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One of the joys of being a mathematics teacher is 
the excitement of being a student. Teaching concepts 
and solving problems with students provides many 
opportunities to see new relationships between con
cepts and to discover patterns that we have never 
noticed before. 

This article has grown out of discoveries that I 
made over a fairly extended period of time teaching 
an introductory-level university course entitled 
Higher Arithmetic. Most of the students were in the 
humanities, and many planned to be elementary 
school teachers. My discoveries grew out of a par
ticular topic-divisibility-but illustrate the discov
ery process that mathematics teachers engage in on 
a regular basis. The topic of divisibility was a part of 
a section of the course on number theory. In the text
book first employed, the authors presented or sug
gested ways of developing rules for divisibility by 
2, 3, 4, 5, 6, 8 and 9, along with mathematical justi
fication for some of these rules (Meserve 1981, 64--07). 
These rules and their justifications led me to wonder 
whether there was a general algorithm for divisibil
ity by a prime. I could have searched for written 
sources to find the answer but was drawn by the ap
peal of discovering the rules for myself. Of course, 
I was far from alone in this kind of experience; the 
need to discover and the compulsion to generalize 
are at the heart of the study of mathematics. 

There was another way in which I was far from 
alone. Although it is not often apparent, the process 
of mathematical discovery is typically somewhat 
convoluted. Characteristically, the textbook solution 
of a challenging mathematical problem misrepresents 
the process by editing out the convolution. The result 
is a tidied-up version of the solution in which sequen
tial logic and efficient communication trump accurate 
representation of the process. The need to tidy up a 
solution is understandable but we should make our 
students aware that the process leading to a textbook 
solution is not always so tidy. The reader will benefit 
by knowing that, in favour of efficient communication, 
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much of the convolution has been edited out of the 
following description of my journey of discovery. 

Some Basic Rules for Divisibility 

The following rules, along with the proof of the 
last one, illustrate how the process of discovery began. 

A counting number n is divisible by 

• 2 if and only if its last digit is divisible by 2;
• 3 if and only if the sum of the digits is divisible by 3;
• 4 if and only if the number represented by its last

two digits is divisible by 4;
• 5 if and only if its last digit is 5 or a O;
• 6 if and only of it is even and the sum of the digits

is divisible by 3 (that is, it is divisible by both 2
and 3);

• 8 if and only if the number represented by its last
three digits is divisible by 8;

• 9 if and only if the sum of the digits is divisible by 9.

The rule for divisibility by 7 is more complex and
is often left out of such a list. The formulation of that 
rule was the beginning of my process of discovery. 
That rule and its proof will be given later. Because 
the rule for divisibility by 9 was instrumental in sug
gesting the structure of other rules and their proofs, 
it seems natural to begin with a proof of that rule. I 
have labelled it rule 1. 

Rule 1: A counting number n is divisible by 9 if and 
only if the sum of its digits is divisible by 9. 

The following proof for a four-digit number is de
pendent on the closure, commutative and associative 
properties of addition of counting numbers along 
with the distributive property of multiplication over 
addition. 

Let n = d
3
dAd

0 
where d

3
, d

2
, d

1 
and d

0 
are its digits. 

Then n = 1,000d
3 

+ 100d
2 
+ IOd, + ld

0 

* n = (999 + l)d
3 
+ (99 + l)d

2 
+ (9 + l)d

1 
+ ld

0 

* n = (999d
3 
+ 99d

2 
+ 9d

,
) + (d

3 
+ d

2 
+ d

1 
+ d

0
) [I] 
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1) To prove the if part of the theorem, we need to
show that, if the sum of digits of n is divisible by
9 then n is also divisible by 9.
If the sum of n's digits is divisible by 9, then
d

3 
+ d

2 
+ d

1 
+ d

0 
= 9k for some k E N = {I, 2, 3, ... }

⇒ n = (999d3 + 99d
2 

+ 9d1) + 9k from equation [I]
⇒ n = 9(11 ld

3 
+ l ld

2 
+ d, + k)

⇒ n is a multiple of 9, that is n is divisible by 9.

