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of the First n Natural Numbers 

Darryl Smith 

The excellent article by A. Craig Loewen titled 
"Sums of Arithmetic Sequences: Several Problems and 
a Manipulative" in the June 2004 issue (Volume 41, 
Number 2) of delta-K reminded me of Riemann sums 
and the formulae that are so important in those 
problems. For example, to calculate the value of the 
integral 
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the interval must be partitioned from x = 1 to x = 2 
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At this point, some of the formulae for sums of 
powers of the first n natural numbers are required, 
such as 
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2)=n' 
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"{-,
1
• = n(n + 1)

Lt and ,_, 2 
I,/ = n(n + 1)(2n + 1)

i=I 6 
Other such formulae will appear later in this article. 
At first, I would introduce the required formulas, 
verify them and prove them by mathematical induc­
tion. However, it always concerned me that I did not 
have an algebraic method of determining these for­
mulae in my bag of tricks. 

To complete the above integral, substitutions of 
the required formulae are made into the last statement 
to obtain 
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That is, the value of the definite integral J
2 

x2dx
7 I 

is exactly 3 . Of course, since x
2 > 0 for all values

x E [I, 2] , the value of the integral is also the area 
enclosed by the function y = x2 and the x-axis be­
tween x = I and x = 2 . 
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The result can be verified on the home screen of 
the TI-83 calculator using MATH9, which pastes in 
the numerical integration function fnlnt. The format 
of the argument for this function is fnlnt (function, 
independent variable, lower limit, upper limit). 

fnlnt(X2,X,1,2) 
2.333333333 

I 
When faced with evaluating an integral-defined 

function, such as /(x) = f t2

dt, simply use the format 
described above to define the function in a convenient 
location, such as Y1 , as shown below. In function 
mode, the only independent variable recognized by 
the TI-83 is x. That is, the t used in the defined 
function /(x) = f t1dt will be replaced by x.

�,�ti �1❖t2 �,�t3 

,Y1Elfnlnt(X2,X,1 
,X)I 
,Y:::= 
,Y3= 
,Y11= 
,Y�= 
,Yli= 

The graph of the function f(x) = f t1dt is graphed 
below using Zoom-6, which defines the viewing 
window [-10,10,1] by [-10,10,1]. 

/ 

Notice that the graph of f(x) = f/dt appears to have 
a zero at x = 1, which is con�istent with the value of 
the definite integral /(I)= J

1 
t1dt = 0. The values of 

these definite integrals are easily obtained using the 
table feature of the Tl-83, where the numbers in the 
column labelled y

1 
are the values of definite integrals that 

are members of the range of the function/(x) = f t1dt.

The domain for this function is x E R . It is left
1

to the 
reader to verify that, if x < I , then f (x) = f t2 dt < 0 

X Y1 
0 
2.3333 
B.li667
21
'11.333
71.61i7
11'1
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The focus of this article is not Riemann sums and 
integrals but, rather, an algebraic technique using the 
properties of summation and telescoping terms to 
directly derive fonnulae for the sums of powers of the 
first n natural numbers involved in Riemann sums. 

Consider the series consisting of n terms, each of 
which is 1, so that we have 1 + 1 + 1 + . .. + I. Be­
cause there are n-id.entical 1 s, the sum is obviously
n, so we can write I,1 = n. The same result could be 

i=I 

obtained by treating the above series as arithmetic 
with a common difference of d = 0. 

To derive a formula for the sum of the first power 
of the first n natural numbers, we have 1 + 2 + 3 + 
... + n. This series is arithmetic with d = 1, and ap­
plying the formula 

ll s. = 2 [2a + (n - J)d] gives the result
i:J = n(n+I) 

1=1 2 . 

For an alternative approach, consider the expres­
sion (i + 1)2 - i2· = 2i + 1. We can use the properties 
of summation to obtain 

� (1 + 1)2 
- 12 + (2 + 1)2 - 22 + 

(3 + 1)2 - 32 
+ ... + (n + 1)2 - n2 

n n 

= 2Z:,i+ :I,1 
r=l r=l 

Notice that, in the expansion of the left-hand 
side, all the terms cancel except (n + I )2 and -(1 )2; 
that is, the terms telescope, leaving just two terms. 
Because we have previously determined that f, l = n,
we obtain (n+l)2 -12 =2f,i+n. Solve for I,; to 
obtain i=1 ;-1 

as before. 
A calculator approach can also be taken. Using 

STAT mode on the TI-83, simply enter at least the 
first three terms of the natural number sequence 1, 2, 
3, ... in List!, and a matching number of terms for 
the sequence of partial sums 1, 3, 6, ... in List2, as 
shown. Because the quadratic regression involves the 
parameters a, b and c, at least three data points are 
required. 
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L1 L2 
1.(1000 i1:1Miiil 
2.0000 3:.0000 
3:.0000 6.0MO 
------ ------

