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Does understanding mathematics involve nothing 
more than learning symbols, axioms and theorems? 
For George Lakoff and Rafael Nunez (2000), authors 
of Where Mathematics Comes From: How the Em­
bodied Mind Brings Mathematics into Being, under­
standing mathematics means comprehending how 
mechanisms of the brain and mind enable people to 
reason mathematically. They use results of research 
in cognitive science to explore how mathematical 
ideas are possible and why they make sense. 

Lakoff and Nunez suggest that the teaching of 
mathematics may be enhanced by an understanding 
of this cognitive perspective of embodied mathemat­
ics. In this article, I will attempt to show how ideas 
put forth in Where Mathematics Comes From may be 
helpful in mathematics education. The article is di­
vided into three parts. The first section describes some 
aspects of embodied mathematics, based on ordinary 
human cognitive and bodily mechanisms, which are 
presented in Where Mathematics Comes From. The 
second section reviews ways in which the theory of 
embodied mathematics explains sources of student 
difficulties and the third section discusses how teach­
ers can use these ideas in designing effective instruc­
tion for their classrooms. 

Embodied Mathematics 

Where Mathematics Comes From can be consid­
ered a study of the nature of mathematical intuition. 
The authors claim that automatic, unconscious un­
derstanding is developed and refined through activi­
ties and experiences in the real world. Lakoff and 
Nunez provide empirical evidence that this intuitive 
understanding is neither vague nor ill-defined, but is 
precise and rigorous enough to form a foundation for 
mathematical thought. 

They assert that mathematics exists by virtue of 
the embodied mind. Cognitive structures used in 
mathematical thinking are based on physical sensa­
tions and activities. The brain receives input exclu­
sively from the rest of the body. Therefore, what the 
body is like and how it functions in the world deter­
mine the form and content of thought. The mind 
emerges from distinctive characteristics of the human 
brain and body; it is embodied. "The detailed natures 
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of our bodies, our brains and our everyday function­
ing in the world structures human concepts and hu­
man reason. This includes mathematical concepts and 
mathematical reasoning" (Lakoff and Nunez 2000, 5). 

Lakoff and Nunez base their assertions of this 
thesis on the empirical findings of scientists from a 
wide variety of disciplines: developmental psychol­
ogy, cognitive neuroscience, neuropsychology, cogni­
tive linguistics and cognitive psychology. Convergent 
evidence from these fields is used to support and 
structure the theory presented in Where Mathematics 
Comes From. This book shows how mathematics is 
embodied through innate arithmetic abilities, the 
mind's cognitive mechanisms and its basis in bodily 
experience through grounding metaphors. 

Innate Arithmetic Abilities 

Lakoff and Nunez argue that humans are born with 
certain arithmetic capacities. The very notion of 
numher is engraved on our brains. Highly specialized 
sets of neural circuits enable us to subitize; that is, 
instantly and accurately recognize very small num­
bers of objects. At an early age, people possess an 
understanding of limited addition and subtraction, 
capacities needed for simple counting and numerosity, 
which is the ability to make rough consistent estimates 
for larger numbers. Areas of the brain involved in these 
activities are thought to be located in the inferior pa­
rietal cortex which links vision, hearing and touch. 

Cognitive Mechanisms 

Knowing which parts of the brain are activated 
when people use these very limited innate capacities 
does not explain where normal arithmetic and more 
sophisticated mathematics come from. Lakoff and 
Nunez explain that mathematical thinking engages 
the same conceptual structures used by humans in 
other kinds of sense making. These cognitive mech­
anisms, used automatically and unconsciously in 
reasoning, are referential systems that assist people 
in understanding and employing concepts. 

Abstract reasoning using cognitive mechanisms is 
grounded in basic bodily experiences. For example, 
balance is part of everyday life for all humans. We first 
encounter balance as babies wobbling across the floor. 
Over the years, balance becomes such an intrinsic 
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part of our lives that we are hardly aware of it, but it 
is extremely important for our coherent perception 
of the world (Johnson 1987). This type of universal 
body-based experience becomes a cognitive mechanism 
that can be used to reason about many things like cheque 
books, relationships or solving equations. Lakoff and 
Nunez discuss three cognitive mechanisms that are 
particularly important: the image schema, the con­
ceptual metaphor and the conceptual blend. 