2) To prove the only if part of the theorem, we need
to show that if n is divisible by 9 then the sum of
its digits is also divisible by 9. Suppose that n is a
multiple of 9, say n = 9) for some j E N. Then,
from equation [I],
9) = (999d

3 
+ 99d

2 
+ 9d,) + (d

3 
+ d

2 
+ d

1 
+ d

0
) 

⇒ 9) = 9(1 l ld
3 

+ l ld
2 

+ ld
1
) + (d

3 
+ d

2 
+ d, + d

0
) 

⇒ d
3 

+ d
2 

+ d
1 

+ d
0
= 9(1 l ld

3 
+ l ld

2 
+ ld 1) - 9)

⇒ d
3 

+ d
2 

+ d, + d
0
= 9(1 lld

3 
+ l ld

2 
+ ld

1 
-j)

⇒ the sum of the digits of n is a multiple of 9.

Once this and the other rules had been proven,
some persistent exploration that made use of my 
knowledge of modular arithmetic (a topic that will 
be explored shortly) led to the following rule for 
divisibility by 7: 

Rule 2: A counting number n = d.d..A.
2 

• • •  d
2
d

1
d

0 
is 

di visible by 7 if and only if the following linear com
bination of its digits is divisible by 7: 

ld0 + 3d1 + 2d2 +(-Id)+ (-3d4) + (-2d5) + .. .
ld

6 
+ 3d

1 
+ 2d

8 
+ (-ld

9
) + (-3d

l0
) + (-2d

ll
) + .. . 

Note that the linear combination of digits begins with 
the last digit and that the coefficients of the linear 
combination repeat every six digits (the means by 
which these coefficients were determined will be 
described later). 

Example: Determine whether n = 88 ,580,723 is 
di visible by 7. 

Solution: According to Rule 2, n will be divisible 
by 7 if and only if 
ld

0 
+ 3d

1 
+ 2d

2 
+ (-ld

3
) + (-3d

4
) + (-2d

5
) = ld

6 
+ 3 d

1 

is divisible by 7, that is, if 
(1 X 3) + (3 X 2) + (2 X 7) + (-} X 0) + (-3 X 8) + 
(-2 x 5) + (1 x 8) + (3 x 8) = 2 1  is divisible by 7. 
According to the rule, because 2 1  is divisible by 7, 
88,580,723 is also divisible by 7. The reader may 
use a calculator to verify the above result, but one 
of the advantages of Rule 2 is that it can be applied 
to numbers too large to input into your calculator. 

The proof for Rule 2 drew on my knowledge of 
modular arithmetic. What follows is a brief overview 
of the concepts of modular arithmetic that are needed 
to discover and prove rules of divisibility. 
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Modular Arithmetic: A Tool for 
Exploring Divisibility Rules 

Two integers, m and n, are said to be congruent 
mod k (Rosen 2003 ,  161-63) where k is a particular 
counting number is they differ by a multiple of k, that 
is m-n =)k wherej E Z = { ... , -2 , -1, 0 ,  1, 2, ... }. 
If this is the case, we write m == n(mod k). For ex
ample, 7 and 12 are congruent mod 5 because 12 - 7 
= I x 5, a multiple of 5. Perhaps a more intuitive 
way of looking at this example is to say that 7 and 12 
both have the same remainder, 2 ,  when divided by 5. 
(7 = I x 5 + 2 and 12 = 2 x 5 + 2). To extend the 
example, -3 is congruent to both 7 and 12 mod 5 
because it also has a remainder of 2 when divided by 5 
(-3 = -1 x 5 + 2). In fact, modular arithmetic is often 
conceptualized as the arithmetic of remainders. 

Using this idea, we can generate an infinite family 
of integers of which all members are congruent to 
2 mod 5. That family is the set ( ... , -8, -3 , 2, 7, 12, ... } . 
It is easy to see that each of the numbers in this fam
ily will y ield a remainder of 2 when divided by 5. We 
will say that each of these numbers and a mod 5 
equivalent of 2. 

