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The Pigeonhole Principle • • • 

If xy + 1 pigeons are divided 

evenly into y holes with 

x pigeons in each hole, 

+.hen at least one hole must hold 

x + 1 pigeons. 



GUIDELINES FOR MANUSCRIPTS 
- --------------

delta-K is a professional journal for mathematics teachers in Alberta. It is published to 
• promote the professional development of mathematics educators, and 
• stimulate thinking, explore new ideas and offer various viewpoints. 

Submissions are requested that have a classroom as well as a scholarly focus. They may include 

• personal explorations of significant classroom experiences; 
• descriptions of innovative classroom and school practices; 
• reviews or evaluations of instructional and curricular methods, programs or materials; 
• discussions of trends, issues or policies; 
• a specific focus on technology in the classroom; and 
• a focus on the curriculum, professional and assessment standards of the NCTM. 

Manuscript Guidelines 

1. All manuscripts should be typewritten, double-spaced and properly referenced. 
2. Preference will be given to manuscripts submitted on 3.5-inch disks using WordPerfect 5.1 or 6.0 or a 

generic ASCII file. Microsoft Word and AmiPro are also acceptable formats. 
3. Pictures or illustrations should be clearly labeled and placed where you want them to appear in the article. A 

caption and photo credit should accompany each photograph. 
4. If any student sample work is included, please provide a release letter from the student's parent allowing 

publication in the journal. 
5. Limit your manuscripts to no more than eight pages double-spaced. 
6. A 250-350-word abstract should accompany your manuscript for inclusion on the Mathematics Council's 

,,,ebsite. 
7. Letters to the editor or reviews of curriculum materials are welcome. 
8. delta-K is not refereed. Contributions are reviewed by the editor(s), who reserve the right to edit for clarity 

and space. The editor shall have the final decision to publish any article. Send manuscripts to Klaus 
Puhlmann, Editor, PO Box 6482, Edson, Alberta TIE 1T9; fax 723-2414, e-mail klaupuhl@gyrd.ab.ca. 

Submission Deadlines 

delta-K is published twice a year. Submissions must be received by August 31 for the fall issue and 
December 15 for the spring issue. 

MCATA Mission Statement 

Providing leadership to encourage the continuing enhancement 
of teaching, learning and u11dersta11di11g mathematics. 
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EDITORIAL 
-----------------------------

Curriculum development for mathematics and, subsequently, the teaching, 
learning and assessment of school mathematics have been guided over the past 
decade in Alberta by three important National Council of Teachers of Math
ematics (NCTM) publications: 
• Curriculum and Evaluation Standards for School Mathematics (NCTM 1989) 
• Professional Standards for Teaching Mathematics (NCTM 1991) 
• Assessment Standards for School Mathematics (NCTM 1995) 

The first document, Curriculum and Evaluation Standards for School Math
ematics (NCTM 1989), was an attempt by a professional organization to articu
late clearly defined standards for teachers and curriculum developers. This docu
ment revolutionized how mathematics curricula were to be written. The standards 
documents outline clearly stated goals and content areas for the grade bands, but 
they were also designed to challenge the assumption that mathematics is only 

for the select few. These documents articulate the view that all students should gain mathematical power-that 
is, the ability to explore, conjecture and reason logically, as well as the ability to effectively use a variety of 
mathematical methods to solve nonroutine problems. 

The standards documents advocate the use of manipulatives, but they do not suggest that manipulatives are 
the only tools used to teach concepts. They suggest that students should have adequate procedural facility and 
encourage calculator use but not at the expense of mental math skills or number sense. 

The original standards documents intended to provide guidance and a vision of the teaching and learning of 
mathematics. However, with such an enormously wide range of classroom practices and interpretations in 
place-all claiming to follow the standards-the documents often received fairly negative comments from the 
public sector, which was determined to identify the culprit responsible for our poor performances in mathematics. 

In April 2000, with the benefit of 10 years' hindsight and the knowledge that the original standards were not 
entirely understood by everyone, the NCTM released an updated document entitled Principles and Standards 
for School Mathematics (PSSM). PSSM outlines six principles and ten standards for school mathematics and 
organizes the standards across four grade-level bands-Grades K-2, Grades 3-5, Grades 6---8 and Grades 9 -12. 

The six principles for school mathematics are as follows: 

l .  The Equity Principle-Effective mathematics education requires equity-high expectations and strong support 
for all students. 

2. The Curriculum Principle-A curriculum is more than a collection of activities: it must be coherent, focused 
on important mathematics and well articulated across the grades. 

3. The Teaching Principle-Effective mathematics teaching requires understanding what students know and 
need to learn and then challenging and supporting them to learn it well. 

4. The Learning Principle-Students must learn with understanding, actively building new knowledge from 
experience and prior knowledge. 

5. The Assessment Principle-Assessment should support the learning of important mathematics and furnish 
useful information to both teachers and students. 

6. The Technology Principle-Technology is essential in teaching and learning mathematics; it influences the 
mathematics that is taught and enhances students' learning. 

The IO standards for school mathematics are as follows: 

I. Number and Operation 
2. Algebra 
3. Geometry 
4. Measurement 
5. Data Analysis and Probability 

6. Problem Solving 
7. Reasoning and Proof 
8. Communication 
9. Connections 
I 0. Representation 

PSSM discusses each standard in some detail and suggests how it can be implemented across the four 
grade-level bands. 
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As teachers contemplate how to put these principles and standards into practice, they may appreciate know
ing that various support structures and resources are available. For example, the electronic edition of PSSM 

(with additional examples and resources) is available at Illuminations (illuminations.nctm.org). This website 
provides opportunities to see how NCTM's principles and standards can work in the classroom. It is also an 
excellent tool for developing new teaching strategies and enhancing professional growth. Once you launch 
Illuminations, you also have access to the hallmark of the site, i-Math Investigations, which are Internet-based 
activities for all grade bands. Other features of the site include teacher-oriented Reflections on Teaching, 
professional development activities for teachers based on online video vignettes; Selected Web Resources, 
which includes links to sites that have been reviewed by an expert panel; and Internet-Based Lesson Plans, 
which shows how Internet links can be used to create effective standard-based mathematics lessons. Other 
features are constantly being added. 

If the principles and standards articulated in PSSM are to be implemented, mathematics teachers must first 
become familiar with them. We also need to remember that the principles and standards are rooted in research, 
meaning that they reflect the best and most comprehensive view of what effective teaching and learning of 
mathematics are all about. 

I encourage mathematics teachers to participate in professional organizations (for example, MCATA and 
NCTM) and in other professional growth opportunities to gain a solid understanding of the principles and 
standards so that they may be practised in all classrooms across the province. 

References 

National Council of Teachers of Mathematics (NCTM). Curriculum and Evaluation Standards for School Mathematics. Reston, Va.: 
NCTM, 1989. 

--. Professional Standards for Teaching Mathematics. Reston, Va.: NCTM, 1991. 

--. Assessment Standards for School Mathematics. Reston, Va.: NCTM, 1995. 

--. Principles and Standards for School Mathematics. Res ton, Va.: NCTM, 2000. 

Two workers need 6 2/3 days to do a particular job. 
How long does it take the first worker if the second 
worker needs 3 more days? 
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FROM YOUR COUNCIL __________ _ 

From the President's Pen 

Earlier this school year, the MCATA executive affirmed its direction and the 
work it does on behalf of members. We identified the following list of activities 
and goals: 

• Pursuing MCATA's mission: Providing leadership to encourage the continuing 
enhancement of teaching, learning and understanding mathematics 

• Planning, organizing and holding the annual MCATA conference 
• Ensuring diversity in member representation on the executive by including 

K-12 mathematics teachers from around the province, a Faculty of Education 
representative, a Mathematics Department representative, an Alberta Learning 
representative, a PEC liaison and an ATA staff advisor 

• Conducting regular executive meetings (four per year) that focus on MCATA's 
business, implementing our strategic plan and promoting our mission 

• Producing a variety of publications including delta-K, a newsletter, monographs, 
position papers and a website (www.mathteachers.ab.ca) 

• Submitting advocacy positions to NCTM and the ATA's Annual Representative Assembly (ARA) 
• Planning, organizing and holding two Math Leaders Symposia in cooperation with Alberta Leaming 
• Promoting the importance of mathematics in schools and communities through promotion materials 

and contests 
• Maintaining our NCTM affiliation 
• Involving MCATA executive members in NCTM leadershir, training courses, liaison roles with NCTM and 

promotion of NCTM materials 
• Representing MCATA on Alberta Learning committees 
• Participating in the Beginning Teachers' Conference 
• Sponsoring and/or supporting math camps, special projects and contests 
• Sending representatives to the ATA Summer Conference ana seminars 
• Recognizing teachers through the Math Educator of the Year award 
• Recognizing teachers, MCATA members and/or nonteachers with the Friends of MCATA certificate 
• Awarding grants to members in support of teaching and learning projects 

As we examined the work necessary to maintain each of these areas, it became apparent that there was 
considerable overlap. We also realized how involved each executive member is in making MCATA activities 
work for members. 

l would like to thank the executive members for their work this year. It is a huge commitment on their part
all of them volunteer their time outside of their full-time jobs. 

I would also like to thank the MCATA members who call or e-mail us with concerns, issues and comments 
about mathematics education in the province. We represent you best when we understand your concerns 
and opinions. 

Don't forget the annual MCATA conference! Registration will be on the evening of Thursday, October 25, 
200 I. Sessions will be held all day Friday, October 26, and Saturday, October 27. The conference theme is 
'·2001-A Math Odyssey," and we already have a good lineup of speakers. The venue is the Fantasy land Hotel 
in the West Edmonton Mall, which is a great place for your family to enjoy a getaway, too. Visit our website at 
WW\\.lllathteachers.ab.ca for more information. 

Sandra Unrau 
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The Right Angle 

Shauna Boyce 

Learning Technologies Branch 

The Learning Technologies Branch (LTB) is re
sponsible for providing leadership and consultation 
in identifying, developing, implementing and evalu
ating effective distance learning strategies and tech
niques in Alberta schools. Recently, LTB has devel
oped many secondary and elementary mathematics 
resources. 

Secondary Mathematics Resources 

The following print resources for secondary math
ematics have been developed by LTB and are avail
able from the Leaming Resources Centre (LRC): 

• Mathematics 7 Student Pack ( 1996) (Product 
#311069) 

• Mathematics 8 Student Pack (1997) (Product 
#349812) 

• Mathematics 9 Student Pack (1997) (Product 
#348103) 

• Mathematics JO Preparation Student Pack (2000) 
(Product #411322) 

• Applied Mathematics JO Student Module Pack 
(2000)(Product#434978) 

, Applied Mathematics ]Ob (Bridging Cour se) 
(2000)(Product#435398) 

• Pure Mathematics JO Student Module Pack (1999) 
(Product #434358) 

• Pure Mathematics ]Ob (Bridging Course) (1998) 
(Product #407644) 

• Pure Mathematics 20 Students Package ( 1999) 
(Product #398265) 

• Pure Mathematics 20b (Bridging Course) (1999) 
(Product #407652) 

• Pure Mathematics 30 Student Module Pack (2000) 
(Product #434738) 

• Mathematics 31 Student Pack (I 995) (Product 
#296740) 

The following electronic resources have been de
veloped by LTB and are available from LRC: 

• Pure Mathematics 30 Multimedia Segments 
(CD-ROM v.1.0. Windows/Mac) (2000) (Product 
#430843) 

• Applied Marhematics JO Multimedia Segments 
(CD-ROM v. I .0. Windows/Mac) (2000) (Product 
#431 I 64) 
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• Learning Technologies Branch LXR Test & Ques
tion Banks (CD-ROM, Mac) (1999) (Product 
#400416) Note: This resource can be used for 
Mathematics 7, 8, 9 and 31. 

• Learning Technologies Branch LXR Test & Ques
tion Banks (CD-ROM, Windows) (1999) (Prod
uct #400424) Note: This re,.source can be used for 
Mathematics 7, 8, 9 and 31. 

LTB is currently developing print resources for 
Applied Mathematics 20, Applied Mathematics 20b 
and Applied Mathematics 30. As well, LTB is devel
oping question banks for Applied Mathematics 10, 

20 and 30. 

Elementary Mathematics Resources 

The following print resources for elementary math
ematics have been developed by LTB and are avail
able from LRC: 

• Mathematics Grade I Student Pack (2000) (Prod
uct #427311) 

• Mathematics Grade 4 Student Pack (2000) (Prod
uct #422288) 

LTB is currently developing print resources for 
Mathematics 2, 5 and 6. 

For more information, visit our website at 
www.leaming.gov.ab.ca/ltb/. 

Learner Assessment Branch 

Diploma Examinations 

Diploma examinations in four math courses will 
be available in June. Mathematics 33, Pure Math
ematics 30 and Applied Mathematics 30 will be re
leased exams, but Mathematics 30 (old) will be se
cured. All four courses will have diploma 
examinations in August, also. Because Applied Math
ematics 30 and Pure Mathematics 30 are pilot ex
ams, they are worth 20 percent of a student's final 
mark. Please note that the Mathematics 30 (old) di
ploma exams are available only to students who are 
repeating the course or who have been granted spe
cial permission. A request for special status must be 
made in writing to Raja Panwar, Director, Curricu
lum Branch. Alberta Learning, 6th Floor East Tower, 
Devonian Building, I I I 60 Jasper Avenue NW, 
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Edmonton T5K 0L2; fax (780) 422-3745, e-mail 
Raja.Panwar@gov.ab.ca. The projects related to the 
diploma examinations for Pure Mathematics 30 and 
Applied Mathematics 30 are available on the Alberta 
Learning website at www.learning.gov.ab.ca/k_ 12/ 
testing/diploma/projects/ defau It. asp. Teachers 
and students can also find the projects and corre
sponding sample solutions from the first semester at 
this site. 

Calculator Policy 

The list of approved calculators and instructions 
for clearing calculators can be  found at 
www.learning.gov .ab.ca/k_ 12/testing/diploma/ 
bulletins/default.asp. Students writing the Applied 
Mathematics 30 and the Pure Mathematics 30 di
ploma exams will require a graphing calculator from 
the list of approved calculators. Students writing 
Mathematics 33 or 30 exams should follow the same 
guidelines as students writing a science diploma ex
amination. That is, they may use a scientific calcula
tor or a graphing calculator approved by Alberta 

Leaming. All information stored in programmable 
or para-metric memory must be cleared before writ
ing the examination. 

Diploma Examination 
Information Bulletins 

These bulletins provide students and teachers with 
information about the diploma examinations sched
uled for the 2000-2001 school year. They include 
the blueprints for the examinations, the scoring cri
teria for the 2000-2001 school year, suggestions for 
students about writing the examinations, descriptions 
of the standards for the courses and examinations, 
and examples of students' responses. 

Revisions to the information bulletins for Applied 
Mathematics 30 and Pure Mathematics 30 are under 
way and will include changes to curriculum standards 
and the example questions. The new information 
bulletins for the 2001-2002 school year, which will 
include examples of questions that have been vali
dated by both teachers and students, will be posted 
on our website soon. 

Mr. Jones was philosophical about losing money. "I have 
as many pennies as I had dollars before, but half as many 
dollars as I had pennies before, and half of my money is 
gone. Can you tell me how much money I have now?" 
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READER REFLECTIONS __________ _ 

In this section, we will share your points of view on teaching and lea ming mathematics and your responses to 
anything contained in this journal. We appreciate your interest and value the views of those who write. 

Erratum 

The previous issue of delta-K (Volume 38, Number 1, December 2000) failed to include one of the authors 
in Comments on Contributors. The following acknowledgment statement should have been included: 

Werner W. Liedtke is a professor in the Faculty of Education, Department of Elementary Education, at the 
University of Victoria, British Columbia. He also teaches distance education for the Knowledge Network. 
In addition, he supervises student teachers and delivers inservice courses to parents of preschool children 
and to teachers, locally and throughout the province. 

My apologies for this omission and any inconvenience it may have caused for the author and the readers. 

Finding Your Inner Mathematician 

Keith Devlin 

Many people assume that it takes a special kind of 
brain to be able to rlo mathematics-that unless you 
were born with some kind of "math gene," you sim
ply are not going to be able to get math, no matter 
how hard you try. As someone who struggled hard 
with math in school until I was 15, and then got it all 
at once, I never believed the math-gene theory. What 
made the difference for me was that everything sud
denly made sense-perfect, simple, elegant sense. 

Having taught mathematics for 30 years, I am con
vinced that everyone has the capacity to do math
ematics, at least through high school algebra and 
geometry. In fact, all you really need to do math are nine 
basic mental abilities that our ancestors developed 
thousands of years ago to survive in a hostile world: 

1. Number sense. This is not the same as being able 
to count. It's much more basic than that and in
cludes the ability to recognize the difference be
tween one object, a collection of two objects and 
a collection of three objects-and to recognize 
that a collection of three objects has more mem
bers than a collection of two. Number sense is not 
something we learn. Child psychologists have 
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demonstrated conclusively during the past 20 years 
that we are born with number sense. 

2. Numerical ability. This does involve learning
both to count and to understand numbers as ab
stract entities. Early methods of counting, such as 
making notches in sticks or bones, go back at least 
30,000 years. The Sumerians are the first people 
we know of who used abstract numbers; between 
8000 and 3000 B.C., they inscribed numerical 
symbols on clay tablets. 

3. Spatial-reasoning ability. This includes the ability 
to recognize shapes and to judge distances accu
rately, both of which have obvious survival value. 
In addition to forming the basis for geometry, this 
ability is important for a lot of mathematical think
ing that is not, on the face of it, visual or geometric. 