The Image Schema 

Image schemas, for qualities like balance, straight­
ness or verticality, represent the spatial logic inherent 
in physical situations. Image schemas are not just 
mental pictures, but are general and flexible patterns 
developed through sensori-motor experiences that 
make our perceptions of the world meaningful. 

The container image schema is of particular im­
portance in mathematics. Because our experiences 
with physical containers involve sight, touch, lan­
guage and reasoning, the container image schema 
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utilizes the corresponding regions of the brain. Lakoff 
and Nunez use the image of a set as a "cognitive" 
container to represent the container image schema 
(see Figure I). 

The logic of the physical container is projected 
onto the cognitive container, which can be used to 
reason about nonspatial situations (Johnson 1987, 34 ). 
Normal language use illustrates how common this is. 
Statements often refer to components of the con­
tainer: its boundary (he's on the brink of disaster), its 
exterior (she's out of her league) and its interior (he's 
always getting into trouble). Modes of reasoning 
developed through experience with ordinary contain­
ers are an essential part of the image schema. Figure 2 
shows how the container image schema can link 
physical experience to mathematics. 

The power of the image schema is that it can in­
troduce new ideas or extensions that do not arise from 
the original physical experience. We can imagine two 
sets overlapping (Figure 3) even though two physical 
containers cannot intersect in this way. 

Figure 3 

Concept of intersecting sets introduced by 
the abstract container image schema 
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Figure 2 

Reasoning from physical experience transferred to abstract mathematics 
through the container image schema 

The stone is in the cup. 
The cup is in the pail. 
Therefore, the stone is in the pail. 
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P is an element of set A. 
Set A is a subset of set B. 
Therefore, Pis an element of set B. 
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The Conceptual Metaphor 

Image schemas are linked together by another 
important cognitive mechanism, the conceptual 
metaphor. Conceptual metaphors are the basic means 
by which conceptual thought is made possible. An 
essential part of all types of human understanding, 
conceptual metaphors enable people to think about 
an unfamiliar, abstract concept as if it were familiar 
and concrete. Many conceptual metaphors arise ini­
tially from the everyday experiences of children. A 
child, held in his mother's arms, feels both love and 
warmth. Associating affection with cuddling leads to 
the metaphor of affection as warmth. Evidence of the 
existence of the metaphor is seen in everyday lan­
guage. We say "they warmed up to each other" or 
"she gave him an icy stare." Experiences in the source 
domain of warmth are mapped onto relationships in 
the target domain of affection. 

Conceptual metaphors are not just linguistic de­
vices, but empirically observable mechanisms of the 
mind. The simultaneous activation of two different 
areas of the brain establishes new neural connections 
between them and generates a single complex expe­
rience. Because the inferential structure inherent in 
these experiences is preserved, the abstract concept 
of affection can be understood in terms of the concrete 
experience of warmth. 

Conceptual metaphors can also introduce new 
elements or extensions in the target domain. The 
statement, "I had to work hard to get that question" 
is evidence of the metaphor of learning as a job. 
Subtle aspects of this metaphor, like those set out in 
Figure 4, are absorbed and unconsciously influence 
thinking. 

Figure 4 

Implications of the metaphor of learning 
as a job 

Learning is work. 
Learning is routine. 
Learning is difficult. 
I deserve some compensation for learning. 

Learning is not play. 
Leaming is not fun. 

