The Ancient Problem of Trisecting an Angle

Sandra M. Pulver

The problem of trisecting an angle dates back to the ancient Greeks, and as early as the fifth century B.C., Greek and Muslim geometers devoted much time to this puzzle. This problem is one of the three famous geometric problems of antiquity, which also include doubling the cube and squaring the circle. These three great construction problems of geometry could not be solved using an unmarked straightedge and compass stone, the only implements sanctioned by the ancient Greeks. But it was not until the 19th century that advances in the algebra of the real-number system allowed us to make instruments that made possible these constructions that were impossible with the straightedge and compass alone.

The problem of trisecting an angle is the simplest of the three famous problems to comprehend, and because the bisection of an angle presented no difficulty to the geometers of antiquity, there was no reason to suspect that its trisection might prove impossible.

The multisection of a line segment with Euclidean tools is a simple matter, and it may be that the ancient Greeks were led to the trisection problem in an effort to solve the analogous problem of multisection of an angle. Or, perhaps more likely, the problem arose in efforts to construct a regular nine-sided polygon, where the trisection of a 60° angle is required.

The angle trisection problem is not entirely unsolvable using the classical method of compass and straightedge. The Greeks knew this, but they were searching for a generalized construction (as in angle bisection) that could be used to trisect any angle.

Actually, an infinite number of angles can be trisected. Among this group are angles whose degree measure equals $360 / n$, where n is an integer not evenly divisible by 3 . For example, a 90° angle can be trisected because n in 360/n is 4, which is not evenly divisible by 3 . Figure 1 shows a trisected 90° angle. The trisection of the 90° angle can be done quite simply using the following method:

Construct a 90° angle, $\angle A O B$. Then, draw arc $A B$. Without changing the size of the compass opening, place the compass at point B and draw an arc intersecting arc $A B$ at point C. Line $O C$ is the line trisecting right angle $\angle A O B$. Line $O D$ also trisects
right angle $\angle A O B$ using the same method outlined above and placing the compass at point A. Line $O D$ also bisects 60° angle $\angle C O B$.
However, an infinite number of angles cannot be trisected by means of compass and straightedge. These are angles whose degree measures are equal to $360 / n$, where n is an integer divisible by 3 . For example, a 60° angle cannot be trisected because n, in $360 / n$, would be 6 , which is divisible by 3 . To prove that general angle trisections are impossible with just an unmarked straightedge and compass, we use the special case of a 60° angle (see Figure 2). Suppose $\angle C O A=60^{\circ}$ and $\angle B O A=20^{\circ}$. For the proof, we use the following trigonometric identity:

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta
$$

Let $3 \theta=60^{\circ}$ and let $x=2 \cos \theta=2 \cos 20^{\circ}$. Then,

$$
\begin{aligned}
& \cos 60^{\circ}=\frac{x^{3}}{2}-\frac{3 x}{2} \\
& 2\left(\frac{1}{2}\right)=\left(\frac{x^{3}}{2}-\frac{3 x}{2}\right) 2 \\
& 1=x^{3}-3 x \\
& x^{3}-3 x-1=0 .
\end{aligned}
$$

This cubic equation is irreducible. Thus, its roots cannot be constructed with a straightedge and compass. From this, we can conclude that the construction of trisecting the general angle cannot be performed with straightedge and compass alone.

Figure 1
Trisection of a 90° Angle, $\angle A O B$

An ingenious method for trisecting angles was presented by Archimedes, who used the marking of two points on a straightedge to mark off a line segment (not using the classical rules of compass and straightedge). Figure 3 shows a trisected 60° angle. Archimedes' method is as follows. Draw $\angle A E D$. Through the angle, draw a semicircle with a radius the same length as $D E$. Extend $D E$ to the right. With the compass open to the length of radius $D E$, hold the legs of the compass against the straightedge and hold the straightedge so it passes through point A. Adjust the straightedge until the points marked by the compass intersect points B and C (where $B C$ is equal to $D E$). Arc $B F$ is $1 / 3$ of arc $A D$. Because central angles are congruent in degree measure to their

Figure 2
Attempted Trisection of a 60° Angle, $\angle C O A$

intercepted arcs, $\angle B E F$ is $1 / 3$ of the degree measure of $\angle A E D$.