4. A sense of cause and effect. Much of mathematics 
depends on ''if this, then that" reasoning, an abstract 
form of thinking about causes and their effects. 

5. The ability to construct and follow a causal chain 
of facts or events. A mathematical proof of a theo
rem is a highly abstract version of a causal chain 
of facts. 
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6. Algorithmic ability. An algorithm is a step-by-step 
procedure for performing a certain mathematical 
task-the mathematician's equivalent of a recipe 
for baking a cake. In elementary school, we are 
taught algorithms for adding, subtracting, multi
plying and dividing whole numbers and fractions. 
Secondary school algebra requires that we learn 
algorithms to solve equations. Algorithmic abil
ity is an abstract version of the fifth ability on this 
list. 

7. The ability to understand abstraction. Humans 
developed the capacity to think about abstract no
tions, along with acquiring language, 75,000 to 
200,000 years ago. 

8. Logical-reasoning ability. The ability to construct 
and follow a step-by-step logical argument is fun
damental to mathematics. It is another abstract 
version of the fifth ability. 

9. Relational-reasoning ability. This involves recog
nizing how things and people are related to each 
other, and being able to reason about those rela
tionships. Much of mathematics deals with rela
tionships between abstract objects. 

The human brain acquired those nine abilities at 
least 75,000 years ago. They are basic mental at
tributes crucial to our daily lives. The question is: 
What does it take to put those abilities together and 
do math? 

The key is the ability to handle abstraction-the 
seventh ability on the list. We can all use our brains 
to reason about physical objects we are familiar with, 
and we can carry out the same kinds of reasoning 
about imaginary variants of those objects-for ex
ample, the characters in a Harry Potter book or on 
Star Trek. Mathematical thinking involves one more 
step: reasoning about purely abstract objects. The 
trick is to make those abstract objects seem real-to 
fool the brain into thinking that it's dealing with real 
objects. Once you have taken that step into the world 
of the abstract, the rest is comparatively easy. After 
all, the mind is then performing tasks that it finds 
natural and instinctive. 

Although making the abstract seem real sounds 
hard, we all do much the same thing whenever we 
read a novel or watch a movie. So am I saying that to 
do mathematics you have to treat it like reading a 
novel or watching a movie? 

In fact, I'm going a step further. When you start 
reading a novel, or you watch a movie for the first 
time, you have to familiarize yourself with the char
acters and the situation in which they find themselves. 
In the case of mathematics, the characters never 
change, only their situations. You have to familiarize 
yourself with the characters just once, and from then 
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on everything amounts to finding out new things 
about them. 

What does that remind you of? It reminds me of a 
television soap opera, like the long-running As the 
World Turns. That isn't a joke. The secret to being 
able to do mathematics is to think of math as a soap 
opera. 

I'm not talking about the love lives of mathemati
cians here-it's math itself that constitutes the soap 
opera. The characters are not fictitious people but 
mathematical objects: numbers, geometric figures, 
topological spaces and so on. The facts and relation
ships of interest are not births, deaths, marriages, love 
affairs and business deals, but mathematical facts and 
relationships like: Aie objects A and B equal? What 
object has property P? What is the relationship be
tween objects X and Y? Do all objects of type X have 
property P? How many objects of type Z are there? 

Mathematicians think about mathematical objects 
and the relationships among them using the same 
mental abilities that most people use to think about 
physical space or about other people. 

Mathematicians don't have a different kind of 
brain. They have learned to use a standard-issue brain 
in a slightly different way. What distinguishes a great 
mathematician from a high school student struggling 
in a geometry class is the degree to which each one 
can cope with abstraction. The mathematician learns 
to create and hold an abstract world in her mind, and 
then reason about that world as if it were real. 

The importance of abstraction and the brain's dif
ficulty in handling abstract objects have three clear 
implica,ions for mathematics teaching. First, we 
should start with what is familiar and concrete, and 
move gradually into the abstract. Second, we must 
realize that the key-the real challenge-is for the 
student to come to view the abstract objects of math
ematics as real. Third, we need to accept the fact that 
a period of repetitive training is unavoidable-be
cause repeated use is the only way to make abstract 
objects seem sufficiently real for the brain to process 
them. 

Much of the current debate about mathematics 
teaching is focused on whether rote learning of basic 
math skills is still important in an age of electronic 
calculators and computers. That debate misses the 
point. The real value of learning basic math skills 
today is not that you will need to use those skills per 
se; chances are you won't. Rather, the benefit is to 
make the abstract objects of mathematics become so 
familiar-and seem so real-that you can reason 
about them using the same mental capacities you use 
to reason about everyday things. Unless you can get 
to that stage, you'll never be able to master the more 
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sophisticated kinds of mathematics that today are part 
of the jobs of stockbrokers, architects, scientists, 
builders, Olympic coaches, physicians and many 
other people. 

Of course, not everybody will use those forms of 
math in their daily lives. But mastering mathemati
cal abstraction, like learning a foreign language, is 
much easier when you are young. Good, effective 

instruction in math should be part of everyone's edu
cation, so that no one is shut out of such an impo r 
tant area of modern life. 

Reprinredfrom The Chronicle of Higher Education, Volume 47, 
Number 5 (September 29, 2000) wirh permission from the au
thor. Minor changes have been made to spelling and punctua
tion to fit ATA style. 

Evaluate: J2 + .J2 + .J2 + ✓2 + ✓2 + ... 

Two Fishermen 
Ron: Paul, if you gave me one of your fish, I would have twice as many as you. 
Paul: But if you gave me one, we would have the same number of fish. 
How many fish does each fisherman have? 
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STUDENT CORNER ____________ _ 

Mathematics as communication is an important curriculum standard; hence, the mathematics curriculum 
emphasizes the continued development of language and symbolism to communicate mathematical ideas. Com
mw1ication includes regular opportunities to discuss mathematical ideas and explain strategies and solutions 
using words, mathematical symbols, diagrams and graphs. While all students need extensive experience to 
express mathematical ideas orally and in writing, some students may have the desire-or should be encour
aged by teachers-to publish their work in journals. 

delta-K invites students to shan their work with others beyond their classroom. Submissions could include, 
for example, papers on a particular mathematical topic, an elegant solution to a mathematical problem, an 
interesting problem, an interesting discovery, a mathematical proof, a mathematical challenge, an alternative 
solution to a familiar problem, poetry about mathematics, a poster or anything that is deemed to be of math
ematical interest. 

Teachers are encouraged to review students'work prior to submission. Please attach a dated statement that 
permission is granted to the Mathematics Council of the Alberta Teachers'Association to publish the work in 
delta-K. The student author ( or the parents if the student is under 18 years of age) must sign this statement, 
indicate the student's grade Level, and provide an address and telephone number. 

The following article, "An Example of an Error-Correcting Code," was written by Mark Rabenstein when 
he was a Grade 8 student at McKernan School in Edmonton. The article was originally published in Math
ematics Magazine and is reprinted here with the kind permission of the author and the Mathematical Associa
tion of America. 

Mark earned a Ph.D. in chemistry in 1996 and is now doing phannaceutical formulations research for Bend 
Research in Bend, Oregon. While in Edmonton, he attended the Saturday Mathematical Activities, Recreations 
& Tutorials Club (SMART Club) under the tutelage of Dr. Andy Liu, University of Alberta. He feels that the 
opportunity to participate in the SMART Club and work under the guidance of Dr. Liu contributed immensely 
to his intellectual development. 

An Example of an Error-Correcting Code 

Mark Rabenstein 

I am a student in Grade 8. Recently, I went to an 
enrichment program run by Andy Liu of the Univer
sity of Alberta. The topic we studied is called "error
correcting codes." 

The problem goes like this. A secret agent has to 
send a message back to headquarters. He uses a trans
mitter which sends a string of Os and ls. Unfortu
nately, from time to time, a l gets changed into a 0 
while the message is on its way, or vice versa. So he 
has to send some extra digits to make sure there is no 
misunderstanding. Fortunately, no more than k dig
its in the expanded or encoded message are changed 
at one time. 

We studied many interesting schemes for encod
ing a message. The first one is really simple. Just 
repeat the message 2k + I times, and the copy that 
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appears at least k + l times is the correct one. How
ever, this requires lots of digits, and this is not good 
for a secret agent. 

When I thought things over, I did not see why it 
was necessary to repeat the message 2k + I times. If 

there are no more than k mistakes and the message is 
repeated k + l times, one of the copies must be cor
rect! The only problem is: How can we tell which is 
the correct one? 

Well, there is a simple way to tell whether a copy 
has one mistake (or any odd number of mistakes). 
Add a I to the original message if it has an odd num
ber of Is. and add a O otherwise. This way, the num
ber of Is in the encoded message is always even. 

This extra digit is called a "parity-check digit," 
parity meaning odd or even. If an odd number of 
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mistakes is made in the encoded message, then the 
number of Is in it will be odd and not even as it is 
supposed to be, and in this case we can tell some
thing is wrong. Of course, the method fails for an 
even number of mistakes. 

Let us go back two paragraphs and see how par
ity-check digits can be of help there. As I said, re
peat the message k + 1 times. Now add a parity-check 
digit to each of the last k copies. I will show that 
this works. 

Check each of the last k copies of the received 
message to see if anything is wrong. Suppose we find 
a copy with an odd number of mistakes. Well, throw 
it out! With each such copy goes at least one mis
take. In an extreme case, everything is gone except 
the first copy. It must be correct because all the mis
takes have been thrown out. 

Suppose we are left with l + 1 copies (the last l 

copies having parity-check digits). We know that 
there are at most l mistakes, and they come in pairs 
in the last l copies. 

What does this mean? This means that at least half 
of these l copies contain no mistakes. We should be 
able to tell what the correct message is, unless there 
is a two-way tie. In that case, we still have the first 
copy, which must be correct because all the mistakes 
have been used up. 

So my scheme does work. Of course, it still needs 
lots of digits, unlike some of the really clever schemes 
I learned in the enrichment program. 

Remarks by A. Liu 

The code presented in this note is apparently 
new. The reader may supply a more formal proof. 
The "apology" in the last paragraph is really not 
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necessary in that the ease of encoding and decoding 
for this scheme offsets its lack of sophistication. Its 
rate of information is asymptotically nearly twice that 
of the repetition codes (Alt 1948). 

Codes with higher rates (the "really clever 
schemes .. ) were known early on in the history of er
ror-correcting codes (see, for example, Golay 1949, 
Hamming 1950 and Shannon 1948). A recent publi
cation (Thompson 1983) gives an interesting histori
cal account and shows the interrelationship of error
correcting codes with other areas of mathematics. 
A definitive treatise (Mac Williams and Sloane 1977) 
details the state of the art as well as listing over 1,000 
references. 
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NATIONAL COUNCIL OF TEACHERS OF MATHEMATICS 

NCTM Standards in Action 

Process Standard: Connections 

Klaus Puhlmann 

NCTM's Principles and Standards for School 
Mathematics (2000) identifies IO standards that form 
an essential and comprehensive foundation for stu
dents from Kindergarten to Grade 12 to learn math
ematics. The standards are divided into five content 
standards (number and operations, algebra, geom
etry, measurement, and data analysis and probabil
ity) and five process standards (problem solving, rea
soning and proof, communication, connections, and 
representation). This article focuses on one process 
standard: connections. 

The revisions to the K-12 mathematics curricula 
in Alberta have consciously incorporated investiga
tions of the connections and interplay between vari
ous mathematical topics and their applications. Prin
ciples and Standards for School Mathematics (NCTM 
2000) suggests that the mathematics instructional 
programs for K-12 should include the connections 
standard so that all students 

• recognize and use connections between math
ematical ideas, 

• understand how mathematical ideas interconnect 
and build on one another to produce a coherent 
whole, and 

• recognize and apply mathematics in contexts out
side of mathematics. 

The ability to connect mathematical ideas, trans
fer skills and concepts to other mathematical areas, 
and apply mathematics to areas outside of mathemat
ics and to practical situations will lead to a deeper 
and more lasting understanding of mathematics. Stu
dents will also come to understand that mathematics 
is not a collection of separate topics or strands but, 
rather, an integrated whole. This view of mathemat
ics can only be developed if teachers provide oppor
tunities to study connections within the mathematics 
curriculum of a particular grade and between the 
grades. Knowing what has been studied in previous 
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grades and what will be studied in the following 
grades is essential for teachers. 

How do we teach students to recognize and use 
connections between mathematical ideas? The simple 
answer is by emphasizing mathematical connections. 
This implies that teachers need to link conceptual 
and procedural knowledge, relate various represen
tations of concepts or procedures to one another, rec
ognize relationships between topics in mathematics, 
use mathematics in other subject areas and apply 
mathematics to real-life situations. Such emph:isis 
will lead students to see mathematics as an integrated 
whole rather than as an isolated set of topics. 

As students progress through the grades, investi
gating connections between various mathematical 
topics should include recognizing equivalent repre
sentations of the same concept, using connections 
between mathematical topics, and using connections 
between mathematics and other disciplines. Teach
ers also need to guide the process carefully by ask
ing appropriate questions, such as "How is our ac
tivity today related to our discussion yesterday or last 
week?" or "How is this problem or mathematical 
topic like things you have studied before?" 

How do we teach students to understand how 
mathematical ideas interconnect and build on one 
another to produce a coherent whole? Students must 
have many opportunities to observe the interaction 
of mathematics with other subject areas and with 
everyday problems outside mathematics. As students 
progress and mature, their mathematical experiences 
with connections should provide not only different 
settings but also gradual increases in difficulty and 
complexity. Using a variety of solution processes 
would also lead to a deeper understanding of the con
nections among the various mathematical ideas. 
Teachers need to be mindful of the importance of 
linking conceptual understanding with procedures, 
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and such linking should be central in the teaching/ 
learning process. 

It has also been suggested that an important part 
of the connections standard is teaching students to 
recognize and apply mathematics in contexts outside 
of mathematics. How is that best achieved? The Ap
plied Mathematics 10-20-30 stream is a step in the 
right direction. This is not to suggest that applica
tions to areas outside of mathematics cannot be in
cluded in the Pure Mathematics stream or the other 
grade levels. In fact, they should be included in all 
mathematics programs if students are to develop a 
view of mathematics as a connected and integrated 
whole. 

The mathematical experiences of K-12 students 
should include opportunities to learn about mathemat
ics by working on problems arising in contexts out
side of mathematics and within their own experiences. 
The connection to the real world is particularly criti
cal for students at the primary level. The level of dif
ficulty and complexity related to connecting math
ematics to the real world increases as students 
progress through the grades. At the high school level, 
the Applied Mathematics stream challenges students 
with complex applications and the use of sophisti
cated measuring devices. These experiences allow 
students to see the connection of mathematics to the 
worlds of engineering, architecture, commerce, so
cial sciences, building industry and many other ar
eas. Teachers have to take great care in selecting ap
propriate problems, activities and projects because 

students are unlikely to learn to make connections 
unless they are working on problems or situations 
that have the potential for suggesting such links. As 
a means of emphasizing the connections between 
mathematical ideas, new concepts should be intro
duced, when possible, as extensions of familiar math
ematics and previously learned concepts and skills. 

The connections standard derives its importance 
from the fact that students learn to see mathematics 
as an integrated whole, increasing their potential for 
retention and transfer of mathematical ideas. Further
more, emphasizing connections helps to instill in stu
dents an understanding of and appreciation for the 
power and the beauty of mathematics. Connecting 
mathematics with other disciplines and with the real 
world also underscores the utility of the subject. 

The three articles that follow provide examples of 
making mathematical connections. The first article 
is an example suitable for the junior high level and 
the other two articles demonstrate the connections 
standard at the high school level. 
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In how many ways can the fraction ½ be written as the sum of two positive 
fractions with numerator equal to 1 and denominator a natural number? 
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Making Connections: 
A Thematic Mathematics Project 

for Grade 7 

David B. Smith 

Here is the teacher's dilemma: students are moti
vated by new experiences in mathematics, but many 
lack the basic skills and understanding of concepts 
that they need to be successful when the pace of in
struction quickens. For example, when introducing 
the multiplication property of equality to solve ax= 

b, I find that many Grade 7 students have forgotten 
how to multiply fractions and decimals. They are in
terested in the prospect of learning something new, 
but their enthusiasm is dampened because they can
not perform simple computations. Even after years 
of drill and practice, familiar algorithms have not 
reached long-term memory. 

Slavin (1994, 193) describes short-term memory 
as "a bottleneck through which information from the 
environment reaches long-term memory." I believe 
that trying to force basic skills and concepts through 
this bottleneck with periodic intensive drill-and-prac
tice sessions is not effective for many students. Such 
practice is a temporary fix, and the redundancy of 
this effort holds no interest for students. During 20 
years of teaching middle school, I have learned that 
practice is essential to success but that it is effective 
only when the goals are clear, meaningful and re
warding. Perhaps most important, 1 believe that ef
fective practice is sustained only through self-moti
vation. To address these issues, I designed a year-long, 
career-based project to practise some of the basic 
skills that lay a foundation for algebra, such as mea
surement in both the customary and the metric sys
tem, fractions, decimals, percents and proportions. 
The rationale for this approach was that frequent re
hearsal of these skills in a meaningful context and 
over an extended period would help students trans
fer them to long-term memory. 