The Conceptual Blend 

Two conceptual metaphors can be combined 
through a conceptual blend. Lakoff and Nunez offer 
this example: the unit circle is a conceptual blend of 
a circle in the Euclidean plane and a Cartesian plane 
with coordinate axes (see Figure 5) 1

• In the Euclidean 
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plane, a circle consists of all points in the plane a 
fixed distance, called the radius, from a fixed point, 
called the centre. The two-dimensional Cartesian 
plane is defined by two axes set at right angles to each 
other. The horizontal or x-axis and the vertical or y-axis 
intersect at a point called the origin, 0. By using a 
unit length on each axis and forming a grid, the posi­
tion of any point on the Cartesian plane can be de­
scribed using (x, y) coordinates. The unit circle 
conceptual blend combines characteristics of both of 
these metaphors. 

In the unit circle conceptual blend, new connec­
tions are formed between the neural structures re­
lated to the two original types of geometric planes. 
Thus the blend possesses characteristics of both of 
the original domains. A circle is still composed of 
points a set distance from the centre. But now this 
centre is at the origin, the radius has a length of one 
unit and coordinates are used to describe points on 
the circle. Moreover, new concepts or extensions 
arise. The unit circle blend has properties related to 
trigonometry that are not part of either of the original 
metaphors (see Figure 5). 

Grounding Metaphors 

Grounding metaphors are conceptual metaphors 
that establish correlations between physical activities 
of the body and innate arithmetic. In mathematics, 
the grounding metaphor is the primary tool that en­
ables the extension of innate numerical abilities to 
arithmetic within the set of natural numbers and ul­
timately to more sophisticated concepts. Lakoff and 
Nunez pay special attention to four grounding 
metaphors: 

• Arithmetic is object collection
• Arithmetic is object construction
• The measuring stick metaphor
• Arithmetic is motion along a path.

Human understanding is grounded in already ac­
quired understanding of ordinary actions. A child who 
puts blocks into piles is establishing neural connec­
tions between areas of the brain responsible for the 
physical action and innate arithmetic. This initiates 
the metaphor of arithmetic as object collection, 
whereby numbers are identified with collections of 
objects. Adding involves putting two collections to­
gether, while subtracting involves taking a small 
collection from a larger one. The natural number 
system, which includes numbers too large to be subi­
tized (instantly recognized), is formed. Properties of 
number-collection entities are consistent with those 
of innate mathematics, but are extended to include 
new properties. Since the sum of any two collections 
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is another collection, the sum of any two numbers 
must be another number. Thus, the natural numbers 
possess the property of closure, which is not part of 
innate arithmetic. 

A similar grounding metaphor is arithmetic as 
object construction. Children start to form this meta­
phor when playing by putting things together to 
construct a new object. Numbers are identified with 
wholes made up of parts. Imagine a child building a 
tower out of blocks; a tower five blocks high represents 
the number five. Addition means adding more parts 
to the object. Subtracting means taking some of the 
parts away. This metaphor ties innate arithmetic to the 
natural numbers, but can be extended farther. A whole 
object can be broken up into smaller equal parts giving 
an embodied meaning to the concept of fractions. 

Lakoff and Nunez's third grounding metaphor is 
the measuring stick metaphor in which objects are 
measured using physical segments. Blocks might be 
used to measure the size of a new toy or hands to 
measure the size of a pony. Number-physical segment 
entities are created. Addition is putting two segments 

together end to end, and subtraction is taking a 
smaller segment away from a larger one. This meta­
phor is similar to arithmetic-as-object-collection and 
arithmetic-as-object-construction metaphors, but has 
different extensions. ln this metaphor, any physical 
segment or anything that can be measured can be 
considered a number. Consequently, some irrational 
numbers are grounded. 

Figure 6 

Grounding v2 and :rr using the measuring 
stick metaphor 
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Figure 5 

Features of Euclidean and Cartesian geometry combined into the unit circle 
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The fourth grounding metaphor is arithmetic as 
motion along a path. Numbers are point locations on 
a line. Addition involves moving from a position on 
the line away from the origin, whereas subtraction 
involves moving toward the origin. This metaphor, 
which grounds natural numbers, fractions and irra­
tional numbers, has two unique extensions. Allowing 
motion on either side of the origin provides a physi­
cal basis for integers. Moreover, because a path-num­
ber can have any length, the metaphor provides a 
grounding for the real numbers. 

