A Related-Rates Problem

Ronald L. Persky

You try to avoid it, but occasionally it happens. That is, you construct a test problem so that the students can use a particular principle demonstrated in class. Then, a student, having no idea how to solve the problem, puts numbers together by happenstance and produces the correct answer. Consider the following problem:

Two roads are perpendicular. Car A is 6 miles from the intersection and is heading toward it at 39 miles per hour. Car B is 8 miles from the intersection and is heading toward it at 52 miles per hour. At this instant, how fast is the distance between them changing?
One student wrote, $\sqrt{39^{2}}+52^{2}$, which is 65 and happens to be correct.

This is a related-rates problem, and the standard procedure is to write $x^{2}+y^{2}=z^{2}$ and take the derivative with respect to time, that is,

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t} .
$$

After solving for $\frac{d z}{d}$ and substituting values, we can easily obtain the answer.

What made the student's answer work is that $\frac{52}{39}=\frac{8}{6}$ or, in general,

$$
\begin{equation*}
\frac{d x}{d t} / \frac{d y}{d t}=\frac{x}{y} \tag{1}
\end{equation*}
$$

The intent of this article is to show that, in this problem, the equation below is true given equation (1):

$$
\begin{equation*}
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(\frac{d z}{d t}\right)^{2} . \tag{2}
\end{equation*}
$$

First we establish two companion ratios. Starting with

$$
x \frac{d x}{d}+y \frac{d y}{d}=z \frac{d z}{d},{ }_{t}
$$

divide by

$$
y \frac{d y}{d}
$$

to produce

$$
x \frac{d x}{d t} / y \frac{d y}{d t}+1={ }^{z \frac{d z}{d}} /_{y \frac{d}{d}}^{y} \cdot{ }_{t}
$$

From equation (1), we can write

$$
y \frac{d x}{d t} / x \frac{d y}{d t}=1
$$

and use this in place of 1 above. This gives

$$
x \frac{d x}{d} / \frac{t}{t}+\frac{d}{y}+\frac{d x}{d} / t=\frac{d}{d}=\frac{d z}{d} / t=\frac{t}{d}=y \frac{d}{d t} . y
$$

Combine the left side,

$$
x^{2} \frac{d x}{d t}+y^{2} \frac{d x}{d t} / x y \frac{d}{d t}-z \frac{d z}{y} /{ }^{\frac{d t}{t}} / y \frac{d y}{d t}
$$

or

$$
z^{2} \frac{d x}{d} / t / x y \frac{d}{d}={ }_{y}^{z} \frac{d z}{d} / y \frac{d}{d}{ }_{t}^{d}, t
$$

which easily gives the first ratio

$$
\begin{equation*}
\frac{z}{x}=\frac{d z}{d t} / \frac{d x}{d t} \tag{3}
\end{equation*}
$$

Again start with

$$
x \frac{d}{d t}+x \frac{x}{y} \frac{d y}{d t}=z \frac{d}{d t} \quad z
$$

Divide by

$$
x \frac{d}{d} \quad x
$$

to produce

$$
1+\int_{x \frac{d y}{d t}}^{y \frac{d y}{d t}} / \underset{x \frac{d x}{d t}}{z \frac{d z}{d t}} /
$$

From equation (1), we can also write

$$
1=x^{x \frac{d y}{d t}} / y \frac{d x}{d t}
$$

and use this in place of 1 above to get

$$
x \frac{d y}{d t} / y \frac{d x}{d t}+y \frac{d y}{d t} / x \frac{d x}{d t}=z \frac{d z}{d t} / x \frac{d x}{d t} .
$$

Combine the left side,

$$
\left(x^{2}+y^{2}\right) \frac{d y}{d t} / x y \frac{d x}{d t}=z \frac{d z}{d t} /_{x \frac{d x}{d t}}^{d}
$$

or

$$
z^{2} \frac{d y}{d t} /_{x y \frac{d x}{d t}}=\frac{z}{x} / \frac{d z}{d t} / \frac{d x}{d t}
$$

which gives the second ratio

$$
\begin{equation*}
\frac{z}{y}=\frac{\frac{d z}{d t} / \frac{d y}{d t}}{} \tag{4}
\end{equation*}
$$

Now to establish equation (2). Start again with

$$
x \frac{d x}{d t}+y \frac{d y}{d t}=z \frac{d z}{d t}
$$

using equation (1),

$$
\left(\frac{d x}{d t} y / \frac{d y}{d t}\right) \frac{d x}{d t}+y \frac{d y}{d t}=z \frac{d z}{d t},
$$

multiply by

$$
\begin{aligned}
& \frac{d y}{d t} / y \\
& \left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(\frac{d y}{d t} z / y\right) \frac{d z}{d t}
\end{aligned}
$$

From equation (4),

$$
\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(\frac{d z}{d t}\right)^{2}
$$

Ronald L. Persky is a member of the math department at Christopher Newport University, a small university in Southeastern Virginia.