Project Overview 

The project was divided into three units to corre
spond to three marking periods ( fall, winter and 
spring). Unit I, titled Drafting, included a basic 
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introduction to mechanical drawing skills, design for
mat and function. The curriculum objectives were to 
review operations with fractions, practise measure
ment skills, introduce the multiplication property of 
equality, and apply each of these skills and concepts 
to designing a floor plan for a one-story summer cot
tage. Unit 2, Real Estate, introduced terms and prac
tices through an elaborate simulation. Students were 
asked to select a cottage design from unit 1, purchase 
a building site, build a cottage using current building 
costs and try to sell this property for a profit. The 
objectives for this unit were to review operations with 
decimals and percents and apply these skills to deter
mine brokers' fees and closing costs. In unit 3, In
vestment, student teams invested the profits from their 
property sales in the stock market. This unit targeted 
the relationship between fractions and decimals and 
demonstrated the value of memorizing conversions 
between basic fractional units, such as fourths, thirds 
and eighths, and their corresponding decimals. 

My pre-algebra class met four times a week, for 
three 40-minute periods and one SO-minute period. 
Half of the 80-minute period was allotted each week 
throughout the year for this thematic career-based 
project. The remaining time on that day and subse
quent periods each week followed the traditional 
curriculum, emphasizing problem solving and drill 
and practice. 

Drafting 

To set the stage for success, the class reviewed 
basic measurement skills, multiplication with frac
tions and the multiplication property of equality. 
Using these skills. my students were able to measure 
distances accurately with a ruler and convert inches 
to feet using a scale or¼ inch= 1 foot. Students were 
then introduced to drafting tools, including the T 
square. dra\\'ing board, right triangles and compass, 
and were giYen ;1lgorithms for four practice drawings, 
a rectangle. an L shape. a T shape and design symbols. 
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These exercises were quite challenging, and students 
benefited from peer coaching and frequent review 
sessions. 

After completing these exercises, students received 
an overview sheet for designing their cottages ac
cording to the following guidelines. 

• The maximum building size was 24 feet by 36 feet. 
• The scale for the drawings was 1/4 inch = 1 foot 

or 1 /8 inch = 1 foot. 
• The maximum number of rooms was five. 

The need for these parameters had become clear dur
ing the introductory exercises. Spatial sense is some
times an innate gift, but more often it is an acquired 
understanding. Grade 7 students often have no con
cept of appropriate room dimensions and, conse
quently, exhibit little understanding of form and func
tion. For example, one of my students was convinced 
that an indoor pool could be placed in his cottage, 
along with a 2' x 3' bathroom and a 5' x 3' bedroom 
with no windows. The game room, however, was 
understandably a priority for this student; its dimen
sions were 15' x 20'. 

Given students' lack of spatial sense, my second 
objective was to model functional spaces. Students 
were required to measure each room in their homes 
and comment briefly on the advantages and disad
vantages inherent in each space. One of my students 
commented, "My bedroom is 10' x 12' and this is big 
enough for my desk, bed, and dresser, but my closet 
is way too small, and I only have one window ... it 
gets hot in the summer." I was surprised by the en
thusiasm that this assignment generated; students 
were eager to share their findings and derend their 
beliefs, but they were also open to new ideas about 
form and function. 

The third objective was to create a functional living 
space. First, students were asked to cut out graph-paper 
models of appropriately sized rooms and to piece 
them together in functional patterns. For example, a 
bedroom, sunroom, kitchen and family room can be 
arranged to demonstrate a variety of walking patterns, 
light exposures and proximities. In addition, once the 
pattern is selected, room dimensions can be altered 
slightly to lower building costs. Figure I shows two 
functional patterns created by one of my students. 

When the rough drafts were complete with room 
assignments and symbols for doors and windows, 
students began their final drawings on oak tag using 
mechanical drawing tools. Students chose one of two 
scales, 1/4 inch= I foot or 1/8 inch= 1 foot, on the 
basis of the size of their design. Students were re
minded to draw pale lines with a number 3 pencil to 
facilitate erasures. The final drawings were checked 
for errors and graded on accuracy and function. 
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When corrections were complete, the designs were 
given numbers and placed on tables around the room 
for viewing. The names of the designers were cov
ered. Each student was given a ballot and asked to 
record the number of the drawing that best demon
strated the qualities of functional living space, solar 
efficiency and creativity. The room was full of en
ergy for about 20 minutes. I overheard one of my 
students say, "There are too many doors in this den
-where would you put a couch and a TV?" Another 
commented, "There isn't enough light in this kitchen; 
I would put another window on the west wall." 

Figure 1 

Two Functional Designs for 
One Student's Cottage 
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The winning design was taped to the chalkboard, 
and we reviewed what distinguished it from the oth
ers (see Figure 2). After this discussion, we displayed 
all the drawings in the front hall. 

Real Estate 

Unit 2 began in January with a review of place 
value, percents and multiplication with decimals. Our 
goal was to purchase an appropriate building site for 
our award-winning design. Students were asked to 
define a region for the search; given our proximity to 
the sea and several resort areas, they chose to look 
along the coast between Noank and Stonington, Con
necticut. Ann Burgess and Kay Hill, two local real 
estate agents, volunteered their time to show us four 
waterfront properties. 

After recovering from the initial shock of water
front prices, my students listed the advantages and 
disadvantages of each property using the following 
criteria: (1) access to water, (2) zoning regulations, 
(3) truces, ( 4) water and sewer requirements, (5) acre
age, (6) total cost, (7) soil composition and (8) resale 
value with proposed building. This lesson was a won
derful opportunity to introduce real estate terms and 
practices, and the students were amazed at the num
ber of factors to be considered when purchasing a 
property. 

One student was concerned about Amtrak's high
speed rail service adjacent to a property in Mystic; 
another questioned the cost of insurance in a flood 
zone; and one student thought that our cottage was 
not big enough to increase the value of a large prop
erty with deep waterfront. She argued that the sur
rounding homes were considerably larger and com
mented, "People with a lot of money build bigger 
homes." This comment was particularly interesting 
to me because it showed the student's capacity to 
look beyond current needs and consider this purchase 
as a long-term investment. 

After considerable discussion, we voted unani
mously to purchase a property in Stonington with a 
breathtaking view of the Mystic River. We filled out 
a mock sales contract with an of

f

er that was $20,000 
less than the asking price, and. to our surprise and 
delight, the offer was accepted. We then consulted 
with a contractor to determine building costs per 
square foot and calculated closing costs. The sum of 
the costs to buy the lot and build our cottage was 
$380,000. 

After we had "built" our cottage on its beautiful 
waterfront site, we went back to our real estate agents 
to conduct a market comparison and fill out a listing 
agreement to sell the home. Th� agents showed us 
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three waterfront homes that had been recently sold 
or were currently on the market, were similar in style 
and size to our cottage, and had comparable lot sizes. 
Determining a sales price proved to be challenging 
because the market comparisons presented as many 
differences as similarities. Students were reminded 
to ask for a higher price than they thought they could 
get but not so high as to discourage potential buyers. 
This time the discussion was heated, but we finally 
agreed on an asking price of $445,000. Next we dis
cussed the commission for our agent, which is usu
ally 6 percent of the sales price. My students calcu
lated the commission for a variety of sales prices to 
get a sense of this cost. After this activity, several 
students wanted to know how they could become real 
estate agents. 

During the next meeting, our agents conducted a 
mock sale with fictional buyers from New York City, 
a family of four with a 36-foot sailboat. We refused 
their first offer of $410,000, and considerable debate 
ensued. Several students were concerned that we 
would not make enough profit from the sale after 
deducting a commission of $24,600, and many 
wanted to hold out for another buyer. Our real estate 
agent discussed the advantages and disadvantages of 
holding out and asked us whether we were prepared 
to rent the property to help with our monthly costs. 

Figure 2 

The Winning Cottage Design 
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My students enjoyed this role playing, and after much 
debate, we agreed on a price of $437,000. After clos
ing costs and taxes, the profit on our investment was 
approximately $30,000. 

Investment 

After a review of the conversions from fractions 
to decimals and an overview of investment terms and 
principles, students were given a set of guidelines 
for investing their profits in the stock market. The 
class was divided into teams of two, and each team 
received the $30,000 profit from our sale to invest 
over an eight-week period. Their initial assignment 
was to survey peers, parents and neighbors about wise 
investment opportunities. Local companies, such as 
Pfizer, Dow Chemical and Stop & Shop, were at
tractive to my students, as were companies related to 
the computer industry, such as Microsoft and Yahoo. 
Their choices often reflected consumer trends, both 
because students have an excellent grasp of the youth 
market and because their interests are uncomplicated 
and highly focused. One team invested a large por
tion of its profits in Yahoo because personal experi
ence convinced the two students that it is a powerful 
search engine. Another team selected Stop & Shop 

because the students had witnessed how successful a 
new superstore was in their community. 

Each team was required to buy two blue-chip 
stocks and two stocks from NASDAQ. Students kept 
track of their investments weekly with a stock-re
view sheet (see Figure 3). At the end of four weeks, 
the teams were given the opportunity to sell unsatis
factory stock and reinvest their money. Occasional 
groans and shouts of "Yes!" and "Show me the 
money!" were testaments to students' interest in the 
project. Students began to follow the market daily 
and make conjectures about why stock values rose 
and fell. Students memorized decimal conversions 
and used calculators almost exclusively to determine 
the total value of their stock. See Figure 4 for two 
examples of student work. 

At the end of eight weeks, students calculated their 
profits and losses and submitted their worksheets. 
The teams were graded on the following criteria: 
(1) completion of worksheets, (2) efforts to show 
work clearly in well-organized steps, (3) accuracy of 
calculations and (4) cooperation and focus during 
work periods. As promised at the beginning of the 
term, I took the top two money-making teams out 
for a business lunch to celebrate their wise invest
ments and hard work. 

Figure 3 

Activity Sheet for Stock-Market Project 

Stock Market Project Work Sheet 
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Student Work for the Investment Phase of the Project 
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Reflections 

Two factors were important to the success of this 
project. First, frequent review of skills during the 
introduction of each unit was essential for enabling 
each student to achieve some level of success. For 
example, a few students did not master basic draft
ing skills and proportions before the design phase of 
unit 1, and their motivation dwindled because they 
depended on the teacher or their peers to perform 
simple tasks. To overcome this problem, teachers 
must hold frequent review sessions that are targeted 
toward specific difficulties. 

Second, clear guidelines should be set to ensure 
cooperative learning for team activities. These guide
lines do not require each team to follow the same 
process for completing the assignment, but the stu
dents must understand that each member of the team 
is responsible for part of the work load. For example, 
during the Investment unit, two students agreed to 
review the business section of the newspaper and 
underline their holdings together, then work through 
the stock-review sheet separately to verify gains and 
losses. Another team decided to work through the 
whole process together. The students alternated re
sponsibilities for locating their investments, reading 
pertinent business news out loud, recording the data, 
calculating gains and losses, and checking their work 
with a calculator. Each approach was effective, and 
for each team the responsibilities and the expecta
tions for peer interactions were clear. 

The central purpose of this project was to design 
a format for reviewing basic skills that would hold 
students' interest and ensure long-term retention of 
these skills. I think that my students were motivated 
by the format and content, but their retention must 
be assessed next year. I look forward to discussing 
this assessment with the students' algebra teacher. 

Additional benefits surfaced during the course of 
the project. First, the project served as a wonderful 
opportunity to link school and community. My stu
dents worked with caring professionals who helped 
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them see the connections between school-based learn
ing objectives and career responsibilities. Second, the 
components of this project targeted several of Howard 
Gardner's multiple intelligences, including logical/ 
mathematical intelligence through abstract reason
ing, computation and problem solving; spatial and 
bodily/kinesthetic intelligence through design appli
cations and site planning; and personal intelligence 
through cooperative learning activities (Gardner 
1985). I believe that I was able to meet the individual 
needs of each of my students while creating a plea
surable and productive experience. 

The drafting and real estate portions of this project 
were designed for a suburban population of middle
level income. Many students will not have the same 
background, and for them real estate concepts may 
be unfamiliar. Therefore, more time might be required 
to define real estate and zoning regulations or to in
corporate alternative design projects, such as remod
eling apartments or designing a retail space. Regard
less of focus, this project should reinforce basic skills, 
promote student learning and connect fundamental 
life skills to career opportunities. One of my students 
underscored this point during a conversation with a 
peer: "Designing a house isn't so hard," the student 
said, "not when you know the multiplication prop
erty of equality." 
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Cost Allocation: 
An Application of Fair Division 

Albert Goetz 

Although the subject of cost allocation has been 
extensively discussed in the literature of political eco
nomics, it has been generally neglected in mathemati
cal literature. However, cost allocation affords a prac
tical extension of fair-division techniques--one that 
is readily accessible to secondary school students and 
that gives them a simple yet powerful application of 
mathematics to real-world problem solving. A study 
of the concepts and the mathematics involved in cost 
allocation is most appropriate in a discrete mathemat
ics course or a modeling course, but a case can be 
made for including this topic in other courses, as well. 
This article presents a typical cost-allocation prob
lem with possible solutions and includes suggestions 
for presenting similar problems in the classroom. The 
basics of the problem follow closely from Young 
(1994). 

The Sewage-Treatment-Plant 
Problem, Part 1 

Let us consider two towns, Amity and Bender, each 
of which needs to build a new sewage-treatment 
plant. Let us further suppose that the cost for Amity 
to build the sewage-treatment plant is $15 million 
and that the cost for Bender to construct the plant 
is $9 million. Were the two towns to pool their 
resources, the cost of one sewage-treatment plant, 
built to service both towns, would be $19 million. 
Should the two towns decide to build only one 
plant, and if so, how should the cost be divided? 
1 find that having small groups work on this prob-

lem is both productive and enjoyable for students. 
Each group is first given one of the two towns to 
represent and asked to plan a negotiating strategy for 
the town. Each group is then paired with a group that 
represents the other town so that the groups can work 
out a solution. 

One question that students frequently ask concerns 
the populations of the towns. I deliberately withhold this 
infom1ation initially. and I instruct students to devise 
possible solutions without knowing the populations. 
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Students should recognize that splitting the cost 
equally is an inferior solution for Bender. Students 
should devise two preferable kinds of solutions, ei
ther on the basis of the cost or on the basis of the 
savings involved. Splitting the savings equally be
tween the two towns is an example of the latter. Since 

$5 million, that is, $24 million minus $19 million, 
represents the amount saved, each town should save 
$2.5 million, so that the $19 million cost would be 
divided in the ratio of 12.5 to 6.5, that is, ($15-$2.5) 
to ($9 -$2.5). 

A possible solution on the basis of cost is to allo
cate costs in proportion to opportunity, that is, stand
alone, costs. In this solution, 

i4 = i 
of the cost, or $7 .125 million, should be borne by 
Bender; and 
u - 2. 
24 - 8 

or $11.875 million, by Amity. The same solution can 
be obtained by allocating savings in proportion to 
opportunity costs, so that the cost for Bender, for 
example, would be 

9- _2_.5 24 

or $7.125 million. See Table 1; where necessary, 
numbers in tables are rounded to three decimal places. 

Table 1 

Payments by Town 
on the Basis of Costs or Savings 

Amity Share Bender Share 
(Millions of $) (Millions of$) 

Stand-alone costs 15 9 
Split costs 9.5 9.5 
Split savings 12.5 6.5 
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Students often rebel against first finding solutions 
without knowing the populations of the towns, and 
their concern is worthy of classroom discussion. But 
if the populations are cleverly constructed, the prob
lem becomes more complex rather than easier. For 
example, if the population of Bender is 10,000 and 
the population of Amity is 40,000 and costs are allo
cated in proportion to population, then Amity should 
pay four-fifths of the cost, or $15.2 million. Such a 
solution is clearly not in Amity's best interest,just as 
splitting the cost equally is not in Bender's best in
terest. A question to ask students is, Under what cir
cumstances does the ratio of the populations of the 
towns produce a solution that encourages each town 
to participate? However, if the savings are divided 
equally among the residents, then Amity pays $11 
million, that is, 

(15 -� • 5) 
and Bender pays $8 million. 

Three solutions appear to be in the best interests 
of both towns, as indicated in Table 2: 
• Dividing the savings equally-A (Amity) pays 

$12.5 million, B (Bender) pays $6.5 million 
• Dividing the savings equally among the resi

dents-A pays $11 million and B pays $8 million 
on the basis of the· given populations 

• Dividing the costs or the savings proportionally 
to opportunity costs or savings-A pays $11.875 
million, and B pays $7 .125 million 
Which of the three solutions is the fairest? Young 

( 1991) takes an interesting geometric approach to this 
question. Core is the term that game theorists and 
political economists give to the set of possible solu
tions in which neither player, or town, pays more than 
the opportun.ity costs. In Figure 1, the x-axis repre
sents Amity's payments; the y-axis, Bender's payments. 

Table 2 

Three Solutions in the Best Interests 

of Both Towns 

Amity Share Bender Share 
(Millions of$) (Millions of$) 

Dividing savings 
equally 

12.5 6.5 

Dividing savings 11 
equally among residents 
Dividing costs or I 1.875 

savings in proportion 
to opportunity costs 

8 

7.125 
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The line segment joining the points (0, 19) and ( I 9, 0) 
is the set of all possible allocations; the portion of 
that line segment between the horizontal at 9 and the 
vertical at 15 represents the core. Students can easily 
replicate this figure on a graphing calculator in a 
window that goes from Oto 20 in each direction. The 
equation of the line segment in question is y = -x + 19, 
and the DRAW menu can be accessed from the home 
screen, as opposed to the graph, to obtain the desired 
horizontal and vertical segments. The previously dis
cussed solutions, both those in the core and those 
outside it, are labeled in the figure. 