Arithmetic as motion along a path differs significantly 
from the other grounding metaphors. Lawler and Breck 
(1998) point out that this metaphor, built on early expe­
riences of crawling and walking, is based on ambulation, 
involving legs and feet, while the first three grounding 
metaphors are based on manual manipulation. More­
over, it implies continuous motion rather than discrete 
objects or segments. The arithrnetic-as-motion-along­
a-path metaphor is the only grounding metaphor that 
cannot be combined with subitizing (Chiu 2000). 
Another unique characteristic is its inherent concept 
of zero, which is located at the origin of the path. 

These four grounding metaphors are not imaginary. 
Evidence of their existence is found in language and 
in mathematical constructs of the past. The metaphor 
of arithmetic as object collection appears in such 
expressions as "add some lettuce to the salad" and 
"rake a logfmm the woodpile." Arithmetic as object 
construction is seen in Roman numerals like IX and 
VII where parts are being added to or subtracted from 
a whole. The measuring-stick metaphor is shown in units 
of measurement like cubits, feet and paces. Arithme­
tic as motion along a path appears in expressions like 
"6 is close to 8" and "starting at 20, count to 50." 

These four grounding metaphors are not arbi­
trarily chosen. Of the many grounding metaphors that 
exist, Lakoff and Nunez found that only these four 
have physical sources with properties and logic suf­
ficient to form a connection with inborn numerical 
capacities. "Each of them forms just the right kind of 
[correlation) with innate arithmetic to give rise to just 
the right kind of metaphorical mappings so that the 
inferences of the source domains will map correctly 
onto arithmetic ... " (Lakoff and Nunez 2000, 102) 
and ultimately onto more complex mathematics. 

Where Does Mathematics Come From? 

From a rather limited set of inborn skills, mathemat­
ics is extended through an ever-growing collection of 
metaphors. These cognitive mechanisms, which are 
neurally embodied structures of the mind, abstract pat­
terns of inference from physical experience. Ground­
ing metaphors form correlations between innate 
arithmetic and physical action to make elementary 
arithmetic possible. Other conceptual metaphors link 
arithmetic to more abstract mathematical concepts. 
Each layer of metaphors carries inferential structure 
systematically from one domain to another. Complex 
networks grow as domains that are connected to each 
other by conceptual blends, and new metaphors in­
volving these blends are formed. Even the most ab­
stract mathematical concept bears traces of its origin 
in physical perception and motor activity and is, thus, 
embodied. "The only mathematics that human beings 
know or can know is a mind-based mathematics, 
limited and structured by human brains and minds" 
(Lakoff and Nunez 2000, 4). Hence, the study of em­
bodied mathematics sheds light on difficulties expe­
rienced by students in the mathematics classroom. 

Table 1 

Characteristics of the Four Grounding Metaphors 

Grounding Object collection Object construction Measuring stick Motion along a path 
metaphor 

Numbers are ... Collections Wholes with parts Physical segments Points on a line 

Addition is ... Adding items Adding parts Putting segments Moving away from the 
together ongm 

Subtraction is ... Taking items Removing parts Taking a segment Moving toward the 
away away origin 

Number systems Natural numbers Fractions Irrational numbers integers, real numbers 

Physical Manipulation Manipulation Manipulation Ambulation 
experiences 

Properties Discrete Discrete Discrete Continuous 
Zero is the origin 
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Understanding Student Difficulties 
Because metaphors are the basis of embodied 

mathematics, the study of their use in the classroom 
may reveal problems experienced by students in 
learning mathematics. Metaphors are not usually 
learned through formal instruction, but arise through 
informal everyday experiences and develop gradu­
ally over time. While conceptual metaphors make 
mathematics possible and very rich, they can also 
cause confusion and even apparent paradox if they 
are not made clear or are taken literally (Nunez 2000). 
Students may not understand everything that is im­
plicit in a metaphor, what it hides and what it intro­
duces. Research examining how students use and 
misuse common metaphors has identified some com­
mon difficulties experienced by students in their use 
of metaphors. 