Congruence mod 5 partitions the integers into five 
families of integers that are called equivalence classes: 

[0] = { .... -10, -5, 0, 5, 10, ... } 
(]] = { ... , -9, -4, 1, 6, 11, ... } 
(2] = { ... , -8 , -3 , 2 ,  7, 12, ... } 
[3] = { ... , -7, -2 . 3 ,  8, 13, ... }
[4] = { ... , -6, -1. 4, 9, 14, ... }

The term equivalence class is used because congruence 
mod k satisfies the three properties of an equivalence 
relation (Roman 1989, 141-48). More will be said about 
this shortly. [0] is referred to as the equivalence class 
associated with 0 .  Numbers in it are congruent to 
0 mod 5. Numbers in [ l]. the equivalence class asso
ciated with 1, are each congruent to 1 mod 5; and so on. 
Note that the numbers in [0], that is, the numbers con
gruent to 0 mod 5, are all multiples of 5. In this analy
sis, k = 5, but analogous results can be obtained for any 
value of k. For example, k = 12 results in the "clock 
arithmetic," where 12 equivalence classes correspond
ing to the hours on a clock face, a analogy that is some
times taught in the elementary school cuniculum. 

Exploration of the rule for divisibility by 7 will 
make use of congruence mod 7. In mod 7 arithmetic, 
the equivalence classes are 

[0] = [ ... , -14, -7, o. 7, 14, ... }
[ l] = { ... , -13, -6, 1, 8, 15, ... }

[ 6] = [ ... , -15, -8. -1, 6, 13 , ... }
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In mod k arithmetic, we often choose the non
negative numbers 0, 1, 2, ... , (k-1) to be the repre
sentatives of the classes [O], [I], [2], ...  , [k - I]. 
However, in developing rules for divisibility by a 
prime, these are not generally the most appropriate 
representatives. For example, in the test for divisibil
ity by 7, the formulation of the rule is simpler if we 
use the numbers -3, -2, -1, 0, 1, 2, 3 as representatives 
of the classes. As well, as we shall see, the formula
tion of the rule for divisibility by 11 is far simpler if 
we use -1 rather than 10 as the representatives of the 
class [10) == { ..• , -23, -12, -1, 10, 21, 32, ... }. 

In devising the rule for divisibility by a prime p
we wiJI use mod p arithmetic with equivalence 
classes [OJ, [ 1], [2], ... , [p - 1]. We will see that, in 
general, the formulation of the rule for divisibility by a 
prime pis simplest if we use the integers between_ 1/2 p
and 1/2 p as the representatives of the classes rather 
than the non-negative integers 0, 1, 2, ... , (p - 1). 

Once useful property of modular arithmetic is that 
the result will be the same no matter if the remainders 
from addition or multiplication are determined before or 
after the operation. To put it more fonnally, the mod k
equivalent of the result of a calculation involving two or 
more counting numbers is the same if the mod k equiv
alent of each of the counting numbers is used in the 
calculation. For example, consider the product 28 x 6: 

28 X 6 = 168 = 33 X 5 + 3 
⇒28 x 6 = 3(mod 5)

Now find the mod 5 equivalents before multiplying: 
28 = 5 x 5 + 3 ⇒ 28 ⇒ 3(mod 5), and 
6 = 1 x 5 + 1 ⇒ 6 = l (mod 5) 
Then 3 x 1 = 3 = 3(mod 5), the same as the result 
above. 
This example illustrates one of the properties of 

modular arithmetic. The following theorems describe 
the properties of congruence mod k that are useful in 
exploring and proving rules for divisibility. 

Theorem 1: Suppose that a, b and c integers are that 
k is a particular counting number. Then the congru
ence mod k is: 
a) reflexive: a = a(mod k)
b) symmetric: a= b(mod k) ⇒ b = a(mod k)
c) transitive: a = b(mod k) and b = c(mod k) ⇒

a= c(mod k);

A relation that is reflexive, symmetric and transitive 
is called an equivalence relation. Congruence mod k
is a equivalent relation. 
Proof of c ): Suppose that a = b(mod k) and b = c(mod k)

Then a - b = ik and b - c = jk for some i, j E Z 
⇒ a - c = (i + j)k, i + j E Z
⇒ a= c(mod k)
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Theorem I c) says that if a and b differ by a multiple 
of k, and b and c differ by a multiple of k, then a and 
c wiJI differ by a multiple of k. Or, to put it another 
way, a, b and c will each yield the same remainder 
when divided by k.

