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Current mathematics curricula emphasize "truth 
rather than reasons for truth" (Hare! 1998, 497). This 
observation was supported in the TIMSS videotape 
study of Grade 8 mathematics classes, which found 
few occurrences of explicit mathematical reasoning 
in any courses other than geometry (Manaster 1998). 
The four related problems presented in this article 
provide examples of ways to include justifications 
of interesting mathematics in courses taught before 
a geometry course. At different times during their 
study of quadratic functions, students can solve these 
problems and can fully understand their solutions. 
This understanding requires that the students follow 
chains of reasoning that furnish convincing justifi
cations of the correctness of the general results. The 
reasoning involves both algebra and geometry, but 
all the problems can be done before the student takes 
a formal &_eometry course. 

Problem A. Find the dimensions of a rectangle with 
a perimeter of30 inches and sides of integral length 
that has the largest possible area. 
A straightforward solution to this problem, which is 

appropriate for students in middle school and above, 
involves constructing a table containing dimensions 
and areas of all rectangles with sides of integral length 
and a perimeter of 30 inches ( see Table I). 

When they examine the complete table, students 
discover that a rectangle-7 inches by 8 inches or 8 
inches by 7 inches-----exists with maximum area of 
56 square inches. Since the table lists all possible 
rectangles satisfying the given conditions, a brief 

Table 1 

Side
1 

(In.) Side
2 

(In.) Area (In.2) 

1 14 14 
2 13 26 

3 12 36 

4 11 44 
5 10 50 
6 9 54 

7 8 56 
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discussion completes a proof that the problem has 
been solved. 

Problem B. Find the dimensions of a rectangle with 
a perimeter of 30 inches that has the largest pos
sible area. 
When we remove the constraint that the sides have 

integral length, the nature of the problem changes 
dramatically. The student cannot make a complete 
table of all possible rectangles. 

By extending the table to include some rectangles 
with fractional lengths, students can observe sym
metry in the table and may suspect or believe that 
the solution is the square with sides of 7.5 inches. 
The issue that we address in this article concerns the 
role of proof in developing a deeper understanding 
that this conjecture is indeed correct. 

A next step in developing a more complete table 
might be to find the formulas for the height and area 
in terms of the base of the rectangle. Since 2h + 2b = 30, 

h = 30 -b 
2 

and 
A= b • h = b • (f-b )· 

Students can use the formula and a graphing calcu
lator to graph the area as a function of the length of 
the base. They can see by inspection that a maxi
mum Yalue of 56.25 square inches appears to exist 
when the base is 7.5 inches. By zooming in on the 
graph or by constructing tables with smaller and 
smaller step sizes, they can gather more evidence in 
support of this conjecture. Sophisticated students 
might use the "Maximum" function of a calculator 
to obtain the value 7.5. Teachers must be aware that 
this procedure may supply information, but it cannot 
lead to full understanding unless the student also 
knows how the maximum was found and why that 
algorithm works. 

At some point, some students will notice that the 
apparent solution is a square. On the basis of that 
insight. it is possible to construct a beautiful geo
metric proof that a square always has the largest area 
of all rectangles with a given perimeter. 
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In Figure 1, rectangle ARSTwas formed from the 
square ABCD by first shortening the square's base 
an arbitrary amount equal to VC. The height of the 
new rectangle must be increased by the same amount, 
DT, to keep the perimeter constant. Rectangles RBCV 
and DVST have the same width, that is, VC = DT 
Since RV is equal to a side of the original square and 
DV is shorter than a side of the original square, the 
area of RBCV is greater than the area of D VST The 
area that we removed is greater than the area that we 
added; therefore, the area of the square ABCD is 
greater than the area of the new rectangle ARST. Be
cause VC could represent any length less than AB, 
the new rectangle could be any rectangle with the 
same perimeter as square ABCD. Since ABCD was 
any square, we have completed a geometric justifi
cation that the square has the largest area of all rect
angles with a given perimeter. 
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T 
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Since the perimeter of ABCOequc1ls that of ARST, 

the area added is less than the area removed. 

Not all students are likely to have the insight that 
leads to the preceding argument; it is therefore worth
while to explore other ways to understand why the 
square is the solution. One approach is to analyze 
the formula for the area as a function of the base. 

Since A= b(I5-b), then A =-b2 
+ I Sb. We want 

to find the largest possible value for A and the value 
of bat which it occurs. Because these values are dif
ficult to ascertain from this formula, we use alge
braic identities to rewrite it in a fonn that we can 
analyze to find these \'alues: 

A =-b2 
+ 15b 

=--(b2-15b) 
= -{b2

- 15b + (1/Y- n5)) 

=-((b-
1]Y-(1lY) 

= (h5Y-(b- 1]Y 

16 

The final expression helps us find the largest value 
of A fairly easily. The first term is simply a constant. 
The maximum value of A occurs when we subtract 
the smallest possible value. Because we subtract a 
perfect square, its value is always greater than or 
equal to zero. If we make this term zero, we subtract 
as little as possible and make A as large as possible. 
Since the second term can equal zero only when 
b = 15/2, we see that the largest value of A is 56.25, 
which occurs only when b = 7.5. 

