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Infinite quantities have perplexed mankind for 
thousands of years. To the caveman, the distance to 
the horizon was infinite. To the modem man, infi
nite is the size of the universe. Throughout man's 
existence, the concept of infinity has become so in
creasingly complex that some men have protested 
against the use of infinite magnitude in mathematics. 

In the late 19th century, Georg Cantor shed an 
enormous light on the concept of infinity. His work 
has given the subject an acceptability in mathematics. 

Georg Ferdinand Ludwig Philip Cantor was born 
in St. Petersburg, Russia, on March 3, I 845. By the 
time of his death 73 years later, Cantor had perma
nently changed the world of mathematics with his 
ideas on set theory and infinite sets. He was a revo
lutionary who held to his theories and the notion of 
the completed infinite in the face of strong opposi
tion. Mathematicians argued against Cantor, yet in 
the end, Cantor prevailed. Cantor's theories were 
shown to be logically sound and consistent under a 
certain set of axioms. 

The concepts Cantor introduced into set theory with 
his idea of transfinite sets changed the outlook of math
ematicians. Students of mathematics must understand 
the ideas of Cantor to truly understand their discipline. 

At the very heart of Cantor's theories lies the con
cept of cardinality or set equivalence. This concept 
rests on the fact that two groups need not be counted 
to be proven to have the same number of elements. 
One can attempt to establish a one-to-one correspon
dence between the two groups. If a one-to-one cor
respondence between the two groups can be set up, 
then they have the same number of elements. Thus 
Cantor defined set equivalence as follows: Two sets 
Mand N are equivalent if it is possible to put them, 
by some law, in such a relation to one another that to 
every element of each one of them corresponds one 
and only one element of the other. Mathematicians 
say that two equivalent sets have the same cardinality. 
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Cantor defined those sets that could be put into a 
one-to-one correspondence with the natural numbers 
as a denumerable or countably infinite set. Thus any 
set with a cardinality equal to that of the natural num
bers was called denumerable. 

In 1893, after Cantor established the different car
dinality of various infinite sets, he needed a notation 
to represent the different cardinalities. Because of 
his Jewish background, he chose the Hebrew letter 
aleph. Cantor defined aleph-null, X0, as the cardinal
ity of the natural numbers or positive integers. The 
aleph notation is the one used today to describe infi
nite sets. 

It is easy to establish that the set of integers is 
denumerable using elementary algebra. A one-to-one 
correspondence with the set of integers can be shown 
by simply rearranging them so that there is a defi
nite first element of a set such as 0, 1, -1, 2, -2, 3, 
-3, 4, -4, 5, -5, ... We see that the set of positive and
negative integers is as large or has the same cardi
nality as the set of natural numbers.

0, I, -1, 2, -2, 3 
t t t t t t 
I, 2, 3, 4, 5, 6 

Even though the set of even numbers is a proper 
subset of the natural numbers, it is equivalent to it in 
cardinality and is denumerable. We can set up a one
to-one correspondence between these two sets. 

1, 2, 3, ... , n,

t t t t t t 
2, 4, 6, ... , 2n, 

The set of odd numbers is also denumerable. 

I, 2, 3, ... , n, . . .  

t t t t t t 
I , 3, 5, ... , 2n - 1, 

Cantor used the existence of this equivalence as 
his definition of infinity, where he stated that an in
finite set is one that can be put into a one-to-one 
correspondence with a subset of itself. 
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Finding the cardinality of the set ofrational num
bers required a different approach. We see that an 
infinity of rational numbers can be "packed in" be
tween any two rational numbers. This means that the 
set of rational numbers is a dense set because no ra
tional number has an immediate successor. The set 
of positive integers is discrete because every element 
of the set has an immediate successor. The question 
is whether the set of rational numbers, which is dense, 
has the same number of elements (X0) as the set of 
positive integers, which is discrete. How can any
one put the rational numbers in a one-to-one corre
spondence when an infinity of rational numbers can 
be "placed in" between any two? 

For this proof Cantor constructed a two-dimen
sional array ofrational numbers. When zero is placed 
above the array, a list of all the rational numbers is 
formed. Cantor then proceeded to count the rational 
numbers. He drew arrows up and down the diago
nals of this array, effectively counting the rational 
numbers. This set up a one-to-one correspondence 
between the rationals and the natural numbers. 
Through this simple method Cantor showed the set 
of rational numbers to be denumerable. 

