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We have put together "A Collection of Connec­
tions" comprising 12 uses of junior high school math­
ematics. These activities support the communication 
and connection strands of the Western Canadian Pro­
tocol mathematics curriculum. In using them, teach­
ers may adapt them extensively. They can serve as a 
basis of one to three mathematics periods. We have 
also found that teachers need to plan if they intend 
to incorporate them into their teaching units. They 
can be used as end-of-unit activities or as focal ac­
tivities in the development of a unit. We would en­
courage teachers to use the activities as a means of 
bringing mathematical skills to life. These contexts 
provide an opportunity to enhance a student's view 
of mathematics. As one Grade 9 student said at the 
conclusion of one of these activities, "That just proves 
that mathematics is everywhere." 

The following are samples from the number and 
algebra strand. 

Number (Square Roots and Powers) 
The Musical Scale 
The Musical Scale Student Activities 
Algebra 
The Clock Maker and the Pendulum 
The Clock Maker and the Pendulum Student 
Activities 

The Musical Scale 

Intent of the Lesson 
The mathematical basis of the musical scale is 

shown to have two aspects, reflected in the two parts 
of the lesson. In Activity 1, simple fractions deter­
mine the frequency of the notes in the do, re, mi scale. 
In Activity 2, powers and roots are used to compare 
frequencies and to justify the use of the black keys. 
The mathematics of the lesson include reciprocals, 
multiplying fractions and squares. 
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General Question 
The basis of all our music is the 8-note scale: 

do, re, mi, fa, sol, la, ti, do 

These 8 notes get represented several times at 
higher and lower frequencies. We are all familiar with 
the piano keyboard. We notice that, in addition to the 
8 white notes, we have five black notes. This is the 
12-note scale because the 13th note is really the first 
note of the next 12 tones. The question we are asking 
in this lesson is how we got the 8-note scale and how the 
12-tone scale works. We are going to use our knowl­
edge of fractions to help us in this understanding. 

Another interesting mathematical question about 
music is, if we can play only 12 different notes, how 
can we make so much different music? It is a math­
ematics problem to see how many different arrange­
ments of 12 notes are possible. The number must be 
very large because we have millions of tunes. In ad­
dition to the 12 notes, we have the length of time 
each note sounds ( l beat, 2 beats, ½ beat, ¼ beat and 
so on). We also have the length of the interval be­
tween the notes. The 12 different notes, the lengths 
of the notes as they sound and the length of the space 
between the notes can be arranged in a very large 
number of ways to make a lot of different music. 

However, this is not the question that we are deal­
ing with today. Today we are going to investigate 
how we came to have 12 different notes. As you might 
imagine, it, like a lot of mathematics, started with 
Pythagoras. 

Teaching Suggestion 
This lesson can be taught as a whole or in two 

separate parts: Activity 1 and Activity 2. 
If a piano keyboard and a guitar are available, they 

can be used effectively in this lesson. Many classes 
will have a guitar player and a piano player who can 
assist in this lesson.A knowledge of music is helpful. 
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Preliminary Activity 

1. The pitch of a string, that is, whether it sounds 
high or low, depends on the frequency of its vi­
brations. For example, long strings vibrate slowly 
and therefore produce low notes. Short strings vi­
brate fast and produce high notes. (This idea can 
be illustrated nicely on a guitar.) 

2. The frequency is inversely related to the length of 
a string. 
For example, if L (length of the string) gives a 
particular F (frequency of vibration) then½ ofL 
gives 2F (two times the frequency) 
and 21 gives ½ F 
and 1/31 gives 3 times F. 
Other examples might include 1/10 of L will give 
a note of 1 OF. 
Rule: The new frequency is found by multiplying 
the old frequency by the reciprocal of the change 
in length. If the length is doubled, the frequency 
is halved. If the length is ¼, the frequency is four 
times. 

3. On particularly difficult concept is that a string 
which is divided in half produces that same note 
as the original string but twice as high. (This can 
be illustrated with all strings on a guitar.) 

Although these concepts are not essential for the 
lesson, the students should have as good a grasp as 
possible of them. With these understandings of the 
physics of the vibrating string, our musical scale in­
vestigation can begin. 

