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To make room for the innovations incurred by cal­
culus reform, some traditional topics have been 
de-emphasized in recent curricula. One such topic 
concerns centres of mass, more specifically, centroids 
and moments, although this material remains impor­
tant in areas such as engineering and statistics. The 
gradual de-emphasis of this material is apparent if 
one compares some leading calculus texts of differ­
ent eras. In this regard, consider the result that justi­
fies the "centroid" terminology: the centroid of any 
triangular region in the plane is the classical centroid 
(that is, the intersection of the medians) of the tri­
angle bounding the region. This result was proved in 
the leading text, Calculus with Analytic Geometry 
(Johnson and Kiokemeister 1969, 404, example 2) 
30 years ago, relegated to the exercises in another 
leading text, Calculus (Stewart 1991, 506, exercise 
23) a decade ago, but omitted from the reform ver­
sion Calculus (Concepts and Contexts, Single Vari­
able) (Stewart 1998) of Calculus (Stewart 1991 ). One 
purpose of the present article is to sketch a 
self-contained proof of this theorem (see following 
section). The main purpose is to investigate a pos­
sible explanation for this result on triangles in terms 
of principles applicable to more general planar re­
gions. In particular, consider the Symmetry Principle 
(which was stated in Stewart 1991 and 1998 and was 
often proved in the more rigorous texts of yesteryear 
[Lei tho Id 1972, theorem 7.8.1]: if Lis a line of sym­
metry of a planar region R, then the centroid of R lies 
on L. In view of the result in the next section, it is 
natural to ask whether the medians of a triangle /J. 
are lines of symmetry of the planar region bounded 
by /J.. The answer is in the negative (and so the result 
in the next section is still needed), for we show in the 
subsequent section that the medians of a triangle /J. 
are lines of symmetry for the region bounded by /J. if 
and only if /J. is equilateral. The material in the sub­
sequent section can be used to enrich the precalculus 
unit on symmetry, as well as the precalculus topics 
of equations of lines and solution of linear inequali­
ties and systems of linear equations. It would also 
reinforce the geometric/graphical approach in any 
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first-year reform calculus sequence. The second sec­
tion can be read independently of the third section. 
The material in the second section can be used to 
enrich the calculus unit on applications of the defi­
nite integral; this material also reinforces the solu­
tion of linear systems. 

Centroids Are Centroids 

The centroid (x, y) of a planar region R is given 
by x = M

Y 
I A and y = M

x 
I A, where M

Y 
(resp., Mx) is 

the moment of R with respect to they- (resp., x-) 
axis and A is the area of R. If the boundary of R 
consists of a triangle /J., Theorem 1 establishes that 
(x, y ) is the intersection of the medians of /J.. A 
relatively short proof of Theorem 1 is available by 
using facts about similar triangles [(Johnson and 
Kiokemeister 1969, 404, example 2, 404 ), but the 
proof sketched below uses only equations of lines 
and calculus. 

Theo:-,�m 1. If a triangle /J. is the boundary of a pla­
nar region R, then the centroid of R is the intersec­
tion of the medians of /J.. 

Proof For simplicity, we suppose that /J. = MBC 
has a vertex at the origin and a horizontal side, as in 
Figure I. 

Figure 1 

B (b,c) 

A(0,0) C(a,O) 

If D(a/2,0) denotes the midpoint of AC, then the 
median of /J. which passes through Bis the line BD, 

whose point-slope equation is 

(C - 0) y - c = b _ 
1 

(x - b). 
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Similarly, the median oft, which passes through 
A has equation y = (c!(b+a))x. Solving these equa­
tions simultaneously, we obtain that the classical 
centroid oft, has coordinates ((a+b)/3, c/3). For a 
class needing assurance that the medians of t. arc 
concurrent, note that the given coordinates also sat­
isfy y = [(-c/2)/(a-b/2)](x-a), an equation for the 
median oft, which passes through C. On the other 
hand, for a class that knows that the medians of t, 
meet at the point 2/3 of the way from B to D, one need 
only observe that 

(lb + 2 g l + 2 o) = (a + b {;_
) 3 32'3 c 3· 3 3· 

The area of R (or t,) is A = ac/2. Since (x, y) = 
(MY/A, M,IA), a proof that (x, y) = ((a+b)/3,c/3) re­
duces to showing that 
M = ac(a+h) and M = ac2

. 
y 6 X 6 

Consider a horizontal strip, as in Figure 1. The area 
of the strip is dA = (x

2 
- x

1
) dy, wherex

2 
(resp., x) is 

the expression for x in tenns of y obtained by solv­
ing for x in a point-slope equation of BC (resp., BA). 
One readily finds that 

x
2 

= (b;a) (y + b�a) and x
1 
= �. 