I 
-

2 l 4 5 

I I 
-

I I 

✓ .l' ✓ .l' 
.!. l l 4 2. 
2 2 

✓ 
2 2 2 

i ? ? 
I 2 3 4 5 

3 3 3 3 3 
✓ ? 

I 2 3 4 5 

4 4 4 4 4 

i ? 
.!. 1 l .i 2. 
5 5 5 5 5 

These fractions can be written as the set of two 
integers and then put into a one-to-one correspon
dence with the natural numbers as follows: 

1, 2, 3, 4, 5 
t t t t t 

(I, 1)(2, 1) (1,2) (1,3) (2,2) 

Therefore X0 is also the cardinal or transfinite num
ber for the set ofrational numbers. 

After these proofs, it seemed to the mathematical 
community that every infinite set was denumerable 
and that no set had a higher transfinite cardinal num
ber than X0• In 1874 with his paper "On a Property 
of the Collection of all Algebraic Numbers," Cantor 
revealed that a nondenumerably infinite set existed. 
The paper dealt with the cardinality of the set ofreal 
numbers. Cantor proved that the set of real numbers 
is not denumerable. 
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Cantor began the proof by establishing that a one
to-one correspondence existed between the open in
terval (0, I) and the set of real numbers using the 
function: 

(2x - 1) 
X -X

2 

y 

10 

·10 

Cantor then assumed that the set of all reals in (0, I) 
was denumerably infinite. This leads to the conclu
sion that a list can be formed pairing each natural 
number with one real number. Cantor established a 
hypothetical list pairing the set of real numbers be
tween zero and 1 and the set of natural numbers. He 
then listed a set of infinite decimals: 

l ➔ 0. a
1 

a
2 

a
3 

a
4 

2 ➔ 0. b
l 

b
l 

b
3 

b
4 

3 ➔ 0. c
1 

c
2 

c
3 

C
4 

This set should contain all the real numbers in the 
given interval, (0, 1 ). 

In his proof, usually known as the diagonal proof, 
Cantor found that he could define a real number z in 
(0, I) not on the list. He constructed a number that 
had as its n-th decimal place a number different from 
then-th decimal place of then-th number on the list 
and not equal to zero or nine, 

0. a; b;c; d; . . .  
This created a number z that could not be on the list. 
The number z differed in at least one decimal place 
with every number on the list. The elimination of 
zero or nine as choices for a decimal place negated 
the possibility of infinitely repeating decimals equal 
to zero or one. Thus, the open interval (0, I) could 
not be denumerable, and because the open interval 
(0, I) has the same cardinality as the set of real num
bers, the reals could not be denumerable. 
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Cantor named this cardinality aleph-one, X 1 • Mod
ern mathematicians usually call this cardinality C 
instead of aleph-one ( C for continuum, an open in
terval of real numbers). 

To show geometrically that the reals are 
nondenumerable, Cantor established an astonishing 
fact: there are as many points along an infinite 
(straight) line as there are on a finite segment of it. 

A B 

Each vertical line segment is perpendicular to the 
segment AB, thus ensuring not only that each verti
cal line segment will pass through the segment AB 
itself, but that it will only pass through one point on 
the semicircle. So we can match the points of the 
segment AB in a one-to-one correspondence with the 
points on the semicircle, thus proving that the seg
ment and the semicircle have the same number of 
points. 

Centre 

• ► 
Infinite line 

Now each line segment is drawn from the centre of 
the same semicircle to the line, again ensuring that 
each segment passes through only one point on the 
circle and only one point on the line. Thus, the points 
of the semicircle are now matched one-to-one with 
the points of the entire line. Therefore, since the fi
nite line segment and infinite line have both been 
put into a one-to-one correspondence with points on 
a semicircle, we can conclude that a finite line seg
ment and an infinite line have exactly the same num
ber of points. 

But was there a set with cardinality greater than 
aleph-one? Where could an infinite set with a higher 
cardinality lie? 
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With his proof of the nondenumerability of the 
continuum, Cantor created, in effect, a hierarchy of 
infinites. There is no infinite set with a cardinality 
that is less than that of the natural numbers (X0), and 
all sets that are not denumerable (have the same cardi
nality as the real numbers) have a higher level of in
finity than all the countable sets. At this point one 
may be wondering if any sets exist with a cardinal
ity that is greater than the real numbers. It may seem 
reasonable to presume that C (the cardinality of the 
real numbers) is the greatest possible cardinality. 