Answering the General Question 

Activity 1: The Scale of Eight Notes 

Pythagoras took a string and noticed how, when 
he divided it in half, he got the same note at twice 
the frequency. He wanted to divide this musical in­
terval do (low) to do (high) into a series ofnotes. His 
first discovery was that when he divided this length 
of string into simple fraction ratios he got nice sound­
ing notes. So that besides the ½ ratio, the other ra­
tios were 2/3, ¾, 4/5 and 3/5. These are the simplest 
fractions we have. On a guitar string they look like 
this: 

I I I I 
: ¾ : 

3/5 ½ 
4/5 2/3 0 

The teacher could have students measure the length 
of the guitar string from bridge to nut and find these 
lengths by calculating the fraction and measuring. 
The notes that we get from these simple fractions, 
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mi, fa, sol and la, are shown below on the piano 
keyboard. 

4/5 ¾ 2/3 3/5 ½ 

Now the teacher or a helper can find these fractional 
lengths on the guitar and play them on a keyboard 
and agree with the class that they do sound nice when 
compared tot eh original note. 

Let us assume that the original note has a fre­
quency of 256Hz, the frequency of middle C. Re­
membering our rule, we can figure out the frequency 
of the new notes. If the length is ½ of the original 
length the frequency will be two times 256 = 512. 
How about 2/3? We multiply 256 by 3/2. In this way, 
the frequencies of the other fractions of the length 
can be found. 

Teaching Suggestion 

We can figure these frequencies out by doing the 
fraction in two stages. First, doubling the length 
means½ the frequency and taking 1/3 of that means 
tripling the frequency so the new frequency is 3/2 of 
256 = 384. 

Using the Table 

Making a table such as the one below can help 
keep track of these ideas. (The two blank spaces are 
for two additional notes which we will discuss later.) 
The first four notes that we have found are mi, fa, sol 
and la. We noticed that the frequency factor goes 
from l to 2. (In the table, the improper fractions are 
in parentheses, which is a useful form for comparison.) 

Note Length Frequency Factor Frequency 

do one unit l 256.0 

mi 4/5 (5/4) 1 ¼ 320.0 
fa ¾ (4/3) 1 1/3 341.3 
sol 2/3 (3/2) 1 ½ 384.0 
la 2/3 (5/3) 1 2/3 426.7 

do ½ 2 512.0 

These five ratios, mi, fa, sol, la and do, are simple 
ratios of the Pythagorean scale. To make the scale 
sound smoother, notes were added in the gaps be­
tween the do and the mi and between the la and the 
do. Two notes were added so that the first new note 
had a frequency l /8 more than I and at the other end 
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of the scale the new note had a frequency 1/8 less 
than 2. These two notes complete our eight-note 
scale. 

Note Length Frequency Factor Frequency 

do one unit I 256.0 
re 8/9 (9/8) I 1/8 288.0 
mi 4/5 (5/4) 1 ¼ 320.0 
fa ¾ (4/3) 1 1/3 341.3 
sol 2/3 (3/2) I ½ 384.0 
la 3/5 (5/3) I 2/3 426.7 
ti 8/15 (15/8) I 7/8 480.0 
do ½ 2 512.0 

Charting the fractional lengths of the string on 
a nwnber line, we notice that fractions of the length 
of the strings are not evenly spaced between ½ and 
I. However these 8 fractional lengths make up the 
pleasant sounding musical scale: do, re, mi, fa, sol, la, 
ti, do. 

I I I I I I I 
8/9 I 3¾ I 3/5 I½ 

I I I 

4/5 2/3 8/15 0 

Now we have an eight-note scale. By adding another 
eight notes and another we can have a series of notes 
and can play a wide range of do, re, mi and so on, 
repeated. 

Activity 2: The Twelve-Tone Scale 

We would like to think that in this scale the change 
is constant from one note because then we would 
have an even scale. However, the pattern of fractional 
lengths above suggests it is not. Let us examine how 
the frequency changes from note to note. How much 
higher is the frequency from one note to the next? 
That is, what do we need to multiply the frequency 
of do by to obtain the frequency of re, re to mi; mi to 
fa and so on? This number is referred to as the mul­
tiplier. It is the number we multiply the previous note 
by to obtain the next note; that is, the ratio of the 
note to the previous note. 