Figure 1 

A Diagram of Possible Solutions 
in a Two-Town Game 

16 

12 

8 

4 

B = g Equal sharing of costs 
Savings per resident 

Proporti<;>nal 1 Split saving� cost/savings 

4 . 8 12 16 

A good case can be made for choosing the mid
point of the line segment representing the core as the 
solution to the problem. That point corresponds to 
equal savings for each town. In that solution, A pays 

$12.5 million and B pays $6.5 million. When stu
dents try to negotiate an equitable settlement in their 
groups, this solution is often the most appealing. 

The Sewage-Treatment-PI ant 
Problem, Part 2 

We next suppose that a third town, Cordial, is in
volved. The stand-alone cost for Cordial is $7 mil
lion, and the cost for a sewage-treatment plant that 
would service all three towns is $23 million. 
Before students can break up into groups to de-

cide how to solve this problem, costs for all possible 
coalitions must be assigned. One possible way 
follows: 
• The cost for Amity and Bender together remains 

as before, $19 million. 
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• Were Amity and Cordial to participate together, 
the cost would be$ I 7 million. 

• Were Bender and Cordial to participate together, 
their cost would be $13 million. 

If we use the method of proportional allocation, 
which gave us a solution in the core in the two-town 
game, then Amity contributes $15.862 million, a so
lution that is not in the core. Moreover, dividing sav
ings equally among residents fails to fall within the 
core because Bender and Cordial can form a coali
tion that leaves Amity out and build the plant for 
roughly $2.5 million less than by joining with Amity 
and using that method. Table 3 summarizes results 
from the other methods used in the two-town game. 
For these results, we assume that the population of 
Cordial is 8,000 and that the populations of the other 
towns are as stated initially. Students can investigate 
which of these methods fall within the core and which 
are outside it. 

In the classroom, letting students play with the 
problem before analyzing it in this fashion is advis
able; fascinating student interactions can result. If 

the class is divided into three groups, each represent
ing one of the towns, students can caucus among 
themselves to determine a "strategy," or method that 
is equitable from their point of view, to divide costs. 
Pairs of students from each group are then randomly 
assigned to negotiate a settlement; in other words, 
two students from A (Amity), two from B (Bender) 
and two from C (Cordial) work as one group; another 
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Table 3 

Payments by Town 
for the Three-Town Game 

Stand-alone costs 

Split costs 

Split savings 

Cost divided in 
proportion to 
stand-alone costs 

Costs divided 
among residents 

Savings divided 
among residents 

Payments by Town 

Amity Bender Cordial 

15 9 

7.67 7.67 

12.33 6.33 

11.129 6.677 

15.862 3.966 

7 

7.67 

4.33 

5.194 

3.172 

9.483 7.621 5.897 

two from A, two from B and two from C work in a 
second group; and so on. 

Young ( 1991) presents a geometric analog to the 
line segment that denoted the core in the two-town 
game. We construct an equilateral triangle with its 
altitude numerically equal to the cost if all three towns 
cooperate. Each vertex of the triangle represents one 
town's payment of the full cost, and any point in the 
interior of the triangle represents the towns' splitting 
the $23 million in some fashion. The core in this game 
is the shaded area in Figure 2. 

A Combinatoric Approach 

L. S. Shapley, a political economist at Princeton, 
developed a cost-allocation method (Shapley 1981) 
that is similar to his approach to power indices in 
voting games. We consider all possible permutations 
of the three towns. Each permutation is treated as if 
the towns join the coalition sequentially and make 
up the difference between what has already been con
tributed and the total cost for the coalition. For ex
ample, in the permutation ABC, A joins first and must 
contribute 15. When it joins the coalition, B must 
contribute 4, the difference between A's 15 and the 
cost for AB, which is 19. When C joins, C must also 
contribute 4, the differen-:e between 23 and 19. The 
Shapley value is the average of all possible contribu
tions for a town. The values for the problem are sum
marized in Table 4. 

Figure 2 

A Geometric Diagram of Possible 
Solutions in a Three-Town Game 

A pays 23 
/ B ande pay 13 

C pays 23 
A pays 15 
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The Geometric Solution 
for Three Players 

The Shapley solution obtained previously is within 
the core and is thus a valid solution to the problem, 
but we have no guarantee that the Shapley value will 
be in the core (Young 1991 ). Can we guarantee a 
solution that is in the core of a three-player game if a 
core exists? We can easily construct a situation in 
which the core does not exist. We consider the core 
in Figure 2. We try to extend the midpoint solution 
of the two-player game, called the standard solution, 

to three players. The core here is a triangle, although 
we have no guarantee that the core will be a triangle. 
To visualize this result, we move the line designated 
"A and B pay 19" parallel to itself and away from 
vertex C. As that line moves, the core changes from 
a triangle to a quadrilateral to a pentagon. The upper 
vertex of the core triangle represents B's paying a 
share of 9. This amount is B's maximum payment 
within the core. B 's minimum payment is represented 
by the line designating "A and C pay 17," or 6. We 
average those payments at 7.5 and construct through 
that point the horizontal segment with endpoints on 
the borders of the core. See Figure 3. The left end
point of the segment represents C's minimum cost, 
and therefore A's maximum cost, given that B will 
pay 7 .5. The right endpoi::it represents A's minimum 
cost and C's maximum cost. If we simply average 
the maximum and minimum costs for A and C, we 
obtain the solution that A pays 10.75, B pays 7.5 and 
C pays 4.75. 

A spreadsheet that neatiy summarizes all these so
lutions in the three-town game can be constructed. 

Table 4 

Allocation Using a 
Combinatoric Approach 

Individual Contributions 

Coalition order A B C 

ABC 15 4 4 

ACB 15 6 2 

BAC 10 9 4 

BCA 10 9 4 

CAB 10 6 7 

CBA IO 6 7 

Total contribution 70 40 28 

Shapley value 11.67 6.67 4.67 
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Such a spreadsheet appears as Table 5. Entries in the 
top half of the spreadsheet represent the costs to each 
town or coalition of towns for each possible solu
tion. Entries in the bottom half of the spreadsheet 
represent the savings for each coalition. Any nega
tive entry in the bottom half of the table indicates 
that the solution does not fall within the core of 
the game. 

Figure 3 

The Core Triangle from Figure 2 

A= 10 
B=9 

C= 

A= 10 
B=7.5 

..,.J'-------41-'-----.'-=+---=c = 5.5 

A= 13 

B=6 
C=4 

Table 5 

Summary of All Solutions in 
the Three-Town Game 

Amity Bender Cordial 

Costs 
Stand-alone costs 15 9 7 
Split-cost solution 7.67 7.67 7.67 
Split-savings solution 12.33 6.33 4.33 
Costs prop. to oppty. 11. I 29 6.677 5.194 
Prorated costs 15.862 3.966 3.172 
Prorated savings 9.483 7.621 5.897 
Geometric solution 10.75 7.5 4.75 
Shapley solution 11.67 6.67 4.67 

Savings 
Split cost 7.33 1.33 --0.67 
Split sa\·ings 2.67 2.67 2.67 
Costs prop. to oppty. 3.871 2.323 1.806 
Prorated costs -0.862 5.034 3.828 
Prorated savings 5.517 1.379 1.103 
Geometric 4.25 1.5 2.25 
Shapley 3.33 2.33 3.33 

I __ • ----- --- ---- - • - --- ---·- __ ] 
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Students usually need help in arriving at either the 
geometric solu1ion or the Shapley value. They do have 
quite a bit to say about these and the other solutions 
that they may generate on their own, and talking 
through the solutions in class has always been inter
esting and provocative. 

Problems of cost allocation are inherently inter
esting to students and are rich in mathematical ap
plications. Those that come to mind most readily in
clude graphing straight lines, geometric 
constructions, parallelism, combinatorics and propor
tions. The aspect that makes cost-allocation problems 
so valuable in the classroom, however, is that stu
dents are motivated to talk about mathematics with 
one another and to experience a real-life application 
of the mathematics that they know. 
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A rectangle is 2 m longer in length than in width. 
If we add 4 m to the length and width, the area 
of the rectangle increases by 72 m2

• Find the 
length of the sides of the original rectangle. 
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Random Variables: 
Simulations and Surprising Connections 

Robert J. Quinn and Stephen Tomlinson 

Many traditional ideas about the content of the 
secondary mathematics curriculum are being chal
lenged. The assumption that mathematics can be 
taught as a series of unrelated skills and algorithms 
is giving way to an approach that emphasizes the 
connections among the many branches of study. Such 
topics as probability and statistics must be given 
greater prominence as important and practical areas 
of mathematical knowledge. Students need oppor
tunities to collect and interpret data, simulate proba
bilistic situations, consider the relationship between 
theoretical and experimental probabilities, and 
gain an understanding of random variables (NCTM 
1989). Integrating probability and statistics within 
the curriculum provides a number of interesting and 
elegant connections that help students develop an ap
preciation for the inherent beauty of mathematics. 
The following lesson on random variables incorpo
rates class discussion and experimental activities in 
the practical and theoretical exploration of one such 
connection. 

This lesson is designed for, and has been used with, 
advanced second-year-algebra students in Grades 11 
and 12. Coins, regular dice, decahedral dice and cal
culators are used. The lesson involves introducing 
three random variables followed by considering an 
empirical and theoretical probability for each. Ap
proximately one and one-half hours are required for 
these activities. The activities can be scheduled in a 
single extended time block or can be split over two 
SO-minute class periods. 

Introducing Three Random Variables 

The lesson begins with a class discussion, during 
which the students develop a working definition of a 
random variable. The exact wording of this defini
tion may vary, but it should include the sense that 
the value of a random variable is determined by the 
result of a chance experiment. For example, the num
ber occurring on the toss of a regular die is a random 
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variable with possible values of I, 2, 3, 4, 5 or 6, 
each having a probability of 1/6. 

Next, the three random variables are introduced. 
The first, Rx, is the number of tosses needed to get a 
head in a series of coin flips. Rx has a value of I if a 
head occurs on the first flip, 2 if the first occurrence 
of a head is on the second flip and so on. The second 
random variable, R

1 
is defined as the number of times 

a die is rolled to get a 1. For example, if a 1 comes up 
on the first roll, the value of R is 1, whereas if the 

• y 

first three rolls of the die are 2, 4 and 1, the value of 
RY is 3. Finally, the third �andom variable, R

t 
is de

fined as the number of trmes a decahedral, or ten
faced, die is rolled to get a l .  

Before the empirical phase of the lesson begins, 
the students are asked to guess the most likely value 
of each of these random variables. Many assume that 
the most likely value for each can be found by divid
ing the number of possible outcomes of a single trial 
of the coin or die by 2. Thus, they believe that the 
most likely values of RJ R and R will be 1, 3 and 5, 

.< y ' 

respectively. Other students begin with a similar idea 
but decide that the initial numbers should not be divided 
by 2, leading them to suggest the most likely values of 
2 for R

,, 
6 for R, and IO for Rz. These guesses are re

corded so that they can be compared with the empirical 
and theoretical results obtained later in the lesson. 

The Empirical and 
Theoretical Investigation of Rx 

The students form pairs to investigate these ran
dom variables empirically. They begin by conduct
ing the coin-flipping experiment and recording the 
values of R_, for IO trials. Each pair's data are written 
on the chalkboard and compiled into a single table. 
This larger sample space provides a better basis for 
deriving the estimate of theoretical probabilities. Fig
ure I shows an example of a completed worksheet 
on which students tallied their data and copied class 
totals for R and R . 

\ y 
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Figure 1 

Sample Results of Student Worksheet 
for Coin (R) and Die (R) 

Outcome Coin Die I 

Tally Class Total Tally Class Total 

1 "'1-1-1-1 46 II I 29 

2 I II 25 I 26 

3 I 14 II 21 
4 9 . II IJ 

5 I 4 1/J 
6 I I 7 

7 I I 8 

8 (J II 6. 

9 0 
.· . 

: 6 

10 () II J 
11 0 . .  'I 

:12 0 2 

13 _· 2 

.14 3 · 

15 1 

16 ; 2 . i7 4 

18 
-·· ·-o :-

19 I 3: 
20 - .0 

21 0 

22 I) 
.. 

23 I 
.>23 2 

Figure 2 

The class is encouraged to consider theoreti
cal probabilities by predicting the likelihood of 
event H: getting a head on one toss of a fair coin. 
Most students realize that this probability is ½, 
that is, P(H) = ½. I explain that since the prob
ability of heads on the first toss is ½, the prob
ability that the random variable, R

,., 
equals l is 

also½. The probability that the random variable 
takes on a value of 2 can then be found by con
sidering the sequence of coin flips necessary for 
this outcome. 

A tree diagram, as shown in Figure 2, demon
strates that the only way the random variable can 
equal 2 is if the first toss is tails and the second is 
heads. Since each toss is an independent event, 
the probability is ½ times ½, or 1/4. Similarly, the 
probability that Rx = 3 is equal to the probability 
of the event ( tails, tails, heads) (ITH), or(½)(½) 
• (½) = 1/8. At this point, a pattern becomes clear 
to the students: the probability of any particular 
value of this random variable is ½ raised to the 
power of that value, P(R, = n) = (½)". Figure 3 
shows a worksheet on which students computed 
the empirical and theoretical probabilities of Rx . 

After gathering the empirical probabilities and 
calculating the theoretical probabilities, students 
see that the most likely value of this random vari
able is 1. They also notice that the higher the value 
of the random variable, the less likely it is for that 
value to occur. Returning to Figure 2, it is inter
esting to observe that the probabilities of con
secutive values of Rx form a geometric sequence: 
P(Rx= l) = ½, P(Rx = 2) = 1/4, P(R, = 3) = 1/8 and 

Tree Diagram for Rx (Coin) 

28 

Rr = 1 Rr=2 

--H P(R:r = 1) = ½ 1/2 
< 112 1/ --II P(R:r = 2) = ¼ ._ T 2 

< ½ -- / �H P(R:r = 3) = 1/a 
T 

12 

R:11:=n· 

<112 -- T --H P(R:r = n) = 1/2" 
T ½ 

<112 
--- T 
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so on. Consequently, the corresponding infinite 
geometric series represents the probability that the 
value of the random variable will be some element 
of the set of positive integers. Since a head must 
occur eventually, the laws of probability provide 
an unusual justification showing why the sum of 
this infinite series must be I: 
P(R_, = 1 or Rx= 2 or Rx= 3 or ... ) 
=P(R =l)+P(R =2)+P(R =3)+··•=1. 

X X X 

At this point, the students reconsider their origi
nal guesses concerning the most likely outcomes 
for RY and R,. Most students who had guessed that 
I was the most likely outcome for R do not change 

X 

their original guesses for the other random vari-
ables. Surprisingly, even those who had guessed 2 
for Rx tend not to change their guesses of 6 and 10 
for R and R . They are either too stubborn to change 

y z • 
or thmk that those who guessed 1 JUSt "got lucky" 
in the coin-flipping experiment. Students are encour
aged to think about the geometric sequence that 
corresponds to the probabilities of successive val
ues of R . Occasionally, an insightful student will 
suggest that 1 will be the most likely outcome for 
R and R and that the probabilities of successive 

y l • 
values of these random vanables will decrease. 

Exploring the Roll of the Die 

Next, the students consider the second random 
variable, R , the number of rolls needed to obtain 1 

\' 

when a die'is tossed repeatedly. The students carry 
out this experiment, L.it more time is allotted for 
gathering data. This extra time is necessary because 
more time is needed for the "average" trial and be
cause the decreased probabilities for the values of 
R,. imply that more trials will be needed to get a 
reasonably accurate picture of the distribution. 

After each pair of students has carried out the 
experiment 15 times, the results are written on the 
chalkboard and compiled into a single table. To 
examine the theoretical probabilities of the differ
ent values of R,., students are asked the probability 
of rolling a I on the first roll of the die. Most stu
dents realize that this probability is 1/6; therefore, 
P(R, = 1) = 1/6. The probability that this random 
variable takes on a value of 2 can be found by de
termining the probability that the first roll of the 
die is "not l" and the second roll is 1. Since P(not 
1) = 5/6 and P( 1) = 1/6, P(R, = 2) = P(not I)* P(l) 
= (5/6)(1/6) = 5/36. Similarly, P(R, = 3) = P(not 1) 
* P(not I)* P(I) = (5/6)(5/6)(1/6) = 25/216. Fig
ure 4 shows a sample of student work in detem1ining 
the empirical and theorc:tical probabilities of R,. 
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Continuing this argument produces the following: Consequently, it becomes clear that the most likely 
value of this random variable is also I. Further, the 
formula for successive terms is the same as that for a 
geometric sequence with a first term of l/6 and a 
common ratio of 5/6, that is, a,,= a

1
r•- 1

• Applying the 
traditional formula for the sum of an infinite series, 

P(R=1)=(1l6) 
!' 

P(R = 2) = (5/6)(1/6) 
y 

P(R = 3) = (5/6)(5/6)(1/6) 
·' 

P(R, = 4) = (5/6)(5/6)(5/6)(1/6) 

= 1/6 "'0.167 

= 5/36 "-"0.139 

= 25/2 I 6 :::0. I 16 
. = 125/1296 "-"0.096 

P(R, = 5) = (5/6)(5/6)(5/6)(5/6)(1/6) . 
= 625/7776 :::0.080 

S= a1 
l - r ' 

yields 
_l_ _.l 

S - -6- - _§_ -1 
- 1- ..2. - _l_ - . 

6 6 
Generalizing from this pattern, students determine 

that the nth term of this sequence includes n - I fac
tors of 5/6 and one factor of l /6, as shown by the tree 
diagram in Figure 5. This result is not surprising because each potential value 

of RY is an element of the set of positive integers and 

Figure 5 
Tree Diagram for RY (Die) 
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Figure 6 
Tree Diagram for Rz (Die with 10 Faces) 
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P(R, = I or R, = 2 or R, = 3 or ... )= P(R, = 1) + P(R,. = 2) 
+ P(R = 3) + ... = 1/6 + 5/36 + 25/216 + ... = I. 