Using an Inappropriate Metaphor 

Use of an inappropriate metaphor can cause dif­
ficulties for students who are trying to comprehend 
a mathematical idea. Edwards (2003) found that 
children and adults studying transformation geometry 
had difficulty fully understanding the concept of 
rotation. Rotations of an object about a point that was 
inside the object were well understood. But all learn­
ers, regardless of age, had trouble with situations 
where the centre of rotation was outside the object 
(see Figure 7). 

Figure 7 

Types of rotations about a point 

Well understood Poorly understood 

Edwards realized that learners were using their 
embodied understandings of turning to make sense 
of rotations. When students considered babies rolling 
over or skaters spinning on ice, they thought of them­
selves as the centre of rotation. Stating that human 
perception tends to place the body at the centre of the 
universe, Johnson ( 1997) clarifies why the metaphor 
of rotation as turning is used for reasoning about 
transformations. 

For Edwards, this explained why problems in which 
the centre of rotation was inside the object being rotated 

delta-K, Volume 42, Number 2, June 2005 

were easily understood. Even situations in which a 
physical link existed between the object being rotated 
and the centre of rotation were grounded in experi­
ences like playing on a swing and, consequently, were 
fairly straightforward. But when the centre of rotation 
and the object being turned are not in physical contact, 
the questions were harder to deal with. The metaphor 
rotation as turning was not useful in understanding 
these types of rotations in transformation geometry. 

Misunderstanding the Source Domain 
of the Metaphor 

The source domains of metaphors provide the 
foundation for mathematical reasoning. If students 
do not clearly understand these fundamental patterns 
of thought, they are unlikely to be able to understand 
related concepts. "Inadequate understanding of the 
source domain of a metaphor limits a person's reason­
ing through that metaphor" (Chiu 2000, 7). 

Students may have trouble using a metaphor whose 
source domain has subtle extensions. For example, 
difficulties are often experienced in the study of prob­
ability, particularly in questions containing the word 
or. These questions often make use of the categories­
are-containers metaphor. Consider the following prob­
lem: If you draw one card from a deck of 52, what is 
the probability that it is red or a queen? In this ques­
tion, learners are dealing with two categories of cards, 
those that are queens and those that are red. Students 
see these two categories as mutually exclusive (see 
Figure 8) when in reality they intersect (see Figure 9). 

, 

Figure 8 

Students' View of Categories as 
Physical Containers 
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Figure 9 

Categories as Containers Using 
Container Image Schema 
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Students' experiences with physical containers 
limit their thinking about cognitive containers, which 
are identified in this example with categories. They 
do not understand the container image schema, which 
is the source domain of the categories-are-containers 
metaphor. 

This misunderstanding reflects a problem in the 
thinking processes of students, not in their mastery 
of the mathematical techniques. In discussion with a 
colleague, Mr. Michaels, a social studies teacher, 
found that understanding the container-image schema 
helped him to understand why his Grade 9 class had 
difficulty responding to a question about the Russian 
Revolution. When comparing how Russian people 
lived under the Czarist and the Communist regimes, 
students were able to list differences in lifestyles, but 
could not identify any similarities. Many existed, but 
their misunderstanding of the source domain of the 
categories-are-containers metaphor held students back. 
As in probability, they thought of physical containers 
(see Figure I 0) rather than the cognitive containers 
of the container image schema (sec Figure 11 ). 