Note Length Frequency Frequency Multiplier 
Factor 

do one unit I 256 ------

re 8/9 9/8 288 1.125 
mi 4/5 5/4 320 I.I l l 
fa ¾ 4/3 341.3 1.066 
sol 2/3 3/2 384 1.125 
la 3/5 5/3 426.7 I.Ill 
ti 8/15 15/8 480 1.125 
do ½ 2 512 1.066 
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As we calculate the multipliers (with a calculator) 
of these notes we notice that there are two (approxi­
mate) numbers. The multiplier is either 1.125 or 
1.066. In fact, we note that the square root of 1.125 
is approximately 1.066. Alternatively the square of 
1.066 is 1.125. So the multiplier is either m or m2 

where m is 1.066. 
As we go from do to do, the multipliers are: do x 

m2 = re re x m2 = mi mix m =fia fia x m2 =sol sol ' ' , ' 
x m2 = la, lax m2 = ti and ti x m =do.The pattern of 
multipliers is m2, m2, m, m2, m2, m. This means that 
we do not have an evenly increasing scale. Between 
do and re the frequency increases by two jumps of 
m, but between mi and/a it only increased by one 
jump of m. A natural thing to do would be to add a 
note between mi and/a that only increased by one 
jump of m. A natural thing to do would be to add a 
note between do and re so that the frequency takes a 
jump of m to the new note and another jump of m 
from the new note to re. In this way, ifwe added five 
notes (one wherever we had an m2 jump), the result 
is a 12-note scale, each note spaced a frequency m 
times higher than the previous. 

We get the common keyboard of C, C#, D, D#, E, 
F, F#, G, G#, A, A#, B, C. (# means sharp.) 

The advantage to the 12-note scale is that because 
all notes are spaced evenly apart we can start a do­
re-mija-sol-la-ti-do scale on any note. Once we start 
on any note, we go m2, m2, m, m2, m2, m2, m. An m2 

jump means we go up two notes, while an m jump 
means we go up one note. 

When we start with C we can go the usual do, re, 
mi,fa, sol, la, ti, do by staying on the white notes. 
What are we doing is starting with a frequency and 
following the pattern: 

do, m2, m2, m, m2, m2, m2 and arriving at do. 

If we wanted to run the same scale beginning at 
D, which notes would we have to pick? Which note 
is m2 above D? It is E#? Now which note is m2 above 
E#? It is F#. So we see we can create a do, re, mi,fa, 
sol, la, ti, do pattern. In fact, we can see that we can 
do it by starting on any note. 

What is the exact value of m? In going from do, to 
do there are 12 multiplications by m. We know in 
going from do to do that the frequency doubles. 
Therefore m 12 = 2. What number multiplied together 
12 times equals 2? It is the 12th root of 2, which is 
1.059. By spacing the notes out mathematically even, 
we get a scale that can be repeated and that can be 
started at any note. However, the new set of notes 
does not follow the same frequency as Pythagoras' 
original nice sounding notes. In his spacing m = 1.066 
and m2 = 1.1 11 or 1. I 25, while in the even spacing 
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the m = 1.059 and m2 = 1.121. These are only ap­
proximations. Instruments like guitars and pianos are 
tuned to the mathematical pattern. These instruments 
cannot play the natural scale exactly. The violin, 
where players find their own notes, can play a scale 
that is perfectly in tune. 

Materials 

A guitar can be used in Activity I to emphasize 
the fractional relationships of the frequencies and a 
piano keyboard is useful in Activity 2 where the fo­
cus is one the black keys. Calculators are needed. 

Modifications 

The names of notes like C# and D# can be avoided 
if necessary. In music, a jump of m2 in any frequency is 
called a "full tone," while a jump of m is a "half tone." 

The Musical Scale 

Student Activities 

General Question 

The basis of all our music is the 8-note scale: 

do, re, mi,fa, sol, la, ti, do. 

These 8 notes get repeated several times at higher 
and lower frequencies. We are all familiar with the 
piano keyboard. We notice that, in addition to 8 white 
notes, we have 5 black notes. 

This is the 12-note scale because the 13th note is 
really the first note of the next set of 12 notes. The 
real question is how we got the 8-note scale and how 
the 12-note scale works. We are going to use our 
knowledge of fractions and powers to find out. 

Another interesting mathematical question about 
music is: ifwe can play only 12 different notes, how 
can we make so much different music? It is a math­
ematics problem to see how many different arrange­
ments of 12 notes are possible. The number of ar­
rangements must be very large because we have 
millions of tunes. In addition to the different arrange­
ments of the 12 notes, we have the length of time 
each note sounds ( 1 beat, 2 beats, ½ beat, ¼ beat and 
so on). We also have the length of the interval. We 
also have the length of the interval between two notes 
that are played in sequence. The 12 different notes, 
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the length of time the notes sound and the length of 
the time between the notes can be arranges in a very 
large number of ways to make a lot of different music. 