Theorem 2: Suppose m, n E Z with m = rm(mod k)
and n = r (mod k), r and r E Z with O $ r < k and 

n m n m 

0 $ r < k*. Then 
a) [m + n] = [r

m 
+ r

0
](mod k), and

b) [m x n] = [r x r ](mod k)
m n 

Theorem 2 a) says that in computing a sum of two
integers, the modular arithmetic can be done either 
before or after finding the sum; the result will be the 
same. Theorem 2 b) says the same thing about prod
ucts. Theorem 2 a) can be extended to a sum with any 
number of items. Similarly, theorem 2 b) can be ex
tended to a product with any number of factors, in
cluding a power, as in the corollary below. Taken 
together, theorems 2 a) and b) imply that in a calcula
tion involving any combination of sums and products 
of integers, such as a polynomial, the modular arith
metic may be done either before or after doing the 
calculation. That is, the remainders may be found 
either before or after doing the calculations (see 
theorem 3 below). These results are important in an 
exploring and proving rules for divisibility. The proof 
of 2 a) is straightforward and is left to the reader. 
Proof of 2 b): m = r (mod k) and n = r (mod k) ⇒ m
= q k + r and n = q

mk + r, q , q E Z.
0

Then,
m m n n m n 

m x n = (q k + r ) (q k + r) = q q k2 + q r k +
m m n n m n  m n  

qnrmk + r
'"
r" 

= (qmq/ + qmr" + qn
r

m
)k + rmr

n 

= rmr
0
(mod k)

⇒ m X n = rmrn(mod k)

The symbols qm and q
0 
are appropriate because they 

represent quotients, Equally appropriate are rm and 
r

0
, which represent remainders. 

Corollary to theorem 2 b): a = b(mod k), ⇒ a" =
c"(mod k) where n is any counting number 
Proof: a = b (mod k) ⇒ a x a = b x b(mod k)

⇒ a2 
= b2(mod k)

⇒ a2 x a= b2 x b(mod k)
⇒ a3 

= b3(mod k)
⇒ a3 x a = b3 x b(mod k)
⇒ a4 

= b4(mod k) 

Theorems 2 a) and b) and the above corollary lead 
to a more general theorem that has already been al
luded to: 
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Theorem 3: Let p(x) be a polynomial with integer 
coefficients and k be a counting number. Then, 
for integers a and b, a = b(mod k) => p(a) =
p(b)(mod k).

Theorem 3 says that in evaluating a polynomial 
mod kit does not matter which member of an equiv
alence class is used; the result will be the same for 
all members of the class. The theorem is proved 
formally in many texts (including Stark 1984, 61-65). 
The proof formalizes the following argument: the 
integers a and b are members of the same equivalence 
class and thus have the same remainder, r, when di
vided by k. In evaluating p(a) and p(b), xis replaced 
by a and b, respectively, in p(x). Each evaluation 
consists of calculating sums and products. Thus, ac
cording to theorem 2, the remainders for each of p(a) 
and p(b) may be found either before or after calculat
ing the sums and products. If the remainder r is found 
first, the result of the evaluation in both cases is p(r). 
Thus, both p(a) and p(b) will be congruent to p(r) 
and therefore congruent to each other. 

Developing and Proving 
New Divisibility Rules 

With these concepts from modular arithmetic, it is 
possible to prove the Rule 2 concerning divisibility 
by 7. The following is a proof for a 12-digit number 
n. It can easily be extended to numbers with more
digits.