At this point many students are ready to change 
their guess concerning the most likely value of R . 
Their experiences with R, and R, enable them to gen-
eralize that I will be the most likely value of any 
random variable defined similarly. 

Rz, The Decahedral Die 

A consideration of R_, the number of rolls needed 
to roll a 1 in a series of tosses of a decahedral die, 
provides students with practice using decimals. Stu
dents can collect and compile data in the same man
ner as in the previous two cases. If, however, most 
students have already concluded that 1 is the most 
likely outcome for R

2
, the empirical aspects of this 

example can be omitted. Students complete this phase 
of the lesson by developing the subsequent probabil
ity table and the tree diagram shown in Figure 6. 
P(R, = 1) = (.1) 
P(R, = 2) = (.9)(.1) = .09 
P(R, = 3) = (.9)(.9)(.1) = .081 
P(R, = 4) = (.9)(.9)(.9)(.1) = .0729 
P(R, = 5) = (.9)(.9)(.9)(.9)(.1) = .06561 

. The probabilities of successive values of the random 
variable in this sequence are clearly decreasing, but 
students may wonder whether the sum of these terms 
is 1. "Maybe the values don't get small fast enough," 
one student hypothesized. If the Texas Instruments 
Explorer calculator is available, it can be used to help 
students investigate this result. By following the key
stroke sequence .1, Ci .9, El, El, El,El, ... ,students 

notice that each time= is pressed, the previous prod
uct is multiplied by .9, yielding the consecutive val
ues of this geometric sequence. When El has been 
entered many times, the value of the term will be 
extremely small. This process should help convince 
students that, although the terms decrease more 
slowly than the other two random variables consid
ered, the terms do become small enough fast enough 
to allow the sum to remain finite. More powerful 
calculators should not be used. Although they will 
eventually produce a result of 0, the time required to 
achieve this answer would be extremely frustrating. 

Returning to a theoretical consideration of the se
quence of partial sums, S_, the students see that the 
addition of each successive term brings the sum 1/IO 
of the way from its current value to 1. Thus, as in the 
previous two cases, the formula for the sum of an 
infinite number of these terms yields 

S=-·1-=.J.= I. 
l - .9 .I 
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Figure 7 

Expected Values Using Partial Sums 
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Extensions 

These experiences can be enriched by having stu
dents study the expected value of each of the three 
random variables. I ask the students, "On average, 
how many times must a coin be tossed to get a head?" 
Similar questions can be phrased for the two types 
of dice. The expected value, E, of a random variable 
can be defined as the summation of the product of 
each successive value of the random variable with 
its probability, that is, 

00 

E = I nP(R = n). 
n=I 

When a random variable can assume an infinite 
number of values. as is the case with R _, R. and R_, 
this sum can be approximated by adding

1 

th,ise prod
ucts for a relatively large number of terms. The par
tial sums shown in Figure 7 approach the values of 
E, E and E. 

1 

In �ach ca\e, the expected value seems to converge 
on the number of possible outcomes for a single toss 
of the coin, roll of the ordinary die or roll of the 
decahedral die. That is, Ex= 2, E, = 6 and Et= IO. 

For any random variable defined similarly to Rx, R, 
and R, with q equally likely outcomes, it appears that 
"" ( I ) (q - I )"-1 
In - -- =q. •=I q q 

Figure 8 

I_ 

Proof that n�1 (n) (�)(qq 1
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00 
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This empirical evidence led us to consider prov
ing the assertion formally. Many advanced high 
school students can understand this proof (see Fig
ure 8). Further, the progression of inductive to de
ductive reasoning illustrated is indicative of the way 
that mathematicians often work. It is important for 
students to attempt to emulate this path in their own 
mathematical reasoning. 

Conclusion 

The students enjoyed participating in this lesson. 
The opportunity to guess the most likely value of 
each of the three random variables hooked them, 
piquing their competitive spirit. During the collec
tion of the empirical data, the students vocally rooted 
for outcomes that would show their guess to be cor
rect. This motivation continued during the discussion 

phases of the lesson as students tried to convince one 
another of the accuracy of their conjectures. Finally, 
many students commented that it was pretty cool to 
find a geometric sequence in a situation in which they 
never would have expected it. 
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Hose A can fill a basin in 40 minutes. Hose B can fill 
the basin in 30 minutes and hose C in 20 minutes. 
How long would it take to fill the basin if all three 
hoses were used at the same time? 
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TEACHING IDEAS 

Calendar Math 

Art Jorgensen 

Below are 31 scrambled words, one for each day of May. Each of these words is often heard in the math
ematics classroom. Teachers can use these scrambled words to introduce a lesson or have students figure out 
what the unscrambled word is. An extension to this activity might be to have students bring scrambled words 
for classmates to unscramble. 

l. unrnreb 
2. qsraeu 
3. etmi 

4. wot 

5. videdi 

6. errul 

7. scitamehtam 

8. lytmpuil 

9. rilcec 
10. wasnre 

11. hctreea 
12. rfyto 
13. gtaierln 
14. msu 

15. eicternmet 

16. eaar 

17. rshrtoe 
18. melouv 

19. kcolc 
20. atncgelre 
21. nogylop 
22. ttyhir 

23. dadnde 

24. onpexnet 

25. mobhurs 
26. buscartt 

27. itsivocp 

28. eexntsi 
29. ealoagrlrapml 

30. lahf 

31. zdneo 

34 

Answers 

1. number 
2. square 
3. time 
4. two 
5. divide 
6. ruler 
7. mathematics 
8. multiply 
9. circle 
10. answer 
11. teacher 
12. forty 
13. triangle 
14. sum 
15. centimetre 
16. area 
17. shorter 
18. volume 
19. clock 
20. rectangle 
21. polygon 
22. thirty 
23. addend 
24. exponent 
25. rhombus 
26. subtract 
27. positive 
28. sixteen 
29. parallclugram 
30. half 
JI. dozen 
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FEATURE ARTICLES ___________ _ 

Is There a Worldwide 

Mathematics Curriculum? 

Zalman Usiskin 

We in mathematics have many names for num
bers, among them square numbers, prime numbers, 
rational numbers, transfinite numbers, Fibonacci 
numbers, complex numbers, amicable numbers, and 
on and on. We are number people. We have many 
words for numbers just as Eskimos have many words 
for ice and Arabs have many words for camels. 

As we analyze curriculum, we have also devel
oped many names for curriculum. We have become 
curriculum people. In A Study of Schooling, John 
Goodlad identified five different curricula: the ideal 
curriculum (beliefs of scholars), the formal curricu
lum ( expectations of what should be done in the class 
as seen in syllabi, guidelines, textbooks and so on), 
the instructional curriculum (what teachers report 
they do), the operational curriculum (what actually 
goes on in the classroom) and the experiential cur
riculum (what students report learning and what they 
actually learn) (Klein, Tye and Wright 1979; Goodlad 
1979). Three of these were chosen, though with dif
ferent names, to constitute one of the main organiz
ing structures in the design of the Second Interna
tional Mathematics Study (SIMS): the intended 
(ideal) curriculum, the implemented (operational) 
curriculum and the attained (experiential) curricu
lum. In the Third International Mathematics and Sci
ence Study (TIMSS), a fourth curriculum was added: 
the potentially implemented curriculum, a name cho
sen to represent the curriculum of textbooks and other 
available materials. 

Distinguishing these various types of curricula 
was important in those international studies, for the 
various categories are used in curricular analyses 
that occupied a volume apiece. Yet, these curricular 
analyses would be purely academic exercises-and, 
in fact, the lack of media attention given to them sug
gests that they are purely academic exercises-were 
it not for the natural interest in comparing not what 
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but how much is learned by students in different 
countries. 

The existence of TIMSS and other international 
comparisons of performance in mathematics is 
founded on the premise that there exists enough of a 
commonality in the mathematics curriculum world
wide that a test over that commonality represents 
some sort of fair test of the entire curriculum. And so 
the question of the title of this presentation is already 
seen to require some clarification. If we ask, "Is there 
a worldwide mathematics curriculum?", to which of 
these curricula are we referring? 

At a conference like this one, we can be a little 
more relaxed: Does there exist enough commonality 
in the curricula of different countries that when we 
use such content descriptors as geometry or algebra 
or functions or linear equations or statistics, or when 
we speak of the use of calculator or computer tech
nology, we are talking about the same things? I find 
it useful to examine this with a type of analysis of 
curriculum different from the intended, implemented 
or attained curriculum. It is an analysis using sizes of 
curriculum. 

The Sizes of Curriculum 

There are at least six sizes of the mathematics cur
riculum, each differing from the previous by roughly 
one order of magnitude: (I) the individual problem 
or episode, (2) the problem set or lesson, (3) the unit 
or chapter, (4) the semester or year-long course, 
(5) the mathematics curriculum as a whole and (6) the 
entire school experience. Proceeding from the small
est to the largest, we see that the ratios of sizes are 
quite appropriate for a difference in orders of magni
tude. There are perhaps 5-20 episodes or problems 
in a typical day in a mathematics classroom, 10-20 days 
in a typical unit, 7-15 units in a school year, 13 years 
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of schooling from K-12, and perhaps 6-8 other sub
jects vying with mathematics for space in the cur
riculum. The fundamental property of differences in 
order of magnitude asserts that a strategy, practice or 
policy that is appropriate for one of these sizes of 
curriculum may not be appropriate for another. 

We often see people oversimplifying educational 
policy by taking something that is appropriate for a 
small size of curriculum and then recommending it 
for a larger size. A pretty concept, appropriate for a 
unit, may be taken as the main idea behind an entire 
course. The major recommendation of the National 
Council of Teachers of Mathematics' Agenda for 
Action report issued in 1980 was that "problem solv
ing be the focus of school mathematics in the 1980s" 
(p. l ), by which it was meant that the curriculum 
should be centred around problem solving. Here the 
recommenders were taking something that was hard 
to disagree with at the individual problem level or 
lesson level, namely the presentation and solving of 
interesting problems, and recommending that the idea 
be carried out three or four orders of magnitude 
higher. 

At the time of the Agenda for Action recommen
dation, there did exist many examples of good prob
lems and good problem-solving lessons, and a few 
problem-centred units, but to my knowledge there 
did not exist one example of a problem-centred 
course, and certainly there was no example of an 
entire curriculum of this type. What would be the 
place of skill work in such a curriculum? Where 
would mathematical systems and structure be dis
cussed? A full curriculum requires balancing a vari
ety of priorities, whereas a lesson, unit or even course 
does not require the same sort of balance, and bal
ancing an individual problem is like balancing an 
individual person on a seesaw. 

For the most part, a student's experience with cur
riculum is the union of his experiences with indi
vidual tasks, problems or episodes. The curriculum 
developer tries to find interesting tasks and sequence 
them in a way that is clear to the student and teacher. 
A particular problem may be there to motivate the 
student, or to emphasize a particular idea, or to re
view an idea or to set the stage for another problem 
that will come later. Episodes in teaching serve simi
lar purposes. The items that are selected for testing 
reflect the priorities of the teacher, and when tests 
are analyzed by performance on individual items, one 
obtains a picture at this size of curriculum. 

The next larger size in the order of magnitude hi
erarchy-the lesson-should be more than a collec
tion of episodes or a set of problems. A good lesson 
is buill around a concept, which for understanding 
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requires a variety of activities. In a lesson there is 
always a fundamental decision to be made regarding 
the balance between what is explained to the student 
and what is expected to be learned by the student 
himself. For all these reasons, a good lesson needs 
coherence, and the best lessons have particular ideas 
that they emphasize. 

Similarly, a good unit is more than a set of les
sons. It has a sequence of related concepts that carry 
it from its beginning to its end. A good unit brings 
together these concepts in an attempt to show their 
power. The student, too, is asked to demonstrate 
power of a different sort, for one of the fundamental 
properties of most units in school mathematics is that 
they end with a performance test. 

The course is normally the largest chunk of cur
riculum that the student encounters with a single 
teacher, and it is usually the only size of curriculum 
for which there is a grade on record. Because the 
course is associated with a teacher, a course has a 
personality. Its personality is interwoven with that of 
the teacher, and it is difficult to separate student opin
ions about a course from student views of the teacher. 
Problems, lessons and units tend not to be of long 
enough duration to develop a personality. Only in a 
course is there time to develop a mathematical sys
tem of any complexity; only in a course is there time 
to cultivate a method of thinking. 

The mathematics curriculum as a whole is the sum 
of courses. It has properties different from those of a 
single course. We might not want every course to 
deal with mathematical proof, but the curriculum as 
a whole should. The study of"curriculum coverage" 
found in the TIMSS analysis (Schmidt et al. 1996, 
52) and the earlier analysis of review in U.S. elemen
tary textbooks by Jim Flanders ( 1987), each of which 
involves multiyear looks at the curriculum, provide 
pictures that no one course could provide. And sel
dom are tests over the entire curriculum created by 
individual teachers; we need teams of writers for such 
tests. 

Some ideas work at a variety of sizes. For instance, 
it is often desirable and sometimes obligatory that 
consecutive problems, lessons, units and courses in
corporate a sense of Oow, of connectivity, of growth. 

Analyzing the Question 
by Size of Curriculum 

Returning to the question, "ls there a worldwide 
mathematics curriculum?", I would like now to in
terpret this question for each of the various sizes of 
curriculum. I will start from the largest size. 
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Entire Curriculum 

If a student takes mathematics through secondary 
school in different countries, will that student cover 
the same mathematics? If not, then it is rather silly to 
speak about comparing performance in different 
countries, for we are comparing apples to oranges. 

Obviously, we are not looking for 100 percent 
agreement. But it is not clear how much agreement 
is sufficient. T he situation comparing two countries, 
A and B, can be represented by a diagram somewhat 
like a Venn diagram. In the case pictured in Figure 1, 
3/4 of the topics taught in Country A are also taught 
in Country B, and 2/3 of the topics taught in Country 
B are also taught in Country A. 

Figure 1 

A Hypothetical Example 
of Overlapping Curricula 

Country A 

'1l 

b' 
C 

::, 
0 

u 

We think that there is a great deal of commonality, 
but in this made-up situation a full 45 percent of the 
total number of topics in the two countries are not 
common topics; that is, almost as many topics are 
not common as are common! Obviously, common
alities are less frequent if there are more countries. 

The current trends in the mathematics curriculum 
that we have made themes of this conference serve 
to decrease the overlap in curricula. The movement 
toward mathematics for all has generally led to cur
ricula with greater numbers of applications and data. 
Appropriate applications for one country may be in
appropriate for another, and familiar data in one part 
of the world may be quite abstract in another. The 
use of technology in some places and not in others 
also creates obvious differences in what is expected 
of students even when the problems may be the same. 
For all these reasons, it is my guess that, in our quest 
to make it possible for mathematics to be tested 
worldwide, we have deemphasized the differences 
in total curricula. 
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For instance, I don't think it has been publicized 
that the TIMSS Grade 12 advanced mathematics test 
contains more geometry than algebra (see Table 1). 
To any person in the United States, that would seem 
odd, because far more time in Grades 9-12 is spent 
on algebra than on geometry. 

Table 1 

Distribution of Advanced Mathematics 
Items by Content Category, 

from the Third International Mathematics 
and Science Study 

(taken from Mullis et al. 1998, p. B-9, Table B-2) 

Category % of Number 
items* 

Numbers and 26 
Equations 

Calculus 23 
Geometry 35 
Probability and 11 

Statistics 
Validation and 5 

Structure 
Totals 100 

*There were a total of 65 items. 

Individual Courses 

of points 

22 

19 
29 

8 

4 

82 

From the standpoint of individual courses, I think 
it has been demonstrated rather clearly by the TIMSS 
researchers that there is no worldwide curriculum. 
Examining Table 2, which summarizes four main
stream topics in six countries, we find that the course 
treatment of all four topics varies from country to 
country. In fact, no two of these countries treats any 
of these topics in the same ways over the years! The 
significance of this is that no one can expect to ex
port even one or two years of a curriculum from one 
country to another. Individual courses simply differ 
by too much. 

Table 3 shows the numbers of years of coverage 
and the numbers of years of emphasis for these four 
topics in these six countries. 