However, this is not the question that we are dealing 
with today. Today we are going to investigate how we 
came to have 12 different notes. As you might imagine, 
it, like a lot of mathematics, started with Pythagoras. 

Activities 

I. a) A string 60 cm long gives a frequency of 256 
vibrations per second. What will be the fre­
quency of the vibrations when the string 
i) is shortened to of this length? 
ii) is shortened to ½ of this length? 
iii) is increased to 1 ½ times its length? 

b) What is the rule for finding the new frequency 
of a string when the length is changed to some 
fraction of its original length? 
Use F. for the new frequency, F

0 
for the origi­

nal frequency andf for the fraction. 
c) A string has a frequency of 152 vibrations per 

second. Use this rule (Question l b) to find 
the frequency of the string which is 8/9 of its 
original length. 

2. Use your calculator to fill in the table below for 
the frequencies of the notes. 

Note Length Frequency Factor Frequency 

do one unit 1 256 
re 8/9 9/8 
mi 4/5 5/4 
(a ¾ 4/3 
sol 213 3/2 
la 3/5 5/3 
ti 8/15 15/8 
do ½ 2 

3. a) When we divide a string in half, we get a note 
of two times the frequency. This is the same 
note as the original at twice the frequency. 
Draw a diagram of a string and explain why it 
works this way. 

b) Find the frequencies of the C-note one octave, two 
octaves, three octaves and four octaves above 
middle C. The frequency of middle C is 256. 

c) Find the frequency of the C-notes one octave, 
two octaves, three octaves and four octaves 
below middle C. 

4. a) The piano keyboard has 12 notes and then it 
repeats. The C note is middle C. In question 3 
the frequency of C notes one, two, three and 
four octaves above and below middle C were 
calculated. The frequency for other notes can 
be found in the same way. Look on the chart 
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and find the frequency of D (next to middle 
C). What is the frequency of note D, an oc­
tave above? 

C O E  F G A B C  

b) We have two patterns of notes: 
i) The note to the right of any note has a 

frequency how many times higher? 
ii) The note an octave above any note has a 

frequency how many times higher? 
5. Use your calculator to fill in the table below. The 

multiplier refers to the number we multiply the 
previous note by to obtain the next note. It is the 
ratio of the note to the previous note. Use your 
information from question 2 to fill in the column 
for frequency. 

Note Length Frequency Frequency Multiplier 
Factor 

do one unit 1 ----------

re 8/9 9/8 
mi 4/5 5/4 
a ¾ 4/3 
sol 2/3 3/2 
la 3/5 5/3 
ti 8/15 15/8 
do ½ 2/1 

6. a) We have seen in the scale that we have devel­
oped that the relationships between the fre­
quencies are not all the same. For example, 
some m2 intervals are 1.125 and some are 
1.111. Also if m = 1.066, then m2 will be 1.136. 
Experiment with your calculator and find what 
m would be in order that all intervals are equal. 
In other words, what is m if 

I x m x m x m (12 times)= 2? 

b) Pianos are made so the intervals are all the 
same. We can call this the mathematically 
perfect scale. Explain why a scale played on 
a piano is never exactly in tune. 

c) Violin players make their own notes, so they 
can always make scales that are musically ex­
actly in tune. Does a violin player need to 
know the mathematics of music to play cor­
rectly? Would knowing it help the player to 
understand why the piano never sounds com­
pletely in tune? 
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The Clock Maker 

and the Pendulum 

Intent of the Lesson 

The time for one full swing of a pendulum is di­
rectly related to the square root of the length of the 
pendulum. The graph of the period of the swing 
against the length of the pendulum will produce a 
curved line graph. However, the graph of the square 
of the period against the length of the pendulum pro­
duces a linear graph. The mathematics involved is 
variables, graphing, linear equations and squares and 
square roots of numbers. 