Problem C. Consider all rectangles with perim
eter equal to the circumference of a circle with 
radius 1 m. Find the dimensions of the rectangle 
that has the largest possible area. 

The first step is to note that the circumference of 
the circle is 2;r m. The next step depends on the 
student's knowledge about a solution to problem B. 
A student who understands the general principle that 
the square has the largest area can apply that result 
to this problem to see that the sides of the square 
have length n/2 m and that the area of the square is 
(n/2)2 square metres. Otherwise, the student can use 
the same approaches that were used for problem B. 
A graphing calculator will help students find several 
slightly different values by observation, depending 
on the window chosen to view the graph. An alge
braic approach gives 

A =--{b-fY + <JY 

= CfY-(b-fY, 
so that the maximum occurs when b = n/2 and has 
the value (n/2)2. It might be a good pedagogical strat
egy to present problem C some weeks after problem 
B so that students need to rethink their solution to a 
problem of this type. Redoing the algebra is likely 
to strengthen their understanding of the usefulness 
of underlying algebraic techniques. One advantage 
of seeing that both approaches give the same result 
is that students can observe that more than one good 
approach exists and that each reinforces the other. 

Problem D. Is the ratio of the area of a square to 
the area of the circle whose circumference is equal 
to the perimeter of the square always the same? 
Why or why not? 

Since the students have two examples, they might 
begin to find an answer by computing the requested 
ratios for each. For the square and circle in problem 
C, the area of the circle should be familiar to the stu
dents and is :r square metres. The students have al
ready found that the area of corresponding square is 
(n/2)2 square metres: therefore, the ratio of the area 
of the square to the area of the circle is 
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Our classroom experience indicates that high 
school students are more likely to use decimals to 
compute numerical approximations than to use for
mulas to compute exact values. In problem B, the 
area of the square was found to be 56.25 square 
inches. The circumference of the corresponding circle 
is 30 inches, so the radius is approximately 4.77 
inches and the area is approximately 71.48 square 
inches. The ratio is approximately 0.79, which is also 
the two-decimal-place approximation of .n/4. 

We have seen that both ratios are .n/4, or approxi
mately 0. 79. One question that calculators cannot 
answer conclusively is whether the two ratios are 
exactly the same. When n is used throughout the cal
culations, some calculators will show the difference 
between the two computed ratios as 0, whereas oth
ers will display a very small number. Other varia
tions will depend on the rounding that students use 
in computing or estimating the areas in problem C. 
It might be helpful for students to look at other ex
amples. They should eventually realize that the ratio 
is always about 0.79, which should lead them to ask 
whether the ratios are exact! y the same and, even more 
important, why. 

Fortunately, the algebraic solutions for problems 
B and C can lead to a proof that the ratios are all the 
same. Building on the result of problem C, if we call 
the perimeter of the square p, we see that the area of 
the square is 

�
2

=1{ 
and that the radius of the circle is p/2 .n, so the area 
of the circle is 

n(liY =:�-
For any value of p, then, the ratio of the area of the 
square to the area of the circle is 

.E_ 
16 

4.n 

4n n 
16 4 . 

This result confirms our previous observations, and 
since no p exists in the final expression, n/4, the ra
tio is always the same. 

Another explanation for the answer to problem D 
uses properties of similar figures and proportional 
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reasoning. Let P1 and P, be any two values for the 
perimeters of the circle and square. The ratio between 
any corresponding lengths in the similar figures, such 
as the radius of the first circle to the radius of second 
or the side of the first square to the side of the sec
ond. is P/P

2
; and the ratio between any correspond

ing areas, for example, the semicircle of the first circle 
to the semicircle of the second, is 

Let C
1 
and C

2 
represent the areas of the circles with 

perimeters P
1 

and P
2 

respectively, and let S
1 

and S
2 

represent the areas of the squares with those perim
eters. Since 
SI= r:.,y = c, 
C2 P1 C2 ' 
we see that 

s1 _c1 

S2 - C� 
and 
s, - s,, 

cl - c; 
Therefore, the ratio of the area of the square to that 
of the circle does not depend on their common 
perimeter. 

These four related problems and their solutions 
are accessible to students in courses other than ge
ometry. They invite exploration. They encourage the 
meaningful use of technology. They call for writing. 
They lead to interesting and deep mathematics. They 
blend algebra and geometry. The variety of methods 
used to establish the mathematical results builds the 
students' appreciation of the power of the techniques they 
have developed and helps them recognize that math
ematics is at least as much about "why" as about "how." 
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