However, as Cantor himself soon discovered, it 
turns out that there are sets that are greater in cardi
nality than the set of real numbers. 

These sets are Power Sets, the set of all subsets of 
a given set. For example, the power set of the set {a, 
b, c} consists of the subsets {a}, {b}, {c}, {a. b}, 
{ a, c} and { b, c}, to which we must add the "empty" 
or "null" set { } and the set { a, b, c} itself. Thus, 
from the original set of three elements we get a new 
set of eight ( = 23) elements. In fact, Cantor concluded 
that the power set of any given set always has more 
elements than the original set. Cantor's theorem (as 
it is called today) shows that, given any set, we can 
always construct a set that has a greater cardinality. 

Cantor's theorem was proven, once again, by con
tradiction, for he first assumed that there is a largest 
infinite set, and then demonstrated that there must 
be one even larger (that is, the power set). 

LetXbe an arbitrary infinite set ( of any cardinality), 
which we can represent as X = { a, b, c, d, e, ... } . 
Now let us assume that the members of X can be put 
into a one-to-one correspondence with its power set, 
which can be represented by 

P(X) = { {e}, {a, b}, {b, c. e}, {a. c}, {a}, ... }. 

Such an arbitrary matchup would look something 
like: 

X P(X) 
a - {c, d} 
b - {a} 
C - {a, b, c, d} 
d - {b, e} 
e - {a, c, e} 

Now let us consider the different ways that a mem
ber of X could be paired with the subsets of X Some 
of the elements of X are matched with subsets that 
contain them. For example, here the element e is 
matched with the subset {a, c, e}, of which it is a 
member. Also notice that some of the elements of X 

are matched with subsets that do not contain them, 
such as the element d, which is matched with the 
subset { b, e}, of which it is not a member. 
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Let us consider the set of elements of X that are 
not matched up with subsets that contain them. This 
set, which we'll call S, is clearly a subset of X; thus, 
it must appear somewhere in our matchup listing 
above. However, what could the element X be that 
matches with S? It cannot be a member of S, because 
S was specifically constructed to contain only those 
elements of X that do not match up to the sets con
taining them. What happens if the element of Xthat 
matches up with S is not contained in S? Well, then 
it must be contained in S, again by the definition of 
S. Clearly, this is a contradiction. (The existence of 
this contradiction forces us to understand that no el
ement of X can be matched with this subset S.) This 
means that X and P(X) cannot be put into a one-to
one correspondence, thus indicating that they can
not have the same cardinality. Therefore, we can 
conclude that one set must be larger than the other. 
Because X cannot be put into a one-to-one correspon
dence with a proper subset of P(X), we can conclude 
that the cardinality of P(X) must therefore be larger 
than that of X. Hence, Cantor's theorem is indeed 
true and, as a result, there can be no "largest infin
ity" and the kinds of infinity are therefore infinite. 

It would seem to the observer that Cantor's set 
theory was an incredible success. But no one knew 
better than Cantor the imperfections in his theory. 
The problem with the theory that troubled Cantor 
most was his inability to prove that no aleph value 
existed between aleph-null and C. He searched his 
entire life for a proof, but died without ever formu
lating one. 

It is unsurprising that Cantor never created a suc
cessful proof for his theorem. In 1938, Kurt Godel 
demonstrated that Cantor's "Continuum Hypothesis" 
(that is, that C=X0) could not be disproved within 
the confines of set theory, (that is, that the Continuum 
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Hypothesis was relatively consistent with and did 
not contradict the axioms of set theory). In 1963 Paul 
Cohen demonstrated that the Continuum Hypothesis 
could not be proved from (and was independent of) 
the axioms of set theory. In other words, he proved that 
the negation of the Continuum Hypothesis ( C > X,) 
would also be consistent with the axioms of set 
theory. This means that two different systems can be 
set up, both valid, using the continuum hypothesis 
and its negation. 

Georg Cantor opened up whole new vistas in the 
world of mathematics. He engaged the minds of a 
whole generation with his concept of the infinite. 
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