L2(1)= 1 

QuadRe9 
'::1=ax2+bx+c 
a=.5 
b=.5 
c=0 
R2= 1 

L3: 2 

------

Performing a quadratic regression gives 
2 x(x+ 1) 

y=0.5x +0.5x+0= ---'--....:... 
2 

with R2 
= 1. Because it is a sequence, observe the 

condition that x E N 
Generally, to determine an expression for the sum 

of the first n terms of the kth power of the natural 
numbers, the following expression can be used: 

(. 1)k+I - ,k+\ - •k+I (k 1) 'k 
(k + 1)k •k-1 l+ l -l + + l + 21 1 

+ 
..

+ 1-l'•'.
The first and last terms on the right will cancel, so 
we have 

t((i+ l)M - z-1<•1 )= t((k+ 1)/ + (k;?c i"-1 + ... +I)•

In expanding the left-hand side of this expression, 
the terms will always telescope. Simply substitute 
previously determined expressions into the right-hand 

II 

side and solve for the expression I/. 
;:1 

To again illustrate the technique, we determine a 
n 

closed form for I, i2
• Beginning with the expression 

i=I 

(i + 1 )3 - i3 = 3i2 + 3i + 1, we obtain 

6 

<=> (1 + 1)3 -13 + (2 + 1)3 - 23 + (3 + 1)3 -33 + ...
n n n 

+(n + 1)3 -n3 =JI/+ 32.:i + I,1
i=l i=l i=l 

, 2 � .2 n(n + 1) <=> n +3n +3n = 3 L..,1 +3--- + n
i=l 2 

n 

<;:=> 2n3 + 6n2 + 6n = 6L/ + 3n2 + 3n + 2n 

n 

<;:=> 6:I/ = 2n3 + 3n 2 + n = n(2n2 + 3n + 1)
i=l 

<;:=> f ;2 =
n(n + 1)(2n + 1)

i=l 6 

To obtain the same result on the TI-83, a cubic regres­
sion using at least four data points is needed, where 
L2

1 
= 12, L2

2 
= l2 + 22 and so on. 

L1 U: L3 

1 1 ------

2 s 
3 11.t 
lt 3(1 
------ !¾¾iii! 

L2(S) = 

CubicRe9 
Y=ax3+bx2+cx+d 
a=.3333333333 
b=.5 
c= .1666666667 
d=-8.2E-12 
R2=1 

2 

The calculator gives the result y = 0.333333 ... x3 
+

0.5x2 
+ 0.1666666 ... x, with R2 = l. Since the

ffi. 
I l l . l coe c1ents are 
3 

, 
2 

and 
6 

respective y, we have 
J 3 ) 2 ) 

y=-x +-x +-x 
3 2 6 ' 

which can be expressed in the more familiar and 
convenient form 

x(x + 1)(2x + 1) NY = 
XE 

6 , 

Consider (i + 1)4 - i4 
= 4i3 + 6i2- + 4i. Using the 

properties of summation, we obtain 

I,((i+1)'-i4 )= I,(4i� +6i2 +4i+l) 
(=l i=l 

<=> (l +1)4 -1' +(2 +1)'-24 + (3 +l)'-34 + ... 
n n n n 

+(n+1)'-n' =4Li� +6Li1 +4Li+ LI 
i=I f::l l=l i:1 

( l)• 1• 4� .; 6 n(n + 1x2n + 1) <=> n+ - = �I + ----'-���+ 
i=l 6 

<=>n' +4n1 +6n2 +6n=4I,i3 +2n3 +3n2 + 
i=l 
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n 

� 4}:>3 
= n

2
(n

2 
+ 2n + 1) 

t=I 

Expressing the result in this form makes it easy to 
remember because it is simply the square of the result 
for the sum of the first n natural numbers. 

Regression can be used as before, where L2
1 
= 13, 

L2
2 

= 1 3 + 23 and so on. 

