to build 
the model, the decision was made to bring the physi­
cal situation into the classroom. The hope was that 
asking students to attempt to model something that 
they could actually see would make the problem more 
vivid for them. 

This activity can be completed in one or two class 
periods. The materials required are a spring, weight suf­
ficient to stretch the spring, some means of suspend­
ing the spring and attaching the weight to the spring, 
a stopwatch and a graphing utility. A screen-door 
spring with eight to twelve ounces of weight has 
proved a satisfactory combination. One's physics 
colleagues might also be a good resource. 
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In this activity, the goal is for students to pro­
duce a mathematical model of the motion that re­
sults when 

I. the weight is attached to the spring, 
2. the spring-weight combination is suspended so as 

to allow the weight to hang freely, 
3. the spring is stretched by pulling down on the 

weight and 
4. the weight is released, beginning an oscillatory 

motion. 

In a sense, mathematical modeling is a process of 
successive approximation: a number of models are 
built, each imitating more of the properties of the 
situation than the one that came before. Throughout 
the modeling activity, it is important to convey to 
students the notion that mathematical models are best 
thought of not as "right" or "wrong" but as better or 
poorer representations of the problem situation. The 
interested reader is encouraged to see Davis and 
Hersh (1981, 70, 77-79) for a further discussion of 
the nature of mathematical models. 

Building the First Model 

The first thing that must be one is to establish an 
equilibrium point for the weight. If the weight is sus­
pended near the chalkboard, for example, the equi­
librium point can easily be marked on the chalkboard 
behind the weight. Next, the spring can be stretched 
to begin the oscillation, as in Figure I. As the weight 
is oscillating, the teacher can begin to pose ques­
tions to engage students' thinking about the situa­
tion and elicit from them a verbal description of what 
they are seeing. Students will frequently say things 
like, "Well, you stretched the spring, let go, and the 
weight started bouncing up and down." From such a 
beginning, the teacher might ask, "Do we know any 
mathematical functions that do just that?" 

If students have difficulty associating a sinusoid 
with this physical situation, the teacher might sug­
gest the possibility of measuring the "bounce." Here 
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Figure 1 

Beginning the Motion 

At equilibrium Stretched 

the question, "Measure from where?" is sure to arise. 
Restarting the oscillation, the teacher might ask 
where an appropriate "zero point" would be. For 
convenience, negotiating the equilibrium point as the 
zero point is fairly easy, and measuring the "deflec­
tion," or amount of stretch, should seem reasonable. 
One possibility is illustrated in Figure 2. The situa­
tion has been quantified, and the function sought can 
be described numerically. For example, we are look­
ing for a mathematical function that has value -10, 
then 0 then 10, 0, -10, 0, IO, .... It is hoped that the 
notion of a sine or cosine function will follow. In the 
author's experience, it always has! 

The teacher will also need to negotiate with stu­
dents an appropriate sinusoid for this problem. In so 
doing, a second critical quantity, time, should enter 
the discussion. In deciding which sinusoid to use in 
the model, students will need to focus on the known 
ordered pair at the start of the oscillations: When the 
time is 0, the displacement of the weight is -10. What 
should emerge form the discussion is a tentative 
model: y = A cos Bx. 

Once a tentative model has been elicited from the 
students, the remaining task is to associate the 
constants A and B with the measurable physical 
quantities present in the problem. Students have had 
no trouble connecting the deflection of the weight 
with the amplitude of the graph of the cosine 
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Figure 2 

Quantifying the Motion 

10 

0 

-10 

function and, hence, with A. Thus, if the original de­
flection of the weight was, say, 1 0 cm, the tentative 
model can be adjusted toy = -10 cos Bx. 

What has often caused students more difficulty 
was connecting the constant B with something. This 
something is, of course, related to the period of the 
graph of the cosine function, but how is the period 
of a cosine graph related to the present situation? 

Here students are being asked to make a connec­
tion between the period of a cosine graph and the 
period of an oscillation. Having made this connec­
tion, students will usually see that the period of os­
cillation is really a period of time and, hence, that 
the independent variable in this situation is time. 
However, the really tricky part remains: can the pe­
riods of oscillation be measured with some degree 
of accuracy, and how is that period related to the 
constant B? 

Students usually devise some effective means to 
measure the period of oscillation. Most often, they 
have suggested measuring the time required for a 
certain number of oscillations, say, 5, and then di­
viding by 5. A more sophisticated group might sug­
gest taking several measurements and averaging 
them. This pursuit -might lead to a discussion of 
"outliers" and their possible causes, as well as their 
resolution! 
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Having a measure of the period of oscillation, stu­
dents then need to connect that number with the con­
stant B in their model. The teacher might ask them 
to recall the relationship of B to the period of a co­
sine graph: 

period= l1t, 
B 

from which it follows that B (period) = 21t 
and B = ----1!L_ . 

period 
For example, if the period of oscillation was 1.6 
seconds, we would have 

or 

B = 21t' 
1.6 

B=...!I....... 
0.8 

Thus, our tentative model can be further adjusted to 
yield 

Figure 3 

The Graph of y = -10 cos [(1t/0.8)t] for O � t � 16 

At this point, students benefit from examining the 
graph of this function with the aid of a graphing 
utility. It seems preferable that students do so using 
their own graphing calculator, but such activities have 
also been successfully conducted using a graphing 
utility projected on the overhead projector. Which­
ever means is used, students must determine whether 
the graph of this function indeed models the physi­
cal situation. Some discussions of an appropriate 
"viewing rectangle" should precede the graphing 
activity. 