Another method of trisecting an angle is using the conchoid of Nicomedes. Figure 4 helps to define conchoid.
Nicomedes took a fixed point O, which is d distance from a fixed line $A B$, and drew $O X$ parallel to $A B$ and $O Y$ perpendicular to $O X$. He then took any line $O A$ through O and on $O A$ made $A P=A P^{\prime}=k$, a constant. Then the locus of points P and P^{\prime} is a conchoid. The equation of the curve is

$$
\left(x^{2}+y^{2}\right)(x-d)^{2}-k^{2} x^{2}=0 .
$$

To trisect a given angle, let $\angle Y O A$ be the angle to be trisected. From point A, construct $A B$ perpendicular to $O Y$. From point O as pole, with $A B$ as a fixed

Figure 3
A Trisected 60° Angle, $\angle A E D$

Figure 4
Conchoid of Nicomedes

straight line, $2(A O)$ as a constant distance, construct a conchoid to meet $O A$ produced at P and to cut $O Y$ at Q. At A, construct a perpendicular to $A B$ meeting the curve at T. Draw $O T$ and let it cut $A B$ at N. Let M be the midpoint of $N T$. Then $M T=M N=M A$. But $N T=2(O A)$ by construction of the conchoid. Hence, $M A=O A$. Hence, $\angle A O M=\angle A M O=2 \angle A T M=$ $2 \angle T O Q$. That is, $\angle A O M=2 / 3 \angle Y O A$, and $\angle T O Q=$ $1 / 3 \angle Y O A$.

Hippias of Elis wrestled with this problem and, realizing the inadequacy of the ruler-and-compass method, resorted to other devices. These involved the use of curves other than the circle. The one employed by Hippias was the quadratrix, so called because it serves as well for the problem of quadrature (squaring the circle) as for dividing an angle into three or more equal parts. The quadratrix of Hippias may be defined as follows (see Figure 5). Let the radius $O X$ of a circle rotate uniformly about the centre O from $O C$ to $O A$, with $\angle C O A$ forming a right angle. At the same time, let a line $M N$ parallel to $O A$ move uniformly parallel to itself from $C B$ to $O A$. The locus of the intersection P of $O X$ and $M N$ is the quadratrix.

Figure 5
Quadratrix of Hippias

In the trisection of an angle, X is any point in the quadrant $A C$. As the radius $O X$ revolves at a uniform rate from $O C$ to $O A, M N$ always remains parallel to $O A$. Then if $M N$ is one nth of the way from $C B$ to $O A$, the locus of point P (the intersection of $O X$ and $M N$) is one nth of the way from $O C$ around to $O A$. If, therefore, we make $C M=1 / 3(C O), M N$ will cut $C Q$ at a point P such that $O P$ will trisect the right angle. In the same way, by trisecting $O M$, we can find a point P^{\prime} on $C Q$ such that $O P^{\prime}$ will trisect $\angle A O X$, and so for any other angle. This method evidently applies to the multisection as well as the trisection of an angle.

I have cited only three of the most ancient methods. There are many other techniques for trisecting an angle using tools such as a tomahawk or a mira.

Ingenious mathematicians of recent times have developed original methods to trisect angles. Leo Moser of the University of Alberta trisected angles with the use of an ordinary watch. He discovered that if the minute hand passed over an arc equal to four times the measure of the angle to be trisected, the hour hand would move through an arc exactly $1 / 3$ the measure of the given angle to be trisected. Alfred Kempe, a London lawyer, developed a linkage method of folding parallelograms so that the two opposite sides cross.

Bibliography

Allman, G. J. Greek Geometry from Thales to Euclid. 1889. Reprint, New York: Arno, 1976.
Bold, B. Famous Problems of Mathematics; A History of Constructions with Straight Edge and Compasses. New York: Van Nostrand Reinhold, 1969.
Scott, J. F. A History of Marhematics, from Antiguity to the Beginning of the Nineteenth Century. 2d ed. London: Taylor \& Francis, 1975.
Smart, J. R. Modern Geometries. 4th ed. Pacific Grove, Calif.: Brooks/Cole, 1994.
Smith, D. E. History of Mathematics. New York: Dover, 1923.
Tuller, A. A Modern Introduction to Geometries. Princeton, N.J.: Van Nostrand, 1967.
Yates, R. C. The Trisection Problem. Baton Rouge, La.: Franklin, 1942.