General Question 

The swinging pendulum of a grandfather clock 
used to be a familiar sight. In designing clocks, clock 
makers find it convenient to have the pendulum swing 
in times of one second, two seconds and three sec­
onds. When constructing a pendulum of various 
string lengths and a weight, it is obvious that not all 
pendulums swing at the same rate. How long does it 
take for the pendulum to make one full swing? A 
full swing is most easily understood as the move­
ment from the extreme left position, across to the 
extreme right position and back to the extreme left 
position. As is the case with many crafts, experience 
has taught clock makers what length to make pendu­
lums. They probably do not know why it works that 
way. The purpose of this activity is to examine why 
it works. Understanding the pendulum is largely a 
mathematical problem. 

How fast a pendulum swings does not depend on 
how hard it is pushed. It also does not depend on the 
heaviness of the weight at the end of the pendulum. 
How fast a pendulum swings depends only on the 
length of the pendulum. 

Discussion Questions 

• Describe what a full swing of a pendulum is. (Pen­
dulum starts at the left, swings all the way to the 
right and returns to the left.) 

• Describe it using other starting points. 
• In this lesson, which description is the most 

appropriate? 
• Which takes longer to make one full swing, the 

short or the long pendulum? (Long) 
• How can the approximate length of the pendulum 

be found that would make the time for one full 
swing equal to one second? 

• What is the general relationship between the length 
of the pendulum and the time for one full swing? 
(Using the length as the x-axis and the time for 
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one full swing as the y-axis, the graph moves from 
the lower left to the upper right.) 

• What kind of relationship would be preferred? 
(A straight line.) 

Time 
for 
One 
Full 
Swing 

Length of Pendulum 

[The shaded area shows the general region of 
where the points of the graph will lie. The shorter 
the pendulum, the shorter the time for one full swing.] 

Through a teacher demonstration, have the class 
count the number of seconds it takes a pendulum to 
make 10 swings. The time for one swing is easily 
determined. 

The general question, then, is to find the length 
of the pendulum which takes one second ( or two 
seconds or three seconds) to make one full swing. 
Also, the relationship between the time for one full 
swing and the length of the pendulum should be 
examined. 

The important concept being developed here is 
the mathematical relationship between the length of 
the pendulum and the time for one full swing. If the 
relationship is a straight line, the equation can easily 
be worked out between the two variables. Unfortu­
nately, the graph of the relationship between the pe­
riod and the length of the pendulum is not a straight 
line. This problem will be dealt with later. 

Preliminary Activity 

The Time for One Full Swing 

To find the length for one full swing, students 
should find the length of time for 20 or 30 swings 
and then calculate the length for one full swing. Note 
that the timer should start when the person counting 
says zero and stop when the counter says 20 or 30 
(whatever is agreed upon). A stop watch will be use­
ful but not essential for this activity. The diagram 
below illustrates how counting is to be done. The 
mathematical problem of why to begin with zero 
should be discussed fully. It can be illustrated as fol­
lows. Suppose the time for a frog to make 20 jumps 
is to be counted. The diagram below shows the path 
of the jumping frog: 

AB C 
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· In counting 20 jumps, we could say "zero" at point 
A, "one" at point B and so on until point C is reached 
and numbered 20. If timing started at "zero" and 
stopped when 20 was reached, this would be the time 
for 20 jumps. The same type of thinking can be ap­
plied to full swings of a pendulum. 

Have counting start when the swing is in a left­
most position. Start the pendulum swinging and start 
counting, beginning with zero. Again, the teacher 
should demonstrate this technique. 

Discussion Questions 
• If 20 swings take 20 seconds, what is the time for 

on_e swing? ( I second) 
• If 20 swings take 33 seconds, what is the time for 

one swing? (1.65 seconds) 
• How would the number of swings per second be 

found? (I/time for one swing) 
• If the time for one swing was two seconds, what 

is the number of swings per second? (½ per 
second) 

• If the number of swings per second was three, what 
is the time for one full swing? (I /3 second) 

• What mathematical tenn describes how these two 
ways of talking about the swinging pendulum are 
related? (Inverse) 

The time for one full swing is the period, while the 
number of swings per second is the frequency. The 
discussion will mainly be limited to the period. The 
procedure for finding the period is the time 20 or 30 
full swings of the pendulum and make the calculation. 

A Linear Relationship 

Recall how to find a relationship between two 
variables: 
• IfI rent a car for $15 per day, what is the relation­

ship between the cost and the number of days it is 
rented? What are the two variables? The graph is 
a straight line. 

• If I make $1.25 for each box of candy I sell, what 
is the relationship between the number of boxes I 
sell and my total earnings. What are the two vari­
ables? The graph is a straight line. 