In these tables the "mile wide, inch deep" charac
terization of the U.S. curriculum does not appear 
particularly valid, and I could not find any relation 
between the years of coverage or emphasis and stu
dent performance. The maximum years of coverage 
for the topics is shared among three countries, and 
the maximum years of emphasis for the topics is 
shared among four, and they have vastly different 
performance profiles. 
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Table 2 

Curriculum Coverage for Selected Mathematics Topics 
Across Student Ages 

(taken from Schmidt et al. 1996, p. 52, Figure 2-7) 

Example 1: Properties of Whole Number Operations 

Student Age 
Country 6 7 8 9 10 11 12 13 14 15 16 17 18 

--

France - - - - - - - - - - -

Japan . . • -

Norway - -
- - - - - -

Spain - - - - -

Switzerland - • . . - - • • 

USA - - - . . -

Example 2: Relation of Common and Decimal Fractions 

Student Age 
Country 6 7 8 9 10 11 12 13 14 15 16 17 18 
France - - - - . 
Japan - - • . 
Norway - • - - - -

Spain • • - • -

Switzerland • - - -

USA - -
- . . -

Example 3: Exponents, Roots and Radicals 

Student Age 
Country 6 7 8 9 10 11 12 13 14 15 16 17 18 
France - - • - - - . 
Japan . • . -

Norway - - - . - -

Spain - - - . 
Switzerland - . . - -

USA - - . . - - . 
---

Example 4: Properties of Whole Number Operations 

Student Age 
C_o_u_nt_ ry::..._ ___ 6 __ 7_ }J 9 1 0 1 1 12 I 13 14 15 16--1 7_1_8_ 
France ! Japan 
Norway 
Spain 
Switzerland 
USA 

. . . . . . . . 

l-

Note: Ages 9 and 13 arc Tl l\1SS Student Populations l and 2 
- topic coi•rred in c11rricu/11m • topic c,nphasi-::.ed in c11rric11/11111 

In analyzing curricula in 
the United States, the diffi
culty for us is the diversity 
that exists within our coun
try. The most recent report 
we have links our own Na
tional Assessment Grade 8 
scores to those of TIMSS 
(Mullis et al. 1998). The dif
ferences in the 41 reporting 
states are striking. Examine 
Table 4. Compared to Mis
sissippi, I 9 of the 21 coun
tries with samples that met 
the international guidelines, 
including the U.S. as a 
whole, score significantly 
higher, and none score sig
nificantly lower. In contrast, 
only 6 countries score sig
nificantly higher than North 
Dakota, and 8, including the 
U.S. as a whole, score sig
nificantly lower. We must 
conclude that the taught cur
riculum is not the same in 
these states. But every report 
coming out of Washington 
treats our entire country as 
if the curriculum were the 
same everywhere. Why not 
do the obvious: find out what 
is done in North Dakota, 
Iowa, Maine and other high
performing states, and emu
late it. Find out what is done 
in Mississippi, Louisiana 
and the District of Colum
bia and work hard to change. 

It is true that the United 
States, despite the lack of a 
national curriculum, does 
have a common algebra cur
riculum, if one looks at text
books. Here are what I be-

1 ieve to have been the five 
most used first-year algebra 
textbooks (counting all edi
tions as one) in the last 
school year in the United 
States, though together they 
only constitute, at most, 
60 percent of the first-year 
algebra texts in use: 
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Merrill Algebra 1, by Foster et al. 
Algebra, by Brown, Dolciani et al. 
Heath Algebra 1, by Larson, Kanold et al. 
Prentice Hall Algebra, by Bellman et al. 
UCSMP Algebra, by McConnell et al. 

In major ways, all five books are very much alike. 
They have I 0-13 chapters. They all begin with alge
braic expressions. They have 2 -5 chapters on linear 
equations and inequalities (here UCSMP [University 
of Chicago School Mathematics Project] spends more 
time than the others). They graph lines and then they 
graph and solve systems. There is work with the laws 
of exponents and one or two chapters on polynomi
als. There is a chapter on quadratics, and thus some 
work with radicals. All solve quadratics by the Qua
dratic Formula and by factoring, and all but the 
Brown, Dolciani et al. do this graphically. All but 
UCSMP have a chapter dealing with rational expres
sions and rational equations. All have some geom
etry, including area formulas and the Pythagorean 
Theorem. In this sense, there is very much an alge
bra curriculum in the United States. 

There are many other algebra texts in use in the 
United States: the texts of Smith, Charles et al. and 
of Foerster published by Addison-Wesley before the 

merger with Scott Foresman; of Saxon published by 
Grassdale: of Benson et al. published by McDougal 
Littell; of Cox ford et al. published by Harcourt Brace; 
and so on. These books cover the same content as 
the five most used books and, except for Saxon, do it 
in pretty much the same way. 

And there are the project algebras, none used very 
much at this point in time: the CORD algebra, the 
CMP algebra out of the University of California at 
Davis, the computer-intensive algebra of Fey and 
Heid published under the title Concepts in Algebra
A Technological Approach. 

But there are also major differences even among 
the books in most use. The more recent copyrights 
give strong attention to graphing calculators. The 
more recent texts have large numbers of applications 
and real data. The data differ significantly from book 
to book so that students learn different things from 
one book than from another. UCSMP and the recent 
Prentice Hall give more attention to geometry. All 
give some attention to functions, but some of the re
cent texts use function language from the beginning, 
whereas others do it toward the end, where most stu
dents would not even see it. The picture one receives 
from these books is of an algebra curriculum that is 
reasonably fixed, but in flux. 

Table 3 

Years of Coverage and Years of Emphasis of Certain Topics 
(from Schmidt et al. 1996, p. 52) 

Years of Coverage 

Country Whole Fractions, Exponents, Equations, Average 
Numbers Decimals Roots Formulas 

France 11 5 7 s 7 
Japan 4 4 4 10 5.5 
Norway 8 6 6 12 8 

Spain s 5 4 6 s 

Switzerland 8 4 5 11 7 
United States 6 6 7 I I 7.5 

Years of Emphasis 

Country Whole Fractions, Exponents, Equations, Average 
Numbers Decimals Roots Formulas 

France 0 I 2 1 I 

Japan 3 2 3 10 4.5 
Norway 0 I I 0 0.5 
Spain 0 3 I 0 I 

Switzerland 5 I 2 4 3 
United States 2 2 3 4 3.75 
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And I have not mentioned the NSF projects that 
are exhibiting here. in which the traditional first-year 
algebra topics mentioned above are dispersed over 
two or three years. These integrated curricula are quite 
different from those mentioned above, and also quite 
different from each other. If we gave all available 
curricula equal weight, then we would have to con
clude that there is no standard U.S. curriculum. What 
percent of students need to be enrolled in similar 
curricula in order for there to be considered to be a 
standard curriculum for the entire country? It is the 
same question we ask for the world, but in an indi
vidual country the more appropriate size of curricu
lum for the question is not the entire curriculum, but 
the course level. 

Units 

At the unit level, the mathematical approach taken 
to a topic becomes important. How are the various 
ideas related? So we ask: Are the approaches taken 
to large chunks of content the same worldwide? 

We do not have a standard way for measuring dif
ferent approaches to topics. In fact, except for broad 
approaches to geometry, with names such as "vector 
approach," "transformation approach" or "synthetic 
approach," different approaches to mathematics have 
seldom been discussed. There is no universal way to 
decide when two approaches differ. 

But I will give some examples to indicate that there 
are differences. Consider the approach to systems of 
linear equations taken in the Japanese books UCSMP 
translated some years ago. In the chapter entitled 
"Simultaneous Equations" in the Grade 8 book 
(Kodaira I 984, 1992 ), there is not one graph. The 
reason is that students have not yet graphed lines with 
equations of the form y =ax+ b. Yet in every algebra 
book in the United States, the study of systems be
gins with graphical solutions. 

The Japanese text defines slope as the number 
a in y =ax+ b. All the U.S. books define slope as 
y -y / _ / . UCSMP texts and Japanese books discuss 

2 - I 

rate of change before they discuss slope, an approach 
which we have found to be very successful in en
hancing student understanding of the idea of slope. 
Yet we use applications and the Japanese do not. Is 
this enough to be different? UCSMP texts and the 
Japanese text describe the slope as the increase in y 
when x increases by 1. Is this enough to be different 
from other texts? 

The Japanese text defines figures to be congruent 
if one figure can be laid on top of the other by com
bining translations, rotations and reflections. We do 
the same in UCSMP te.\ts and spend some time over 
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a period of years developing competence in these 
transformations. This is not done in most United 
States texts. Freudenthal (1983) pointed out that the 
way in which a term is defined automatically con
s-trains it for future discussion. I believe these differ
ences in the way congruence is approached cause 
differences in the ways in which students think about 
figures and their relationships to each other, and later, 
in the study of functions, in the ways in which stu
dents think about their graphs. I think it's a signifi
cant difference. 

However, in general, the unit level is a difficult 
level at which to analyze curriculum. Over the years, 
we have developed very little language to describe 
different approaches to systems of equations or qua
dratics or congruence or similarity. A comprehen
sive study of curriculum at the unit level might prove 
quite enlightening. 

Lessons 

Turning now to the lesson level, the TIMSS vid
eotape work of Stigler suggests that there are great 
differences in the ways that lessons are taught in Ja
pan, Germany and the United States. A Japanese al
gebra class is shown spending 27 minutes on one 
problem, 15 minutes on another. A Japanese geom
etry class is shown spending 22 minutes on one prob
lem and then 27 minutes on an extension of the same 
problem. In contrast, the U.S. algebra class has stu
dents working on all sorts of problems at once-in a 
cooperative learning situation-and the teacher 
spends no more than 2 minutes discussing any one 
problem in front of the entire class. The U.S. geom
etry class is more traditional in its setup but again 
there are a large number of questions with not much 
time spent on any one of them (Seago 1997). 

In reports on these lessons, Stigler criticizes the 
ways in which United States teachers conduct their 
lessons (Beatty 1997, 11-12). There is an underly
ing assumption that lessons in Japan, Germany and 
the United States could be transported from one coun
try to another. In fact, when one looks at the class
rooms and at the content, it seems that the lessons 
could easily be transported. But one U.S. teacher, 
upon viewing these lessons, said to me that there is 
no way that her students would tolerate spending the 
amount of time on one problem that the Japanese do. 

Arc our societies enough different to make les
sons that are viable in one country not viable in an
other? There are people who think so even for differ
ent groups within the United States. A call for 
"culturally relevant"' pedagogy has been made by 
members of groups historically underrepresented in 
mathematics (Ladson-Billings 1995). This call rests 
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Table 4 

Performance of NAEP Jurisdictions Compared to 20 TIMSS Countries at Grade 8 
(from Mullis et al. 1998) 

Jurisdiction # of Countries # of Countries % of Students % of Students 
Higher Lower in Top 10% in Top 50% 

North Dakota 6 8 s 64 

Iowa 6 7 4 63 

Maine 6 7 6 62 

Minnesota (est.) 6 7 6 62 

Montana 6 7 6 62 

Nebraska 6 7 5 61 

Wisconsin 6 7 6 61 

Minnesota (actual) 6 7 7 57 

Vermont 7 5 4 57 

Connecticut 7 5 5 56 

Massachusetts 7 5 5 55 

Alaska 7 4 7 55 

Michigan 7 4 5 54 

Utah 9 5 3 54 

Oregon 9 4 4 53 

Washington 9 4 4 53 

Colorado 9 4 4 52 

Indiana 9 4 3 52 

Wyoming 10 3 3 52 

Missouri 10 3 3 49 

Texas 12 3 3 46 

New York 12 2 3 47 

Maryland 12 2 6 45 

Virginia 12 2 3 45 

Rhode Island 13 2 3 46 

Arizona 13 2 2 43 

North Carolina 13 2 3 42 

Delaware 13 2 3 41 

Florida 13 2 2 40 

Kentucky 13 2 2 40 

West Virginia 13 2 2 38 

Tennessee IS 2 2 38 

Hawaii 15 2 3 37 

New Mexico 15 2 2 36 

California 15 I 3 38 

Georgia 15 l 2 38 

Arkansas 15 I 2 37 

South Carolina 15 I 2 34 

Alabama 16 I I 32 

Louisiana 18 0 I 25 

Mississippi 19 0 I 23 

Dist. of Columbia 21 0 I 13 
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on the assumption that mathematics is taught in the 
U.S. from a Eurocentric lens that works against the 
performance of Hispanic, African-American and 
Native American students. It is closely related to the 
ethnomathematics movement to recognize not only 
the contributions to mathematics of non-European 
cultures but also the unique ways in which mathemat
ics is informally used every day in one's own native 
culture. 

And yet, in viewing middle school classrooms in 
Shanghai some years ago, I was struck by the simi
larities in the mathematics far more than the differ
ences. In more than one class studying geometry 
proofs, doing problems exactly like those found in 
Japanese or American texts, I saw, in the midst of 
Chinese characters, the abbreviation SAS for the 
Side-Angle-Side congruence theorem. I mentioned 
my surprise to my hosts, who reminded me that Chi
nese characters do not represent sounds in the way 
that Latin characters do, so there is no Chinese char
acter for the first letters of words. I was still aston
ished that the English first letters would be used. But 
it definitely seems to indicate that, at least with cer
tain content, some lessons are quite exportable from 
one country to another. 

Problems 

The smallest size of curriculum-the individual 
problem or task-is not the least important size. The 
TIMSS and other international tests of comparison 
are based on the premise that there is a commonality 
of problems or other short tasks that can be used 
worldwide. 

For example, the publication What Students 
Abroad Are Expected to Know About Mathematics 
(American Federation of Teachers 1997) displays 
examinations that top students in France, Germany 
and Japan have taken. and compares these with the 
SAT and Advanced Placement BC Calculus exams 
in the U.S. The published Bacca/aureat Exam in 
Mathematics from the Aix province of France, taken 
by students at the end of their lycee experience in 
Grade 12, is an exam in vector analytic geometry, 
calculus and algebraic descriptions of geometric 
transformations. The Abitur Exam in Mathematics 
from the state of Baden-WUrttemberg in Germany is 
evenly split among calculus, solid analytic geometry 
and stochastics. The Tokyo University Entrance Exam 
in Mathematics resembles one of the American Invi
tational Mathematics Exams we use to select students 
for the U.S. Olympiad team. And of course our 
BC Calculus exam i� all calculus. If these exams 
cover the curriculum in their respective locales, it is 
rather clear that there is no worldwide mathematics 
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curriculum for the best students. The content differs 
markedly from country to country. 

Recognizing these differences in content, in the 
TIMSS Grade 12 Advanced Mathematics study, a 
Test-Curriculum Matching Analysis was done. An 
expert in each country determined whether the items 
were in the intended curriculum of at least half of 
the students in the population. The idea was "to show 
how student performance in individual countries var
ied when based only on the test questions that were 
judged to be relevant to their own curriculum" (Mullis 
et al. 1998, C-1). The expert for the United States 
judged that 100 percent of the items were in the in
tended curriculum for the U.S. students. I have never 
seen the entire test, but I 9 of the 82 items (see Table 
1) and 2 of the 6 released items required calculus, 
and the highest estimates are that 6 percent of U.S. 
students take calculus. Since 14 percent of U.S. stu
dents were in this population, these items were in 
the intended curriculum of less than half of the U.S. 
students. They should not have been considered as 
relevant. Curiously, the analysis of only those items 
identified as appropriate had no major effect on the 
relationships among countries on either the math
ematics or the physics tests. I have no logical expla
nation for this. Perhaps all of the experts tried to be 
as ecumenical as possible in including items. 

As I mentioned earlier, selecting what is appro
priate is only one part of the picture, however. One 
must ask whether there are things the students have 
learned that are not being tested. At all levels, would 
students in other countries perform as well as U.S. 
on items requiring measurements in feet and inches, 
or in pounds and ounces? I doubt it. 

A quarter-century ago, I wrote a course called 
"Algebra Through Applications with Probability and 
Statistics." At the time, we had a student in a master's 
program from Colombia in South America. She was 
very impressed by the materials and took upon her
self the task of translating them into Spanish. But 
she said she had to change a few problems. Not the 
data on baseball-they play baseball in Colombia. 
She needed to alter those problems in which we had 
people going on diets and losing weight at some con
stant rate. She said, "In Colombia, it's not consid
ered advantageous to be thin. People don't diet." 

Answering the Question 

Now. for the last time, let me state the question 
that I have been trying to answer with these remarks: 
Is then: a worldwide mathematics curriculum? 1 did 
not han: an answer when l first thought or the talk. 
For most nf the time that I prepared the talk, my feeling 
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was the usual professor's response to such a ques
tion, Yes and No. But after working through the analy
sis, I have a different answer. 

Mathematics is a worldwide language. Beyond the 
writing of numerals, schools, colleges and universi
ties use virtually the same written language for alge
bra, geometry, analysis and statistics. Computers 
worldwide use the same programming languages. 
Multinational companies can hire mathematicians 
from virtually any country in the world. The prob
lems tackled by mathematics are universal not only 
in place but also in time. We are able to hold confer
ences like this one because we recognize those char
acteristics of our subject. 

But in our natural desire to show off the univer
sality of our subject, I think we may have gone too 
far to think that mathematics education is the same 
worldwide. From arithmetic to beyond calculus, 
mathematics is vast. In our different cultures, differ
ent choices are made from all the mathematics avail
able, and different aspects of this vastness are em
phasized. In France, the mathematics is more 
theoretical, still reflecting the influence of Bourbaki. 
In the U.S., the mathematics is becoming more ap
plied. In most countries, advanced mathematics stu
dents are using calculators, but this is not true in all 
countries. At the broadest level, we are all teaching 
very much the same ideas, reflecting the common
alities of mathematics. But we do so in different 
course structures, with the subject matter organized 
sometimes in quite different units, with lessons that 
may be appropriate for one country but not another, 
and often with problems that do not transfer from 
one site to another. 

Thus beyond the teaching of arithmetic, there are 
common goals but there is not today a worldwide 
mathematics curriculum, and let us not delude our
selves into thinking that there is. But let us not be 
disappointed by this. We are able to have much richer 
conversations because of the differences. 
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Patterns and Patterning: 
Myths and Not Myths 

Jerry Ameis 

You may be having a few troublesome thoughts 
about the patterns and relations strand in the early 
and middle years curriculum documents. Because it 
is a new strand, there are likely to be good reasons 
for those thoughts. The strand covers two related pro
cesses: sorting and patterning. This article discusses 
both, with the focus on patterning. 

In the current era of reform in mathematics edu
cation, it is important to be honest about what is math
ematics and what is not. The rhetoric and pressures 
of reform can too easily lead us to be charmed by 
such cliches as "Mathematics is in everything" and 
"Problem solving is mathematics." Such cliches are 
suspect in designing instruction that involves worth
while mathematics. 