Here a word of caution is in order. When using a 
graphing utility to graph periodic functions, one must 
think carefully about the size of the viewing rect­
angle with respect to the period of the function. In 
the present situation, for example, a period of oscil­
lation of 1.6 seconds has been assumed. What would 
happen if an attempt was made to graph this model 
of O ::S x ::S 150? Since the weight might continue 
oscillating for several minutes, it might, in fact, seem 
quite reasonable to use such a domain for x, as it 
represents only a 2.5-minute span. 
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· However, the graph that many utilities would pro­
duce in such a viewing rectangle is very misleading. 
See Hansen (1994) for a discussion of graphical mis­
representations that occur when the domain divided 
by the period of a function is a multiple of the num­
ber of pixels in the width of the screen of the graph­
ing utility. I have found that 12-15 cycles of a periodic 
function are the maximum that can be conveniently 
displayed with reasonable accuracy using a graph­
ing utility such as the TI-81. To require more than 
that is to push the technology beyond its limits. 

Figure 3 shows a graph of the first model. At this 
point, students are usually quite pleased with them­
selves for having produced this model. They are quite 
unprepared for the next question, which the reader 
may already have guessed, "How could we improve 
this model?" 

Building a Better Model 

Once the existing model has been suggested as 
problematic, on reflection, students will see that they 
have modeled a "perpetual motion machine." This 
notion should begin the search for a better model, 
one that accounts for the damping of the motion. 
Once again, students will need to make a connection, 
this time between the coefficients A and B and the 
physical reality that the motion is "slowing down." 

Asking students the question, "What physical 
quantity have we been treating as a constant, although 
it is not really a constant?" helps them to associate 
A, or the amplitude, with the damping effect. 
Students can then be encouraged to try out various 
variable expressions in place of the constant -10 in 
their model. For example, Demana and Waits (1989) 
suggest the equivalent of -10 + t in the problem set 
cited earlier. Figure 4 shows a second model, using 
A=-IO+t. 

While furnishing a model of the damping effect, 
this function has the undesirable property that it 
seems to show the motion starting up again after stop­
ping i This shortcoming leads to a part of the situa­
tion that is difficult to model: an amplitude is sought 
that will approach zero, then equal zero for some 
value oft and all larger values oft. 

Figure 4 

The Graph of y = (-10 + f) cos [(1t/0.8)t] for O � t � 16 
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Figure 5 

(a) The graph of y = -1 o e-0·051 cos [(1t/0.8)t) "going 
strong" in a (0, 16) by (-12, 12) viewing rectangle. 

(b) The graph of y= -10 e-0·051 cos [(1t/0.8)f] "still 
going" in a (16, 40) by (-12, 12) viewing rectangle 

(c) The graph of y = -10 e-0-0st cos [{1t/0.8)f] "coming 
to rest" in a (40, 80) by (-12, 12) viewing rectangle 

Searching for the Best Model 

Although such a function might be piecewise de­
fined, the model that physicists have suggested uses 
a function that is asymptotic with y = 0. Students 
who have had some experience with the graphs of 
exponential functions should be able to make a con­
nection here. If they are familiar with the graphs of 
y = e and y = e·x, then the customary model of 
damped motion can be constructed. If not, then mak­
ing a connection with y = 2x may do. 

In any event, the connection that needs to be made 
is that multiplying a function that is asymptotic with 
zero by a constant such as -10 produces a function 
that remains asymptotic with zero. Of course, 
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students must also recognize that a function is sought 
that asymptotic with the positive x-axis. Thus, our 
model could be adjusted to 

y = -1 Oek' cos [ ( O � 8 ) t] · 
With the aid of the graphing utility, students can 

explore the effect of various values of k on the model. 
Students might be encouraged to find the value of k 
that best models their situation. This task could be 
accomplished by measuring the time it takes for the 
weight to come to rest and searching for the value of 
k whose graph best depicts that aspect of the situa­
tion. Figures 5a, b and c depict such a model graphed 
in different viewing rectangles to show the "coming 
to rest" process. Note that in this example, one graph 
is clearly not sufficient. 

Even this exponential model, which is the one 
usually used in physics, is not a perfect descriptor of 
the physical situation. After all, we would probably 
agree that the weight does indeed eventually come 
to rest, but y does not equal zero for any value of x in 
the domain of these models. What makes this the 
best model, in fact, what make any model a better 
model, is that it mimics more of the physical aspects 
of the situation than do other models. 
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