Now, M. is the definite integral of x' dA, where 
x' = (x

2 
+ x)/2 is the x- coordinate of the geometric 

centre of the horizontal strip. Thus, 

M,. = J;, dA = J(x2 + xi) (xi - x
1
) dy 

. . . 2 
f, 1>-a)(y+�)+ lnXEb-a� ca 

) 
by) - c h-a c -- +-- -- dy 

- 0 c c h-a c · 

After the integrand is algebraically simplified as a 
polynomial iny, a routine integration via the Funda­
mental Theorem of Calculus yields that M .. = 

(abc+a2c)/6 = ac(a+b)/6, as required. 
Finally, M, = [/ dA where y', the second coordi­

nate of the geometric centre of the horizontal strip, 
is essentially y' = y'. Thus, 

M. = I
C 

y( c
b
-/)(y+b

c
�a )-¥) dy = ac2/6 

where the final equality follows by another routine 
application of the Fundamental Theorem of Calcu­
lus. The proof is complete. 

When Medians Are 
Lines Of Symmetry 

Unfortunately, Theorem I is not a consequence of 
the Symmetry Principle since the medians of a tri­
angle D.. are, in general, not lines of symmetry of the 
region bounded by A As Theorem 4 and Corollary 5 
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document, requiring such symmetry restricts the nature 
oft, severely. First, we isolate two pieces of the argument. 
Lemma 2. Lett, = t, ABC be an isosceles triangle, with 
AB=AC. Let D be the midpoint of BC, and let R be the 
planar region bounded by t.. Then the median AD is 
perpendicular to BC, and AD is a line of sy111111et1yof R. 

Proof The data arc summarized in Figure 2. 
Figure 2 

A 

& 
B D C 

Since AB=AC by hypothesis and BD=CD by the 
definition of midpoint, it follows from the SSS 
(Side-Side-Side) congruence criterion that MED= 
A CD. Therefore, LADE = LADC, and so ADJ. BC. 

It remains to show that R is symmetric about AD. 
For convenience, locate the coordinate axes so that 
Dis the origin and C is on the positive x- axis. (Then 
AD falls along they- axis.) Consider an arbitrary 
point P(a,p) in R. Then Q(-a,P) is the point sym­
metric to P with respect to AD. Our task is to show 
that Q is in R. The data are summarized in Figure 3. 

Figure 3 
A(O,b) 

P(a.l)) Q(-a,Jl) 

8(-c,0) D(0,0) C(c,0) 

We show that if Pis inside MED, then Q is inside 
MCD. While this may seem clear "pictorially," an 
analytic proof depends on the meaning of "inside" 
and the fact that the solution sets of linear inequali­
ties are half-planes. Observe that an equation for 
AB (resp., AC) is x/(-c)+ylb = 1 (resp., x/c + ylb = 1). 
The hypothesis that P is in the interior of MBD 
means that P is in the appropriate three half-planes 
determined by the sides of MED, as follows: 
a/( -c) + P/b < 1, B > 0, and a < 0. 
The assertion that Q is in the interior of M CD means 
that (-a,B) satisfies the inequalities describing the 
appropriate three half-planes determined by the sides 
of M CD, as follows: 
( -a)/ c + Bib< I, p > 0, and -a> 0. 

These conditions are implied by (in fact, equiva­
lent to) the inequalities imposed by the hypothesis 
on P. and so the proof is complete. 
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Lemma 3. Lett,,. = MBC be a triangle, let D be the 
midpoint of BC, and let R be the planar region 
bounded by t,,.. Suppose that the median AD is per­
pendicular to BC. Then t,,. is isosceles, with AB=AC, 
and AD is a line of symmetry of R. 

Proof The data are summarized in Figure 2. Since 
AD1-BC, the angles LADB and LADC are right 
angles, and hence are congruent to one another. 
Moreover, DB=DC by the definition of midpoint. It 
now follows from the SAS (Side-Angle-Side) con­
gruence criterion that MDB � MDC, and so AB=AC. 
An application of Lemma 2 completes the proof. 