Let n = d
1 1d10

d
9 • . •  

di 1
d

0 

� n = (d
1 1 x 10 11) + (d

10 
x 1010) + (d

9 
x 109) +

(d
8 

X 108) + (d
7 

X 107) + (d
6 

X 106) + (d
5 

X 105) +

(d
4 

X 104) + (d
3 

X 103) + (d
2 

X 102) + (d, X 10 1) +

(d
0
x 10°) [2] 

Now 10° =I= l (mod 7), 
10 1 = 10 = 3(mod 7) since 10 = I x 7 + 3, 
102 = 100 = 2(mod 7) since 100 = 14 x 7 + 2, 
103 = 1,000 = 6 = -l(mod 7) since 1,000 = 

143 X 7 + (-1), 
104 

= 10,000 = -3(mod 7) since 10,000 =

1,429 X 7 + (-3), 
105 

= 100,000 = -2(mod 7) since 100,000 = 
14,286 X 7 + (-2), 

106 
= 1,000,000 = l (mod 7) since 1,000,000 =

142,858 X 7 + 1, 
107 =10,000,000 = 3(mod 7) since 10,000,000 = 

1,000,000 x 10 = 3 x I (mod 7) 
[Theorem 2 b)] 

It should be clear that this list repeats beginning 
at 106

• Because n consists of sums of products in 
equation [2], we can apply theorem 2 to find the 
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mod 7 equivalent of n by replacing the powers of 10 
by their mod 7 equivalents. This will obtain 

=> n = ((d
1 1 x -2) + (d

10 x -3) + (d
9 

x -1) + (d
8
x 2) +

(d
7
x 3) + (d

6
x 1) + (d

5
x -2) + (d

4
x -3) + (d

3
x -1) 

+ (d
2
x 2) + (d

1 
x 3) + (d

0
x l)](mod7)**

=> n = [( ld0 +3d
1 
+ 2d2 + (-ld3) + (-3d4) + (-2d5) +

ld6+ 3d
7 
+ 2d8 + (- ld9) + (-3d10) + (-2d

11
)](mod7) [3]

It is clear that n will be divisible by 7 if and only 
if n = 0(mod 7). Because n has a mod 7 equivalent 
that is equal to the linear combination of the digits in 
equation [3], it will be divisible by 7 if and only if 
that linear combination is divisible by 7. 

This concludes the proof of rule 2 for a 12-digit 
number. This proof could be extended to a number 
with any length of digits. It should be clear why the 
mod 7 equivalents of the powers of 10 were chosen 
to be between -3 and 3 inclusive rather than between 
0 and 6 inclusive. 

Having discovered the rule for divisibility by 7, 
I was prepared to move on to other rules. But, as 
I reflected on the process the following facts struck 
me as having more than passing significance: 
• 10° 

= l (mod 7)
• 103 = 1,000 = -1 (mod 7)
• 106 = 1,000,000-= ](mod 7)
• 109 = 1,000,000,000=-l(mod 7)

When I recognized that 1,000,000 = 1,0002
, 

1,000,000,000 = 1,0003 and so on, it occurred to 
me that a rule with a simpler formulation could 
be constructed if n were first written in base 1,000. 
For example, consider again n = 88,580,723. 
Then 

n = 88 X } ,0002 + 580 X } ,000 1 + 723 X J ,000° 

⇒ n = [88 x I + 580 x -1 + 723 x 1 ](mod 7) 
⇒ n = [-23l](mod 7) = [-33 x 7 + 0](mod 7) =
O(mod 7)
Thus n is divisible by 7.

The above observations and example lead to another 
formulation of the rule for divisibility by 7. 

Rule 2a: A number n is divisible by 7 if and only if, 
when it is expressed in base 1,000, the alternating 
sum of its digits beginning with the last digit is divis
ible by 7. Note that alternating sum is used here to 
mean that the signs of the digits are alternated be
tween positive and negative. In base 1,000 a digit is 
typically a 3-digit base 10 number.*** 

The next step was to develop a rule for divisibil
ity by 11. The exploration process was analogous to 
that used in developing the rule for divisibility by 7. 
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First, the mod 11 equivalents of the powers of 10 were 
found using theorem 1: 

10° =1 = ](mod 11), 
101 =10 = - l(mod 11) since 10 = Ix 11 + (-1), 
102 

= [(-1)2](mod 11) :::l(mod 11), 
103 =1,OOO=[(-l )3](mod 11) = - l(mod 11), 
104 =1O,OO0=::[(-1)4](mod 11) =::l (mod 11), 
105 =10,OOO=::[(-1)5)(mod 11) = - l (mod 11) 

It is clear that the mod 11 equivalents of the powers 
of 10 alternate in the pattern 1, -1, 1, -1, ... provid
ing that -I is used as the representative of the class 
{ ... , -23, -12, -1, 10, 21, ... }. 