In fact, if a graph turns out to be a straight line, it is 
very easy to find the relationship between the two 
variables. 

Answering the General Question 

The goal is to determine the relationship ( equa­
tion) between the length of the pendulum and the 
period. Remember, the period is the "time for one 
swing." 
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Length of the Pendulum 

The length of the pendulum is found by measur­
ing the distance from the centre of the weight to the 
fixed end of the string: this can be determined to the 
nearest millimetre. The length of the pendulum, not 
the length of the string, is what needs to be found. 

Time for One Full Swing 

Once the pendulum is swinging freely (a few 
swings after it has been dropped), begin the swing at 
the extreme left and conclude the swing when it re­
turns. How long will it take for 20 or 30 full cycles? 
One full swing can then be calculated. 

Trials 

The class can be divided into 10 groups. Each 
group is given a ruler, a piece of string and a weight 
and assigned a particular length of pendulum with 
which to work. Lengths from 0.2-2 m are recom­
mended. At least 20 full swings should be timed. Each 
group should do three separate counts ( of 20 swings) 
with the same length and find an average "time for 
one swing." Then l O trials from 10 groups should be 
recorded, perhaps on the blackboard, as: 

Trial length Time for (Time for 
Number of one swing one swing)2 
Name of pendulum (period) 
group) 

l* 0.2 
2 0.4 
3 0.6 
4 0.8 

5 
6 
7 

* Group I is the teacher. 

Collect the group data, make a table of values and 
graph them. Student in the class can draw his or her 
own graphs from this data which they can compare 
with other group members. 

Teaching Suggestions 

The teacher should note that the time for one swing 
with the pendulum of zero length is zero. In other 
words the graph goes through the point (0,0). Includ­
ing the origin is useful in seeing that the graph is a 
curved line. 

In noting that these points fit onto a curved line, it 
may be obvious that one or more of the points do not 
fit the general pattern. This can be used as a point of 
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discussion with the class. A graph is a useful way of 
detecting patterns and noting deviations. In any case, 
an accurate graph will have to be drawn if a smooth 
curve is to be detected. The graph of the period 
squared should be drawn on the same graph as the 
initial curve. 

Students should appreciate the importance of get­
ting data that is on a straight line going through the 
origin and how this simplifies the mathematical prob­
lem of finding a relationship. The extra column of 
the table may be used for (time for one swing)2 

. 
length of the pendulum 

This should be approximately equal to the value K. 

The Graph 

The graph of the period against the length is a 
curved line. If the time for one full swing is squared, 
that is, the period is squared and the graph plotted, 
the points do fall in a straight line passing through 
the origin. This means that there is a linear relation­
ship between the length and the square of the period. 
Some mathematical experimenting can be done (with 
a calculator) to find the multiplier "K" in the equation. 

L= KP2 

Back to the Clock Maker 

Returning to the original question of the clock 
maker, there are two ways assistance can be offered. 
The clock maker could be given the formula or he 
can be given a carefully constructed graph. The graph 
of the relationship between the length of the pendu­
lum and the period (the curved line) would allow 
him to predict precisely the length for any desired 
period. 

Provided the number "K" is retained, the formula 
itself is easily remembered. The formula is conve­
nient to use because the clock maker knows the pe­
riod he wants and through substitution can determine 
the corresponding length of the pendulum. For a pe­
riod of one second the length is simply K. For a pe­
riod of two seconds the length of pendulum is 4K. 

Materials 

Ruler, string and weights to which a string can be 
attached are needed, as well as calculators to find 
the coefficient in the linear relationship. As noted 
preciously, a stopwatch or other timing instrument 
would be useful. 

Modifications 

There is a temptation to also discuss frequency, 
even though this is unnecessary. Even the use of the 
word "period" is not essential. 
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Another way of writing the relationships is 
P = G(LY,. 

Written in this form, G is related to the constant 
of gravity, a very important number. Therefore, math­
ematical graphing has led to a scientific truth. 

As a warm-up activity, each group of students 
could be given both a 50 g and a 500 g weight. By 
making two pendulums of the same length, the stu­
dents should be able to determine that the weight 
does not influence the time for one full swing of the 
pendulum. This also gives the students the opportu­
nity to practice making accurate measurements be-
fore they do the actual activity. 