Not Recognizing Limitations of Metaphors 

Because metaphors are used unconsciously, learn­
ers may fail to recognize their inherent limitations. 
Tall (2003) found that automatic usc of previously 
mastered metaphors may cause confusion. Young 
children tended to feel that adding two numbers 
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Figure 10 

Students' View of Categories as 
Physical Containers 

Czarist 
Russia 

Figure 11 

Communist 
Russia 

Categories Are Containers Using 
Container Image Schema 
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should always yield a larger sum and that multiplying 
should lead to a very much larger product. These 
properties are true for arithmetic as object collection. 
But addition of integers can lead to a smaller sum 
(2 and -7 makes -5) and multiplication by fractions 
can lead to a much smaller product (6 x 1/12 = 1/2).
Confusion arose in students' minds because they 
could not realize the limitations of the metaphor they 
are using. They were held back in their development 
of arithmetic skills by their reliance on what Tall calls 
"met-befores." 

Relying Exclusively on a Single Metaphor 

In studies of students doing arithmetic with signed 
numbers, Moses and Cobb (200 I) found that children 
failed to progress because of their reliance on the 
arithmetic as object collection metaphor. He felt that 
the arithmetic as motion along a path would be more 
useful in this situation and developed activities using 
experiences familiar to students, like riding on the 
subway, to strengthen this metaphor. With such tech­
niques, he was successful in improving children's 
understanding of integer arithmetic. 

Using Two Metaphors That Conflict 

Nunez, Edwards and Matos ( 1999) are particularly 
interested in conflicting metaphors used in the study 
of continuity of functions. High school students are 
introduced to "natural" continuity, which is defined as 

lim/(x) = j(a) 
.{-)-Q 

This notion of continuity, used by Newton and 
Leibniz, is often described using Euler's idea of "a 
curve freely leading the hand" (Nunez I 997). Such 
a perspective is based on motion and uses the meta­
phor a line is the motion of a traveller tracing that 
line. The line does not move, but to the learner's 
understanding it does. Expressions commonly used 
in mathematics reflect this: a function reaches its 
maximum at ( l ,  l ); the line crosses the x-axis; two 
curves meet at a point; the line goes through (2,3); 
and the limit exists as x approaches 2. 

At the university level, students are introduced to 
a new interpretation of continuity. The Cauchy­
Weierstrass portrayal of continuity is very different. 

lirn f (x) = L
,. -,,, 

if and only if for every £ > 0, there ex isl� a o > 0 such that 

if O <Ix-�< 8, then lf(x) - W < £. 

This definition is based on the metaphor a line is 
a set of points. The idea of continuity here is in terms 
of preserving closeness: for every x close to a,f(x) is 
close to L. 
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While both definitions arise from metaphors 
grounded in experience, they are not compatible. 
Natural continuity is dynamic, based on properties 
of motion. The Cauchy-Weierstrass definition is 
static, based on closeness in containers. Although 
both definitions are useful, they have very different 
inferential structures, and this causes difficulties for 
learners. 

Students of calculus are never told that the Cauchy­
Weierstrass definition of continuity has a completely 
different embodied foundation than natural continu­
ity (Nunez 1997; Nunez, Edwards and Matos 1999; 
Lakoff and Nunez 2001). Indeed, they are often told 
that it captures the essence of natural continuity. To 
compound the problem, both techniques talk of a 
limit as x approaches a, even though this terminol­
ogy is inconsistent with the metaphor that the Cauchy­
Weierstrass definition is based on. Because the two 
metaphors are not integrated into a coherent whole, 
it is understandable that students have trouble adapt­
ing to the Cauchy-Weierstrass method. 

Not Integrating Multiple Metaphors 

Metaphors have their own inferential structures 
and can "lead to different conscious and unconscious 
beliefs that can cause obstacles to drawing various 
aspects into a central core concept" (Watson, Spyrou 
and Tall 2003). Students commonly learn two meth­
ods for adding vectors: the parallelogram method and 
the triangle method, as illustrated in Figure 12. Both 
methods are based on embodied metaphors and, al­
though the underlying metaphors are different, both 
techniques arc useful in understanding operations 
with vectors. 