The exploration described above leads to a simple 
rule for testing divisibility by 11: 
Rule 3: A counting number n is divisible by 11 if and 
only if the alternating sum of its digits is divisible by 11. 

As alluded to earlier, the simplicity of rule 3 is 
dependent on using -1 as the representative of the 
class { ... , -23, -12, -1, 10, 21, ... }. Because the 
above explanation of the development of the rule also 
contains the basic elements of its proof, no formal 
proof is included here. The following is an example 
of its application. 

Determine whether n = 576,213,489,573 is divis
ible by 1 I. 

Solution: 3 - 7 + 5 - 9 + 8 - 4 + 3 - I + 2 - 6 + 7 - 5 
= -4 = 7 (mod 11). According to rule 3, n is not divis
ible by 1 I. 

The techniques used in exploring rules for divis
ibility by 7 and 11 can be applied toward finding a 
rule for divisibility by 13, 17 or any prime. Much of 
that exploration is left for the reader. The next section 
deals, rather, with a theorem that describes a general 
algorithm for determining divisibility by any prime p.

A General Algorithm for 
Testing Divisibility by a Prime 
Theorem 4: Suppose that n = d,d,.A.

2 
• • • dAd

0 
is a 

counting number and p a  prime with n > p. Then n is 
divisible by p if and only if m = c

1
d

1 
+ c,.A. 1 + c,.A.

2 

+ ... + cA + ci
0 

is divisible by p where each 
0 $i$t, ci :::W(mod p) and -l/2p < ci < l/2p. 
Proof: It will be sufficient to prove than n = m(mod p) 

n = (d,x 10') + (d,_
1
x 101

•
1) + ... + (dix lQi) + ... +

(d
1
x l 0 1 ) + (d

0
x 10°) 

Note than c. :::IO i(mod p) ⇒ 10; = c.(mod p)' 
[The�rem l.b] 

⇒ dx IOi 
= d.xc(mod p) [Theorem 2.b] 

⇒ (d,x c
1
') + 

1

(d1_'1 x c/' 1) + ... + (d
1
x c/) + . . .  +

(d1x c/) + (d
0
x c1°) = (c,d, + c,.A.1 + c,_i,_2 + ... + 

c
1
d1 + c0d0)(modp) [Theorem 2.a] 

⇒ n = m(modp) 
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As a final exercise in this exploration, apply theo
rem 4 to find a rule for divisibility by 13. In develop
ing the rule, use W = c

1

i(mod p) to find the mod 13 
equivalents of the powers of 10. 

10° =I= l(mod 13), 
101 = 10 = -3(mod 13), 
102 

= (-3)2(mod 13) = 9(mod 13) = -4,mod 13) 
103 

= [(-3)2x(-3)](mod 13) = [ (-4) x (-3)](mod 13) 
= 12(mod 13) = - l(mod 13) , 

104 == [(-3)3x(-3)](mod 13) = [(-1) x (-3)](mod 13) 
= 3(mod 13), 

105 
= [(-3)4 x (-3)](mod 13) = [ (3) x (-3)](mod 13) 
= -9(mod 13) = 4(mod 13) ,

111 = [(-3)5(-3)](mod 13) = [(4) x (-3)](mod 13) 
= -12(mod 13) = l(mod 13) , 

Now, suppose n = d,d,.A.
2 

• • •  d1A0
d

9
d

8
d

7
d

6
dl4

d
3 

dAdo 
* n = (d,x 10') + (d

1
_
1
x 101• 1) + (d1

_ x 10'·2) + ... +
(d

11
x 10 11) + (d1 0x 1010) + (d

9
x 10g) + (d

8
x 108) +

(d7x 107) + (d
6
x 106) + (d

5
x 105) + (d

4
x 104) +

(d
3
x 103) + (d2

x 102) + (d
1
x 101) + (d0

x 10°) 
Then, using the above mod 13 equivalents for the 
powers of 10, the following is obtained: 
Rule 3: A counting number n is divisible by 13 if and 
only if m is divisible by 13 where 