We next present our main result. 
Theorem 4. Let t,,. = MBC be a triangle, D the mid­
point of BC, and R the planar region bounded by !1. 
Then the following three statements are equivalent: 

I. The median AD is a line of symmetry of R; 
2. The median AD is perpendicular to BC; 
3. t,,. is an isosceles triangle, with AB=AC. 

Proof (2)⇒(3) by Lemma 3, while (3)⇒( I) by Lemma 
2. It remains only to prove that (1)⇒(2). We shall 
prove the contrapositive. Assume, then, that AD has 
well-defined slope. We shall show that (I) fails by 
producing a point P in the interior of MBD (and 
hence in R) such that Q, the point symmetric to P 
with respect to AD, is not in R. There is no harm in 
locating the coordinate axes so that B is the origin 
and C(c,O) is on the positive x-axis. We may also 
suppose that L=AD has positive slope. (The proof in 
the case of negative slope is similar; alternatively, 
turn the page over!) Finally, let S denote the point of 
intersection of L and PQ. The data are summarized 
in Figure 4. 

Figure 4 

A 

B(O,O) D Q C(c,O) 

It will be enough to take S=D. First, let M denote 
the ray emanating from D such that Mis perpendicu­
lar to Land M enters the half-plane determined by L 
and B. We shall find a suitable Pon M. Indeed, since 
tan (LADC)=slope(L) > 0, LADC is an acute angle 
and so its supplement, LADE, must be an obtuse 
angle. Hence, M enters the interior of LADE. In par­
ticular, M enters the interior of LABD. Choose P to 
be any of the infinitely many points of M which lie 
in the intcrior of LADE. Then Q, the point symmetric 
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to P with respect to L, has negative y- coordinate, 
and so Q is not in R. This completes the proof of the 
contrapositive of ( I )⇒(2). 

Next, we state a result which was announced in 
the introduction. The proof of Corollary 5 is imme­
diate from Theorem 4. 
Corollary 5. Let t,,. be a triangle and let R be the 
planar region bounded by !1. Then the following three 
statements are equivalent: 

I. At least two of the medians oft,,. are lines of sym­
metry of R; 

2. All three medians oft,,. are lines of symmetry of R; 

3. t,,. is an equilateral triangle. 
In closing, we indicate an exercise that goes be­

yond what was established in the proof ofTheorem 4. 
By filling in the details of what is sketched in Re­
mark 6, one would further reinforce the topic of 
graphs of linear inequalities, as well as basic facts 
about limits. 
Remark 6. Let us return to the context addressed in 
Figure 4, namely, the proof of the contrapositive of 
(1)⇒(2) in Theorem 4. Here, we expand upon the 
assertion that infinitely many points P( a,p) in the 
interior of MED are such their corresponding 
symmetric points Q(y,cS) are not in R. Let A have co­
ordinates (a,b). One can prove that there exists s" 
O<s

1 
< a -c/2 with the following properties. IfO<s�s, 

then S( c/2 + s, k)is such that Pis in the interior of MBD 
(and hence in R) and 8 < 0 (so that Q is not in R). 

The reasonableness of the preceding assertion can 
be indicated heuristically by applying a paper-folding 
experiment to Figure 4. A proof can be fashioned by 
considering the function of s, for O < s < a -c/2, 
given by 

..b..J:.. _ 2b £ _ � 
2a 2a-c 2b 

µ = (2a -c)£ .Qf: 
2b + a 

Put a == c/2 - AE, where 11, is a positive real number 
to be further specified later; for the moment, we re­
quire that O < 11, < c/(2s). Since k = 2bs/(2a -c) and 
PS J_ L, the "negative reciprocal" result leads to 

A== (A+l) E (2a-c) + 2bs . 
,-, 2b 2a-c 

By considering appropriate half-planes, one shows 
that P is in the interior of MBD if and only if 
0 < p < � (i - Ac); 
equivalently, if and only if 11, < µ. Observe via stan­
dard limit theorems that 

..b.. 

I. di. �-- 2a < I  1m µ == w an 1m 2a li. -
t➔O· t->0" <i) 2bc + ; 2 . 
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Thus, putting').._ = µ/2, we can choose£ (and implic­
itly c

1) so that 

max ((2;�
2

c)2 -1,0) < A< min ( 2�, µ} 

One then verifies the assertions concerning P and Q. 

Area Between Two Circles 
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What is the area between two circles, one of which circumscribes 
a regular heptagon and the other of which is inscribed in a regular 
heptagon? The length of each side of the heptagon is 1 cm. 
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