Answering the general question can be done m 
two ways: empirically (doing many trials to find the 
answer) or mathematically (using the graph of a few 
trials to find the answer). The focus of the activity 
could be on either or both of these methods. 

The Clock Maker and the 

Pendulum Student Activities 

General Question 

The time for one full swing of a pendulum is de­
termined by the length of the pendulum. Can you 
determine which length will give a time for one full 
swing of exactly one second? Of exactly two seconds? 

Activities 

1. a) The time for 30 full swings of a pendulum was 
40.7 seconds. What is the time for one swing? 

b) How many swings will it make in one second? 
c) What is the mathematical relationship between 

the answers to question 1 a) and 1 b )? Why does 
this seem reasonable? 

2. a) In counting the swings of a pendulum, the rule 
is to begin the stopwatch at the count of ze�o 
and stop it at the count of 30. Why not begm 
with 1? Explain this. 

b) Do the second thousand years after Christ was 
born begin in the year 2000 or in the year 2001? 
How does this relate to question 2a)? 

c) The same mathematics problem occurs in 
counting our pulse after exercise. Explain. 

d) What is the counting issue that is common to 
these three problems? 

3. a) Mathematical relations between two variables 
that give a straight line as a graph are the best 
known relations in science. The most famous 
of these is the relation between the distance 
traveled and the time spent traveling of an 
object moving at a constant spee�. The rela­
tionship is d(istance) = s(peed) x t(1me). What 
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are some units for speed and time that could 
be used? 

b) A bullet traveled 400 metres in 2.2 seconds. 
What is the distance-speed-time equation for 
the bullet? 

c) An Arctic tern traveled 10,000 kilometres in 
40 days. What is the distance-speed-time equa­
tion for the Arctic tern? Ifthe"speed" of the tern 
is not constant, why does our equation still work? 

4. a) In the Leaning Tower of Pisa, Galileo noticed 
that the time for an object to fall was related to 
the height at which it was dropped. Is !he gi:aph 
of the height against time to fall a straight lme? 

Time to Fall Height Square of Square Root 
(Seconds) (Metres) Height of Height 

1.8 16 
2.25 25 
2.7 36 
3.15 49 
3.6 64 

b) Make a graph of the square of the height 
against the time to fall using the data in the 
chart provided. Is this a straight line? 

c) Make a graph of the square root of the height 
against the time to fall. Is this a straight line? 

d) Wherever the graphs in questions 3a, 36 and 
3c were a straight line, find the value ofK in the 
equation connecting time of fall (t) to height (h). 

5 ) Here are some accurate measurements of a .a 

pendulum made by scientists on the mo�m. 
Find the square of the time for one full swmg 
and figure out what K would be in this case? 
Why is K smaller on the moon? 

Length Time for One Square of Time 
Full Swing for a Swing 

0 0 
0.10 .32 
0.20 .45 
0.30 .55 
0.40 .63 
0.50 .7 
0.60 .75 
0.70 .84 
0.80 .9 
0.90 .95 
I I 
1.2 1.1 
1.4 1.18 
1.6 1.25 
1.8 1.35 
2 1.4 

delta-K, Volume 35, Number 2, May 1998 



b) Select any eight points and graph them accu­
rately. Make a large graph and make sure you 
start at (0,0). Notice the shape. Write an ex­
planation for what the graph tells you about 
the relationship between length of the pendu­
lum and time for one swing. 

c) Square the time of the period and plot this. This 
should give you a straight line. What is the 
equation of this line? It is the formy = Kx. 

d) You may have noticed that K can be figured 
out from just one swing. Why, then, is it nec­
essary to make a graph to figure this out? 

How Many Additional Workers? 

Note: Those readers interested in the entire volume 
of "A Collection of Connections" may contact Sol 
E. Sigurdson, Faculty of Education, Department of 
Secondary Education, University of Alberta, 
Edmonton T6G 2G5; phone 492-0753. 

The authors ac/...7iowledge the financial support for this project 
provided by the Alberta Advisory Committee for Educational 
Studies (AACES) and the Central Research Fund of the Uni­
versity of Alberta. Reprinted with permission from the authors. 
Minor changes have been made to spelling and punctuation to 
fit ATA style. 

Twenty workers did ¼ of a job in 8 days. Then, because of an emergency, 
it became necessary to complete the job in the next 5 days. How many 
additional workers were added to the crew of 20 to accomplish this? 
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