L1 L2 L3 
1 1 ------
2 9 
3 36 
Lt 100 

s: 22:S: 
------ ARR ii I 

l2(6) =

QuarticRe9 
':f=ax '1+bx3 + ... +e 
a==.25 
b==.5 
c=.2500000002 
d= -3.42E-10 

-.1.-e= l. 81 E -10 

2 

The R2 value is again 1, and the value of the coeffi­
cients d and e in y = a.x4 + bx3 + cx2 + dx + e is 0. 
Therefore, we have y = 0.25x4 + 0.5x3 + 0.25x2 or 

l ◄ l 3 2 
y=-x +-x +0.25x 

4 2 

=----
4 

= [ x(x2+1) J ,XE N. 

The expression for I i4 is a bit tedious, but it is 
i==I 

achieved using the same technique. We begin with 

I,((i+ 1/ - i
5 )= I,(5i4 + IOi3 + IOi2 + 5i +I) 

u-:1 i=l 

<=> (n+ Os - ,s =sf/+ 10:f/ + 10f/ + 5'I,i + f I 
i=l i=l i=l i;:: 1 i=l . 

As before, we substitute previously derived expres­
sions into the right-hand side and simplify the left­
hand side to obtain 
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5n4 +10n
3 +10n2 +5n+I 

=S'I/ +IO n
2 (n +l)

1 

+IO n(n +1)(2n +I) +
i:I 4 6 

5 n(n+l) ---'---'-+n
2 

Multiply through by 6 to clear fractions and isolate 
n 

the term containing I/ to obtain 
i=I 

n 

30I/ =6n5 +15n4 +10n3 -n
i=l 

=n(6n4 
+ 15n3 

+ 1 On2 -1) 
The right-hand side can be factored and then divided 
through by 30 for the final result of 

'I)4 

= 
n(n + l)(2n + 1)(3n

2 
+ 3n -1)

. 
�, 30 

Unfortunately, a quintic polynomial regression is 
beyond the capabilities of the calculator. 

Conclusion 

The properties of summation and telescoping terms 
have been used to derive the following: 

" 

L,l=n 
i::l 

'I)= n(n+1)
i::l 2

I/ = n(n + 1)(2n + 1)
i::l 6 

I/= [n(n + 1)] 2 

i::l 2 

I/ = n(n + 1)(2n + 1)(3n2 + 3n-1) . 
1::l 30 

The next time you teach Riemann sums in your 
calculus class and it comes time to derive formulae 
for sums of powers of natural numbers, I encourage 
you to consider the direct approach using telescoping 
terms. The technique is rich in algebraic opportunity, 
such as expanding powers of binomials and exploring 
the properties of sigma notation and limits. When I 
carefully and thoroughly worked through the first 
derivations with the class, the students were capable 
of doing the last ones by themselves, provided that I 
gave them a hint as to the required form. More im­
portantly, students always seem impressed by their 
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ability to use what turns out to be rather straightfor­
ward algebraic tools to determine some rather impres­
sive identities. Also, a word from the voice of expe­
rience: even though the overhead projector was my 
favourite mode of presentation in class, I always did 
this lesson on a 20-foot whiteboard. It made it easier 
to f ollow the derivations, look back and record the 
list of formulae as we went. The calculator regressions 
are interesting and are best done concurrently with 
the algebraic derivation, but they are insufficient by 
themselves. Try obtaining these regressions using 
Excel, a program capable of doing up to degree 6 
polynomial regressions. The result given by Excel 

for I/ is shown below. In spite of the given value
i=I 

R2 = 1, the result holds only to approximately the fourth 
term when compared to exact values determined from 

I/ = 
n

2
(n + 1)

2
(2n 2 + 2n -1)

. 
�1 12 

n 
1 
2 

.. 3· 
4 
5 

·s
7 

35000 

3o�b
1

25000 

20000 

15000 

1000) 

5000 

0 
0 

"; ........ ·P..��i�r .��r:ri ... �!5.ing .. �.e.r.�tiqin,.r.e..96.·§�tirn····
. . 32 .. . i

f . .. 
:i3 ifo026iim:2'. 

243. . 276 
·- .. - ---· . - 276 .. 2i6 oii2:f

f

1;-
1024 1300 1300: . iDi:145563' 
3125 ···•· 4425· 44251 4425 542505 

;;;;7 .. ; . ::�� .. ···• 1��f ·��;::�!:. 

2 4 6 8 

Darryl Smith is in his third year of retirement after 34 years with the Edmonton Catholic 
School District, 30 of which were spent at Austin O'Brien High School. His one regret 
is that technology use did not arrive in the mathematics classroom until the last third 
of his career. During the past two years, he has had the privilege of working with 
many excellent teachers from the Edmonton Catholic School District in workshop 
settings and relishes these opportunities to implement calculator technology into 
mathematics education. 
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