m = [ld0 = (-3d) + (-4d) + (-ld3) + 3d4 + 4d
5 

+ 
ld6 + (-3d7) + (-4dg) + (- ld9) + 3dl0 + 4 dll+ ... ] 
Example: Determine whether n = 889,594,829,357 
is divisible by 13. 
Solution: n will be divisible by 13 if and only if m
is divisible by 13 where 
m =} X 7 + (-3 X 5) + (-4 X 3) + (-1 X 9) + 3 X 2 
+4x 8+1 x4+(-3x 9)+ (-4x 5)+(=1 x9)+
3 x 8 + 4 x 8 = 13 = O(mod 13)
m = O(modp) ⇒m is divisible by 13

⇒ n is divisible by 13

Conclusion 
The process of exploration described in this article 

began with some textbook rules for divisibility by 2, 
3, 4, 5, 6, 8 and 9. Those rules lead to a search for 
rules for divisibility by other numbers like 7 and 11. 
The focus was on primes because it seemed that once 
the rules for divisibility by primes was uncovered, 
divisibility by a composite number could be tested 
using a combination of the rules for divisibility by 
primes. Uncovering the rules for divisibility by 7 and 
11 was expedited by calling on the concepts of 
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modular arithmetic. These concepts enabled the cul
minatio� of the exploration process, namely the 
fori:nul�t.10n of a general algorithm for determining
d1v1s1b1hty by a prime. 

This process of exploration was particularly satis
fying for a number of reasons: 
I. There was the prospect of exploring many rules

(because there are many primes that might be of
interest) with the possibility of observing some
general patterns.

2. The process naturally used the concepts of modular
arithmetic and demonstrated a property that the con
ceptc; have in common with most mathematical con
cepts-their ability to expand our native brainpower.

3. The process satisfied a compulsion that has char
acterized most mathematical exploration over the
past couple of centuries-the need to generalize.
It lead to the determination of a general algorithm
for testing divisibility by a prime.

4. The. culmination in a general algorithm gave a
feeling of completion to the process. Later, the
thought hit me in an Archimedes moment that the
algorithm could be made perfectly general. After
the formulation and proof of the algorithm, it oc
curred to me that the properties of modular arith
metic that I had applied to the primes were
equally applicable to composites. Therefore, the
algorithm can be extended to composites and thus
to all counting numbers. This even more general
algorithm could be used to verify the rules for divis
ibility by 4, 6, 8 and 9, and to explore the patterns
m the rules for divisibility by other composites.
This process of uncovering the rules for divisibil-

ity by a prime is illustrative of the many opportunities 
for mathematical exploration that teachers encounter. 
By taking advantage of these opportunities, we can 
sensitize our students to these opportunities and help 
them become more acquainted with the nature of 
mathematical discovery. 

Notes 

* The symbols rm and rn are used because they
are t�e .remainders when m and n, respectively,
are d1v1ded by k. According to the division al
gorithm for counting numbers, the remainder r,
when a counting number n (the dividend) is
divided by another counting number d (the divi
sor), can be made to be a non-negative number
Jess than d. In our case, the divisor is k so the
remainder can be made to be less than k. The
division algorithm can be extended to the inte
gers Z.

** Alternatively, one could observe that n = p(l0),
wh�re p(x) = d

1
/ 1 

+ d
1
_�10 

+ d�9 
+ ... + d�2 

+

d
1
x + d�, a polynomial. By theorem 3, since

10 = 3(mod 7), p(I0) = p(3)(mod 7). The mod 7
equivalent of n could be evaluated by using p(3)
instead of p(I0). The reader can check that
30 = l (mod 7), 31 = 3(mod 7), 32 = 2(mod 7),
33 = - l(mod 7), 34 = -3(mod 7), 35 = -2(mod 7)
and so on. The result would be the same.

*** In a codified base 1,000 system we would need
1,000 different symbols to represent the numbers
0, I, 2, . .. , 999. In such a theoretical system
each digit would be represented by just one
symbol.
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