What does this have to do with sorting and pat
terning? Unfortunately, myths are attached to the two 
processes. Sorting and patterning are not mathemati
cal processes in and of themselves. Mathematics is a 
cultural invention-an organized set of concepts, 
symbols, relationships and procedures created by 
people. Sorting and patterning are fundamental think
ing processes that we are born with; the processes 
are hard-wired in us, if you will. We use them in our 
daily lives: when parenting, when reading a book, 
when shopping, when learning a language and so on. 
As a parent, l detected a pattern when my baby son 
was hungry: he cried. Is detecting that regularity do
ing mathematics? My wife sorts the laundry accord
ing to color; l sort it according to aroma. Are we do
ing mathematics when we sort the laundry? 

When we sort and look for patterns in ways that 
involve mathematical objects (for example, numbers 
or shapes) and/or attributes (for example, length or 
thickness), we are working in the domain of math
ematics with the help of the processes of sorting and 
patterning. When we sort and look for patterns in 
ways that involve science concepts such as atoms and 
plant species, we are working in the domain of sci
ence with the help of these processes. 

Patterning invo!Yes a kind of thinking generally 
referred to as inducti\'e reasoning-searching for a 
consistent feature in something and having faith that 
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it will continue. We are able to think in that way from 
birth. And patterning is not unique to humans: ani
mals look for patterns as well, as anyone who has a 
pet can attest to. The ability to identify patterns is 
one of our mental survival tools, but it is not neces
sarily mathematical thinking. 

What is a pattern from the perspective of math
ematics? First, a mathematical pattern is not some
thing that must repeat three times. Nor is it equiva
lent to a pretty visual design or a template such as a 
dress pattern. Mathematically speaking, a pattern 
involves something that remains constant about a 
collection of numbers, shapes or mathematical sym
bols, concepts or attributes. The critical matter is it 
remains constant. 

Consider the series of arrows shown in Figure I. 
What is the pattern? There is a regularity in the way 
the arrows point. The direction of each subsequent 
arrow involves a constant rotation or turn. One way 
to describe the pattern is the change in direction is 
always 1/4 of a turn clockwise. 

Figure 1 

i 

L __________ _ 

Patterns do not shrink or grow. The elements of a 
pattern may shrink or grow, but the pattern does not. 
Consider this series of numbers: 23, 19, 15, 11, 7. 
The numbers (the elements) in the series decrease 
(shrink), but the pattern does not. One way to de
scribe the pattern is "Each successive number is 4 
less than the number before it." This pattern does not 
shrink for the series of numbers. It remains the same. 

Consider the arrangements of dots in Figure 2. The 
number of dots increases or grows, but the pattern 
remains constant. It can be described in a variety of 
ways. From a geometry perspective, the pattern can 
be described as ·The number of rows and columns 
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of successive diagrams increases by l ." This increase 
of 1 in each dimension remains constant. 

We could create a data table (see Table 1) from 
the dot diagrams and describe number patterns in it. 

The table contains more than one type of numeri
cal pattern. There is a vertical pattern that can be 
expressed as "The increase in the number of dots in
creases by 2 each time." There is a horizontal pattern 
that can be expressed as 'The number of dots equals 
the square of the diagram number." Both of these 
patterns remain constant as the number of dots in the 
diagrams increases. 

Figure 2 

•••• 

••• • ••• 

•• ••• • ••• 

• •• ••• • ••• 

diagram 1 diagram 2 diagram 3 diagram4 

Table 1 

Diagram Number Number of Dots 
in Each Diagram 

1 1 

2 4 

3 9 

4 16 

Teachers should not assume that, just because stu
dents are looking for and identifying patterns, this 
necessarily means that they are doing significant 
mathematics or mathematics at all. For example, de
termining what comes next in the color sequence Red 
Yellow Red Yellow ... involves, at best, trivial math
ematics (counting to one). At worst, it does not in
volve mathematics at all. A child does not need to 
count or use any other mathematical skill to identify 
the pattern of alternating colors. 

With respect to early years curricula, identifying 
pattern types should not be an important goal in teach
ing patterning. For example, consider the following 
sequences: Red Yellow Yellow Red Red Yellow Yel
low Red Red Yellow Yellow Red . .. , and 
133113311331 I 33 l .... An underlying pattern can 
be identified in the two sequences; some call it the 
ABBA pattern (not to be confused with the 1970s 
Swedish pop group). The underlying pattern can cer
tainly be viewed in an ABBA way, but that is not 
really the point of doing patterning activities. Being 
able to recognize the ABBA pattern is of dubious 
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benefit to the student or society. What can be of ben
efit is the student becoming comfortable with the 
processes of making and testing hypotheses when 
searching for mathematical patterns. 

Having said this, nevertheless, some identification 
of underlying patterns should be pursued to assist 
students in generalizing. For example, it is useful to 
a point for students to recognize that the sequences 
Red Yellow Yellow Red Red Yellow Yellow Red ... 
and 133113311331 ... have something in common
even though one involves color and the other involves 
number. One way to describe what they have in com
mon is to call it the ABBA pattern. 

Although the mental process of searching for and 
identifying patterns is hard-wired in us, the language 
associated with that process is not. Students need to 
learn language descriptors for a process they can do 
naturally. For this reason, it is good pedagogy for 
teachers to make use of things that are familiar to 
students to help them understand the language de
scriptors. Nonmathematical items such as shoes and 
teddy bears are appropriate contexts for developing 
Kindergarten and Grade 1 students' understanding 
of language. However, once they understand the 
meaning of such words as pattern, patterning activi
ties should involve reasonable to significant math
ematics and serve two important purposes: (1) help
ing students learn mathematics and (2) helping 
stimulate the fundamental thinking process of pat
terning so that it can grow in depth and scope. 

Patterning activities should be integrated with 
other strands of the mathematics curriculum. This 
can be done in two ways: (1) using patterns to learn 
concepts and skills from other mathematics strands 
and (2) solving patterning problems that involve con
cepts and skills from other strands. Using patterns to 
help students learn concepts and skills from other 
strands of the curriculum can be considered an au
thentic use of patterning. Three examples follow. 

Early years children learn about odd and even num
bers. Patterning can be used to help them understand 
these kinds of numbers in an activity that involves 
using actual objects and the symbols for numbers. 
For each represented number, children could be asked 
to connect all of the objects two at a time (make pairs) 
in some way (line segments are used in the diagram). 

Figure 3 

1 2 3 4 5 

• ..... ...... ...... ...... 
etc. 

• ...... ...... 

• 
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Children then could be asked to look for a pattern. 
With discussion, they should come to the conclusion 
that the numbers 2, 4, 6, . .. always can be paired 
while the numbers I, 3, 5, ... always have an un-
paired object left over. All that remains 
is for the teacher to attach the word even to the 
numbers 2, 4, 6, ... and the word odd to the numbers 
1, 3, 5, .... 

Middle years students learn about integer multi
plication. Patterning can be used to help them under
s�and that a negative number multiplied by a nega
tive number equals a positive number. To use 
patterning for this goal, students must first under
stand that a positive number multiplied by a negative 
number equals a negative number. This understand
ing can be developed by viewing the matter in terms 
of "I owe ... " (for example, 2 x -3 can be inter
preted as "I owe each of 2 friends 3 dollars. How 
m�ch �o I owe in all?"). This approach is inappro
pnate m the case of a negative number multiplied by 
a negative number because there is no such thing as 
a negative group in mathematics (though there can 
be groups of people who are negative toward some
thing, but that is an entirely different thing). Once 
students understand that a positive number multiplied 
by a negative number equals a negative number, a 

Figure 4 

3 x-3 =-9 

2 x-3 =-6 

1 x-3 =-3 

0 x-3 = 0 

-1 X 3 =? 

situation such as the one 
shown in Figure 4 can be 
used for the case of a nega
tive number multiplied 
by a negative number. 
Students would need to 
look for a pattern in the 
results (for this ex
ample, the answer to the 
multiplication gets big-
ger by 3 each time). 

Patterning can be used to help students under
stand geometry terminology. For example, a teacher 
can display two collections of shapes (as shown 
in Figure 5), ask students to look for a pattern 
and then provide a definition of a trapezoid. 
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One pattern is that trapezoids have four sides, one 
pair of opposite sides is parallel and the other pair is 
not parallel. 

Figure 5 

\\____/; I I 

LJ ov 
These are trapezoids These are not trapezoids 

Having students solve problems that involve pat
terning and concepts and skills from other strands is 
the other way to integrate patterning within the math
ematics curriculum. For some of these problems, 
teachers can pay attention to additional matters such 
as constructing tables and using systematic ways to 
look for patterns in numbers. Many problems are 
possible. Mathematics curriculum documents con
tain good examples of such problems. 

The problem presented below is different from the 
typical ones. The mathematics content involved in 
the pattern is around the Kindergarten/Grade 1 level, 
but the problem is likely to challenge the reader. The 
answer is not included here. The reader is invited to 
e-mail the author at 
j.ameis@uwinnipeg.ca 
after thinking about 
the problem for a 
while. 

The numbers in 
each row are derived 
from the numbers in 
the row above in the 
same way. What is the 
next row of numbers 
(the eighth row)? 

1 

1 1 

2 1 

Figure 6 

1 2 1 1 

1 1 1 2 2 1 

3 1 2 2 1 1 

13112221 
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Connecting Probability 
and Geometric Progressions 

David R. Duncan and Bonnie H. Litwiller 

Geometric progressions is an important concept used in many mathematical applications. Probabil
ity is a source of significant examples of this type of 
progression. Consider the following situation: Greg and Joel, 
beginning with Greg, alternately roll a fair hexahedral 
die. The first one to roll a 6 wins. What is the prob
ability that Greg wins or that Joel wins? 

First consider Greg. He will win if one of these 
events is satisfied: 
• Event 1: Greg rolls a 6 on the first try. 
• Event 2: Greg and Joel both fail to roll 6s on the 

first try. Greg rolls a 6 on his second try. • Event 3: Greg and Joel both fail to roll 6s on the 
first two tries. Greg rolls a 6 on his third try. 

• Event (n + 1 ): Greg and Joel both fail to get 6s on 
the first n tries. Greg rolls a 6 on his (n + 1) try. 
The probabilities of these distinct events are 

• Event 1: 1/6 
• Event 2· 5. • 5. • l = (5.)2 

• l "6 6 6 6 6 
• Event 3· (5. • .2) • (5. • 5.) • l = (.5.)4

• l "66 66 6 6 6 
• Event (n + l): (�)2" • i 
Because these events are mutually exclusive, the 
probability that Greg wins is the sum of the separate 
event probabilities. 
P(G) = g + � + i + (j�y O i + ... + (�)" • i + ... 

_ l ( 25 (25)2 (15.)" ) -6 I + 36 + 36 + ... + 36 + .. . 
- l (___L_ ) 
-6 1 -� 

=¼( J ) 
36 

- l . .1Q 
-6 II 

= _Q_ "'= 0 56 1 I 
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Recall that if 
S=I+r+r2+r3+ 
then 
rS = r + r2 + r3 + r4 + 
Consequent! y, 
S-Sr= 1 
S(I- r) = 1 
S= ...l_ I-r· 

We will next compute the probability of Joel's 
winning in two ways. 
Method 1 

• Event I: Greg fails on his first roll, and Joel rolls a 
6 on his first try. 
• Event 2: Greg fails twice and Joel fails once to 

roll a 6. Joel then rolls a 6 on his second try. 
• Event 3: Greg fails three times, and Joel fails twice 

to roll a 6. Joel then rolls a 6 on his third try. 
P(J) = G) . g + GY . ¼ + (;Y . ¼ + ... 

= i. ¼ ( l+(�Y +(if+···) 
= .2... ( l + 25. + (15.)2 + ···) 36 36 36 
-...5....(1 1 ) -36 -I-is 
=_.5_. 36 

36 11 
= .2..."' 0.44 11 

Method 2 

-}6 

Because only two disjoint outcomes are ultimately 
possible, their probabilities must have a sum of 1. Since P(G) = 6/11, P(J) must be 5/ 1 I. 

Now, remove the requirement that Greg and Joel 
must both perform the same activity. Let Greg roll a 
die, hoping for a 6, and let Joel flip a fair coin, hop
ing for a head. Find the probability of Greg winning 
or of Joel winning. 
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P(G) = l + / 1.1) l + { 1.1)2

• l + 6 '626 '62 6 ... 

-l + (J_) • l + (J_)2 

• l + -6 12 6 12 6 ... 

=¾(
1 �-i) 

-1. 12 
- 6 11 

_ _l -11 

12 

Note that Greg's probability is less than 1/2 even though he goes first. This is because his winning outcome is much less likely than Joel's. 
P(J) = I -2/11 = 9/11 

As a further refinement of this situation, suppose that Greg's winning outcome has probability p
1
, while Joel's winning outcome has probability p

2
• The probabilities that they do not win in any given try are, respectively, q1 and q2 

where q1 
= l -p1 

and q2 = 1-pr Then, P(G) =P i + (qi q2) P i + (q1 %)2 P i +··· 
= P i [I + (qi q2) + (qi q2)2 + · · .] 

P(J) 

=pl (l-�1 q) 
= -.----�P�1 _ 1-ql % 
= 1- P1 1 -q i q2 

= l -q. q2 -P i . 1 -qi q2 What must be the relationship between p I and p2 to make this overall sequence a fair game? The fair game condition would require that 
P i =l -q 1 q2 -P 1 1-q,% l-ql q2 P i = I -q i q2-P 1 2p, = I -(1 -p)(l - Pi) 2pl = I -[l -P 1 - Pi+ P i P2] 2pl =p. +p2-P 1 P2 P i - P2 + P i Pi= 0 

If 
I P i =6, 

then 
i-P2 + (i) P2= O; -ip

1
= -{ P2 = ½. 

Joel's event must be equivalent to drawing a specific card from a deck of five cards. 
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To extend this situation one more step, let Nadine enter the game as the third player in order. On any given trial, Greg, Joel and Nadine have winning probabilities of, respectively, pl ' p2 
and p3

, whereas q 1 , q2 and q3 
are their respective probabilities of failing on any given trial. In this expanded setting, P(G) = P i+ (ql q2 q3) P i + (q l q2 q3)2 P, +. · · = pJI + q i q2 q3 + (q l q2 q/ + ... ) 

= p, C1-q!%%) 
= P i I -q• q2 q3

. 
P(J) = q l p2 +(q l q2 q3)ql p2+(ql q2 q/q1 p2+ ... = q 1 P2 (I+ q 1 q2 q3 + (qi q2 q3)2+ · · .) 

= q.p/1 -q.\2 q) 
- q1P2 - l -qi q2 q3

. 
P(N) = qi %P3+ (q. q2 q3) ql q2 p3+(q. q2 q/q. %P3 + • • • = ql q2 p3 (l +ql q2 q3 +(ql q2 q3)2

+ ... ) 
= qi q2 P3 C1 -q� q2 q) 

- q1 q2 A -l-ql q2 q3
· 

Because exactly 1 person must ultimately win, the relationship P(G) + P(J) + P(N) = 1 must hold . To verify this algebraically, 
P(G) + P(J) + P(N) = pl +ql p2+ql %P3 (l -q)+ql (l-%)+q1 % (1-%)_ l-q 1 q2 % l-q,q2 q3 l -q I + q I - q I q 2 + q I q 2 - q I q 2 q 3 - } - q I q 2q 3 = 1. l-q l q2 q3 l-q.%% Suppose, for instance,  that Greg rolls a die (hoping for a 6). Joel flips a coin (hoping for a head) and Nadine draws a card from a standard deck of 52 cards (hoping for a heart). Then 

P - l- p -l• p -ll -l I - 6• 2 - 2• 3 - S2 - 4· 
I I I P(G) - _ i5 _ i5 _ 1 48 _ s 

= l -2 • l. ! -1-JJ -JJ -6 • 33 -33 · 
6 2 4 48 48 � • � 5 48 20 P(J) = 6 � - = 12• 33 = 33 . 

48 � · ! · .!. 5 48 5 P(N) -6 2 4 - • _ -� -48 33 -33 . 
48 

Challenges 

I. Compute these tyres of probabilities using other situations. 2. Generalize this problem to n players. 3. Find other situations in which geometric progressions can be productively employed. 4. For three players, what must be the relationship between p
1
, p

2 
and p

3 
to produce a fair game? 
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Pigeonholes and Mathematics 

Sandra M. Pulver 

The Pigeonhole Principle, also known as the 
Dirichlet Principle, states the following: if .xy + l pi
geons are divided evenly into y holes with x pigeons 
in each hole, then at least one hole must hold x + l 
pigeons. For example, if 20 I pigeons (xy + l) are 
divided evenly into 100 pigeon holes (y), then there 
are 2 pigeons (x) in each hole, except one in which 
there must be 3 pigeons (x + l ). (Even if the pigeons 
are not divided evenly into the pigeonholes, the prin
ciple still holds true.) 

Suppose there are n holes with at most x pigeons 
in each hole. Then, the total number of pigeons would 
be at most xn. However, if there are xn + l pigeons, 
then at least one hole must hold more than x pigeons. 

Let us see how we can use the Pigeonhole Prin
ciple to solve other problems of the same nature. 

Problem 1 

A sack holds black marbles and white marbles, 
identical in all ways but color. A marble is removed 
without looking into the sack. How many times must 
this be done to be sure that two marbles of the same 
color will be removed? 

Solution 1 

In this case, the pigeons are the marbles drawn, x, 

and the pigeon holes are the colors, y, of the marbles. 
Therefore, the question becomes how many pigeons 
(xy + I) must there be to ensure that two pigeons (x + 

1) of the same y color end up in one of the holes? 
The answer is 3. 

Problem 2 

Given any 12 integers, show that 2 of them can be 
chosen whose difference is a multiple of 11. 

Solution 2 

We have only 11 slots or pigeonholes. In a mod 
11 system, all integers fit the system in this manner: 

0 1 2 3 4 5 6 7 8 9 10 

0 I 2 3 4 5 6 7 8 9 10 
I 1 12 13 14 15 16 17 18 19 20 21 
22 23 24 25 26 '27 28 29 30 31 32 
33 34 35 36 37 38 39 40 41 42 43 
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The top line of the chart shows the value of the 
remainders if the number 11 is divided into each in
teger. The difference of any 2 integers in a vertical 
column is a multiple of 11. Let the 11 vertical col
umns be the pigeonholes (y) in which all integers 
belong. Because there are (xy + I) = 12 integers, or 
pigeons, 2 of them (x + I) must belong to the same 
column. Hence, there must be 2 numbers whose dif
ference is a multiple of 11. 

Problem 3 

Given 8 different natural numbers, none greater 
than 15, show that if we take the (positive) differ
ence between pairs of these numbers, at least 3 of 
these differences will be equal. 

Solution 3 

From the 8 natural numbers selected, there are 
28 = 

8
C

2 
differences one can produce. The premise 

that these 8 natural numbers can be no greater than 
15 determines that there are only 14 possible differ
ences (I through 14). These 14 possible differences 
serve as the pigeonholes. If the 28 differences pro
duced by the 8 selected numbers are placed into these 
14 pigeonholes, at least 3 of the 28 must fall into one 
of the holes because, in this case, there are pigeon
holes that have special properties. For example, out 
of the 8 numbers selected, because the greatest num
ber is 15, the difference, 14, can be produced in only 
one way (that is, 15- I= 14). This limits the pigeons 
that can belong to that pigeonhole to I. Then there 
are 27 differences to be divided up among 13 pigeon
holes, forcing one of the pigeonholes to carry at least 
3 pigeons. Note that the difference 13 can be produced in 
only twoways(that is, 15-2= 13 and 14-1 = 13), 
thus further limiting the pigeons that can belong to 
hole 13 to 2. 

Application of the Pigeonhole Principle is not 
limited to any one field of mathematics. Regardless 
of the field-be it arithmetic, combinatorics or 
geometry-the difficulty in applying this principle 
lies only in determining which are the pigeons and 
which are the pigeonholes. Once these can be identi
fied, the solution is arrived at through elementary 
reasoning. 
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A jeweler had three clocks in his shop for repairs. In the test he always 
performed after repairing a clock, he found that one clock was now keeping 
perfect time, one was gaining 1 minute every 24 hours and one was losing 
1 minute every 24 hours. At 9:00 on March 19, 1998, he set all three clocks 
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to show the correct time. When would the three clocks again show the correct 
time if they were kept running at the rates they had shown in the test? 

Find a positive integer t such that s2 
- t2 is a prime number and s = 14. 
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The Place of Games in 
the Teaching of Mathematics and 

the Place of Numero Among 
Available Mathematics Games 

Frank Drysdale and Brian McGuiness 

Is playing games a waste of time in a mathematics 
lesson? 

Obviously, it depends on the game. Philosophi
cally, however, is there a place for games in the math
ematics curriculum? 

Doug Clarke (quoted in "Early Maths Games Pay 
Off' 2000) and John Gough (2000) have recently 
argued persuasively for a change in our approach to 
mathematics teaching. Internationally, they are not 
alone, especially after mathematics educators have 
looked at the results of the Second International 
Maths Study (SIMS) and the Third International 
Mathematics and Science Study (TIMSS). 

The Japanese system produced the best results in 
SIMS and was also very prominent in TIMSS. How
ever, it also resulted in significantly negative attitudes 
toward mathematics, among students and teachers 
alike. The Japanese system allocates much more time 
to mathematics than does Australia, for instance, in 
several ways: 

• Longer mathematics periods, in elementary 
schools especially 

• Six-day school weeks 
• Large amounts of homework 
• The majority of students receiving private tuition 

outside school 

Although there is no real evidence from these stud
ies that one teaching method yields better results than 
another, there seems to be no doubt that, when more 
time is allocated to the subject, results improve. How
ever, both SIMS and TlMSS reveal a clear negative 
correlation between performance and attitude: in
creased time allocation results in higher achievement 
but also causes students to be less confident and more 
antagonistic toward the subject. 

In England, the National Curriculum that came 
into being after SIMS and before TIMSS placed a 
greater emphasis on science, especially at the primary 
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level, with an average of 15 minutes more per week 
spent on science and 15 minutes less on mathemat
ics. The subsequent TIMSS results showed that stu
dents' mathematics performance had deteriorated 
whereas science performance had improved. But even 
more interesting was a post-TIMSS survey that 
showed a rise in attitudes toward mathematics and a 
corresponding fall in attitudes toward science. 

This negative correlation between attainment and 
attitude suggests that a curriculum placing greater 
emphasis on mathematics will almost inevitably 
result in widespread feelings of failure, lower 
self-confidence and more negative attitudes-with 
students much more ready to give up mathematics 
in favor of something less demanding. 

It came, then, as no surprise when England's min
ister for education announced early in 2000 that math
ematics was to be a national priority, with all stu
dents having at least an hour per day but, significantly, 
not "more of the same." In an attempt to break the 
negative correlation between attainment and attitude, 
he stated that they needed more and better mathemat
ics games. 

In Australia, Judy Anderson ( 1995a) said, 

Positive attitudes to learning mathematics must be 
fostered. Students will often develop a poor atti
tude if they see mathematics lessons as boring and 
if they continually fail assessments. Certainly, stu
dents need to become competent in carrying out 
basic numerical operations, but if these procedures 
are rehearsed daily, using the same teaching strat
egies, then it is not surprising that many students 
will describe mathematics lessons as boring. 
A \'ariety of teaching strategies should be used, 
including games. 

In a newspaper article titled "Early Maths Games 
Pay Off' (2000), Doug Clarke was quoted as saying, 
"Children whose mathematics skills were nurtured 
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by teachers as part of a structured but creative 
programme (including simple activities such as play
ing cards) did between 27 per cent and 79 per cent 
better than other students, in key [mathematics} 
areas." 

In "Mathematics: It's All a Game," Gough (2000) 
writes, 

Mathematics games are good, because children 
learn better if they enjoy what they are doing. 
Unlike worksheets, games present challenges at 
every turn, and feel worth doing. Apart from prac
tice in arithmetic when scoring, tactical problem 
solving, spatial thinking and probability, there 
are social and attitudinal benefits. Attention 
spans extend. Students learn "game manners": 
co-operatively taking turns, abiding by rules, 
playing fairly, and being gracious when they win 
or lose. It's all learning, and it's all fun and games. 
However, all games are not equal! Some so-called 

mathematics games are merely a different way of 
testing children on such things as tables and combi
nations. Instead of asking, "What is 6 times 4 ?", a 
teacher might throw two dice and see who is first to 
say the product or sum of the numbers that come up. 
The better students will still win, and the weaker ones 
will still lose, with fear of failure and ridicule being 
reinforced. 

Other games go to the other extreme: the outcome 
is decided by chance alone. Although such games 
may provide educational or social benefits, they are 
ineffective mathematically. 

The element of chance is, however, important: it 
adds excitement, introduces elementary probability 
and allows the less able player to be successful, at 
least occasionally. (Psychologists tell us that occa
sional rewards are, in fact, a more effective stimulus 
than rewarding every perfonnance.) It is obvious, too, 
that no one enjoys playing games in which they seem 
to have no chance of success. 

If a mathematics game is to serve its purpose, it 
needs to be 
• enjoyable to the point that children are enthusias

tic about playing it, 
• constructed in such a way that the more skillful 

player (the better mathematics student) wins on 
the majority of occasions but not always, and 

• useful in providing opportunities to teach and re
inforce specific elements of mathematics. 
This is how Numero has established itself

throughout Australia and, increasingly, around the 
world. Children and adults of all ages and all 
numeracy levels love playing Numero. School prin
cipals have made comments such as "Our children 

52 

love rainy days because they can stay inside at lunch
time and play Numero!" 

Although the game's element of chance means that 
weaker players sometimes win, the better mathemat
ics students will do so more often. In Western Aus
tralia-where there is a weekly newspaper column, 
"Numero Challenge," in the West Australian '.s ED 
Magazine and an annual Interschool Numero Chal
lenge-some schools have developed a reputation for 
outstanding performances and success. 

Teachers continue to be amazed by how Numero 
enhances their work in the classroom, speeding up 
students' acquisition of basic numeracy skills and 
giving them the perfect tool for coping with and ex
tending a wide range of abilities. Indeed, as one prin
cipal said, "Numero transforms the attitudes of stu
dents, not just towards mathematics, but towards 
school as a whole." One classroom teacher enthused, 
"My children do more arithmetic calculations in a 
15-rninute game of Numero than they do in a week 
of traditional [mathematics}." 

It is no surprise then to read from W. Edwards, 
Numeracy Consultant for the Royal Boroughs of 
Windsor and Maidenhead in the United Kingdom, 
"Children really enjoy playing Numero without 
realising they are practising mental calculation strat
egies. To them it is just a great game, while teachers 
are finding that Numero can play a key role in achiev
ing the mental calculation abilities required by the 
latest National Numeracy Project." 

In Western Australia, A. Newhouse (a Mathema
tical Association of Western Australia committee 
member) says, 

I have used Numero with students for six years. 
When played regularly, it becomes a strategy for 
teachers to develop the number outcomes from the 
Curriculum Framework. Concepts such as frac
tions can be easily introduced without the anxiety 
which often accompanies this aspect of mathemat
ics. Numero is a strategy game, and so it is ideal 
for developing lateral thinking skills, achieving 
confidence and self-motivation for their learning. 
Students really enjoy playing Numero. 
Gough (2000) refers to "the latest math game rage 

from the US" that had been highlighted in recent TV 
programs. While acknowledging that children enjoy 
these games. he goes on to say that "the novelty wears 
off quickly. and waiting for your turn is very time 
consumin!!. The materials are very expensive and not 
easy for children or parents to find." He continues, 
'"All the ad\'antages of [these games] are contained 
in an Australian card game, Numero, that practises 
arithmetical thinking, using a special pack of mun
her cards and an easy rummy-like playing method.'" 
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In light of her earlier comments about the need 
for fostering positive attitudes while improving 
children's numeracy, Judy Anderson ( 1995b ), review
ing Numero for the journal of the Mathematical As
sociation of New South Wales, writes, 

Numero is an innovative card game, designed to 
provide students with practice in basic number 
facts, as well as allowing them the opportunity to 
develop strategies and problem solving skills. 
Numero provides students with a motivating way 
to practise their basic number facts, using mental 
computation, rather than relying on a calculator. I 
believe that all junior secondary students, as well 
as primary students, will benefit from playing this 
game as it would certainly enhance their ability to 
calculate mentally, develop problem-solving strat
egies, and make quick decisions. 

Let's return to my opening question: Is playing 
games a waste of time in a mathematics lesson? No-
far from it! In fact, it seems to be the best way to 
break the relationship between improving numeracy 
and increasing negative attitudes toward mathemat
ics. As C. Serravite, principal of Amaroo Primary 
School in Collie, Western Australia, says, "Numero 
is the highlight of every mathematics lesson. It chal
lenges all students, �s it allows them to progress at 
their own pace, as well as having mathematical fun. 
Numero has become an integral part of the curricu
lum." 

Numero is useful at all levels of primary school 
and lower secondary school. It can be easily learned 
even by five-year-olds. Although the few simple rules 
(which are set out clearly in the instructional guide 
and video) never vary, the advanced levels can be 
extended to be more suitable for secondary and even 
tertiary students, as well as teachers. Numero also fits 
into the nonacademic stream for upper secondary 

students, where something is needed to help improve 
the numeracy levels of students who are bored of and 
antagonistic toward the methods that have failed them 
throughout their earlier years. 

Numero allows all students in a class to play at levels 
commensurate with their ability. Within seconds of 
the packs being distributed, with a minimum of prepa
ration, students are engaged in the game. The teacher 
is free to move around the class, helping when nec
essary and motivating students to extend themselves. 

Numero can be used to teach and practise all ba
sic arithmetic operations, fractions, decimals, per
centages, powers and indices. Children often find 
themselves mastering such things as multiplying 
negative numbers long before they are expected to 
do so. 

As one school principal said to his staff before a 
Numero professional development workshop, "Be 
warned! Numero is addictive!" 

For more information about Numero, contact 
Ernest Klassen, a mathematics consultant and a 
teacher at Woodlawn School in Steinbach, Manitoba, 
at emestk@mb.sympatico.ca. A student from Aus
tralia brought N umero to Ernest Klassen' s classroom, 
and Klassen has demonstrated the game to teachers 
in Manitoba and Alberta. 
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The two sides of a rectangle are a metres and b metres. 
If each side is increased by 10 percent of its original 
length, by what percentage does the area increase? 
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MATHEMATICAL PROBLEM SOLVING FOR THINKERS 

Ages of John's Three Daughters 

Klaus Puhlmann 

My friend John and I were traveling on the train 
from Edson to Vancouver to attend a mathematics 
conference. Because we had the compartment to our
selves, we could talk about anything and everything. 
We discussed the math sessions we intended to at
tend, but soon our conversation entered the personal 
realm. 

John spoke about his family and how proud he was 
to be the father of three daughters. "How old are your 
daughters?" I asked John. Rather than answering my 
question readily, John instead created a mathematical 
problem for me-with the offer to pay for my meal 
if I could tell him how old his three daughters are. 
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John stated, "I have three daughters. The product 
of their ages is 36; the sum of their ages is my house 
number. How old are my daughters?" I thought for a 
while and said, 'This isn't enough information to 
answer your question." John said, "You are right. 
I forgot to tell you that my oldest daughter and I went 
to the hospital last night to visit my mother-in-law." 
This information did not help me at first, but after 
some brooding and racking my brain, I recognized 
its importance and was able to determine the ages of 
John's three daughters. 

Do you know how old the three daughters of my 
friend John are? 

delta-K. Volume 38, Number 2, May 200 I 



HISTORICAL CORNER ___________ _ 

Unsolvable Problems: Trisection of an Angle 

Klaus Puhlmann 

We have all learned in school how easy it is to 
bisect any angle with a straightedge and compass. 
However, trisection using a straightedge and com
pass is impossible for some angles, as P. L. Wantzel 
proved in 184 7. 

Certain specific angles can be easily trisected, but 
there is no general procedure that pennits the con
stt-uction, with Euclidean tools, of an angle that is 
exactly one-third of a given arbitrary angle. For ex
ample, because a 30° angle is easily constructed us
ing only a straightedge and a pair of compasses, a 
90° angle can be trisected. 

We know that an obtuse angle can always be divided 
into one or more right angles and an acute angle. Hence, 
the problem of trisecting an arbitrary angle can be 
reduced, without loss of validity of the generality of 
the claim, to the task of trisecting an acute angle. 

Let us assume we have an angle 30 = 60°, which 
is to be trisected. From our knowledge of trigonom
etry, we know that cos 30 = 4 cos3 0 - 3 cos0 is a 
trigonometric identity. As we insert cos 30 = 60° = 1/2, 
and substitute cos0 = y 12, we get 3 cos0 = 3yl 2 and 
4 cos30 = y3/2, from which the irreducible cubic equa
tion follows: y3 

- 3y - 1 = 0. The roots of this cubic 
equation cannot be constructed using Euclidean meth
ods. We must therefore conclude that cos 20° is not 
constructible. Because the angle 60° cannot be tri
sected, we have thus produced one example that al
lows us to conclude that it is impossible to trisect an 
arbitrary angle using a straightedge and compass only. 

The first attempts to trisect a general angle arose 
so long ago that historians are unable to find a record. 
Comfort with bisecting angles led naturally to at
tempts at trisecting angles. Only after many attempts 
at trisecting a general angle, restricted of course to 
the classical rules and tools, was it apparent that some 
other mathematical principles blocked the success of 
this endeavor. 

Hippias of Elis, who lived in the fifth century B.C., 
was one of the first to attempt to solve the trisection 
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problem. Frustrated, he devised a curve called the 
quadratrix, which allowed him to give an exact solu
tion to the problem. However, this was not achieved 
with the use of a straightedge and a compass alone; 
it involved what is often referred to as a nonclassical 
solution. The history of the trisection problem re
veals other nonclassical solutions. 

Many people have been drawn to this powerful 
and fascinating problem, all attempting to solve it 
only to discover that trisecting a general angle using 
only a straightedge and compass is impossible. The 
hundreds of attempts in the past and present have 
shown that it is impossible to find, by a straightedge 
and compass construction, a root x of the trisection 
equation. This and the other unsolvable problems, 
when stripped of all implications, are hardly worth 
more than passing attention, but they have yielded 
fruitful discoveries in other mathematical fields. 

Archimedes, Niomedes, Pappus, Leonardo da 
Vinci, Diirer, Descartes, Ceva, Pascal, Huygens, 
Leibniz, Newton, Maclaurin, Mascheroni, Gauss, 
Steiner, Charles, Sylvester, Kempe, Klein, Dickson
all of these, and hundreds more, have attacked the 
trisection problem directly or created mathematics 
by which substantial advances could be made toward 
a full understanding of the situation. Those who are 
still determined to show that the trisection of any 
angle is possible using only a compass and straight
edge are well advised to first examine the existing 
proofs to see if mathematical mistakes have been 
made. 
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