The parallelogram method is based on the vector 
as a force metaphor. Situations like two people pull­
ing a sled or having two friends grab your arms and 
drag you along are within the experience of students. 
Both result in the sled or the person moving forward 
as if one force pulls it. It is natural therefore to think 
of the combination of two forces as a single force 

Figure 12 

Two Approaches to Adding Vectors 

Parallelogram method Triangle method 
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acting between the two forces. On the other hand, the 
triangle method is based on the vector as a journey 
metaphor. The sum of two vectors consists of two 
successive moves. We first move from A to B and 
then from B to C. The result is a journey starting at 

. .7.. ➔ ➔ A and endmg up at C: flli + BC = AC. 
Students who are introduced first to addition of 

vectors using the triangle method may have diffi­
culty understanding general properties of vectors like 
the commutative law. In a journey where the order of 
the two components does matter, BC + AB does not 
make sense. Consequently, the vector as a journey 
metaphor is not helpful in making sense of commu­
tativity. In contrast, from the perspective of the vec­
tor as a force metaphor lying behind the parallelogram 
method, the commutative law is obvious. Watson and 
Tall (2002) found that emphasizing the vector as a force 
metaphor in this context was of benefit to students. 

In turn, the parallelogram method does not easily 
explain subtraction of vectors. As shown in Figure 
13, the difference 1 -b lies on the di�{mal of the 
parallelogram. It joins the endpoints of a and band 
ends where the minuend a ends (see Figure 13). 
Nothing in everyday experience corresponds to this 
force. The vector as a journey metaphor explains 
subtraction much better. Students can think ofa - b 
as a + -b by reversing the direction of the second 
component of the journey as shown in Figure I 4. 

Figure 13 

Subtraction of Vectors Using the 
Parallelogram Method 

Figure 14 

Subtraction of Vectors Using the 
Triangle Method 
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Knowledge of both methods with their underlying 
metaphors is necessary for a thorough understanding 
of operations on vectors. Hsu and Oehrtman (2000) 
found that students became confused when they were 
not able to integrate multiple metaphors that could 
be used to structure a mathematical concept. 

Implications for Teaching 

"Mathematical concepts on the surface may seem 
to be neat and well organized, but underneath, in the 
workings of the brain, all sorts of conflicts and confu­
sions occur" (Tall 2003 ). Many theorists feel that 
teachers would find knowledge of cognitive structures 
inherent in mathematical concepts useful (Nunez 
2000; Nunez, Edwards and Matos 1999). With this 
understanding, they could assist students to better 
understand mathematical concepts through appropri­
ate use of metaphors. 

Activities can be designed to provide initial 
grounding for conceptual metaphors (Nunez, Edwards 
and Matos 1999; Tall 2003 ). For example, working 
with scales can provide experience with balance thus 
developing a basis for metaphoric thinking when 
solving equations. Grounding metaphors that rely on 
everyday experiences of students, like playing or even 
taking part in cultural activities, have been found 
to have a powerful effect on student understanding 
(Chiu 2000). 

Teachers can strongly encourage the use of 
metaphors in classroom communication. Using 
metaphors in classroom discussions encourages stu­
dents to accept metaphoric thought as a normal 
method in mathematics. Madden (2001) mentions 
the importance of social interaction in determining 
the efficacy and usefulness of patterns of metaphoric 
thought. Communities of learners, like communities 
of mathematicians, can share and explain the 
metaphors they use and adopt or correct them as 
needed. When metaphors are legitimated and spread 
among students, metaphoric thought is strengthened 
(Bazzini 2001 ). 

The importance of metaphoric thinking in the his­
tory of mathematics can be highlighted. Making 
students aware of different metaphors used at various 
times in the development of concepts like calculus 
will help them understand why conflicting metaphors 
sometimes appear in mathematics. 

Mathematics is traditionally taught as a collection 
of techniques, skills and attitudes that students must 
acquire. Pure logic holds a dominant position. "The 
body has been ignored because reason has been 
thought to be abstract and transcendent, that is, 
not tied to any of the bodily aspects of human 
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understanding ... [Our] bodily movements and inter­
actions in various physical domains of experience are 
experiential in structure ... and that structure can be 
projected by metaphor on to abstract domains" (John­
son l 987, XV). A better understanding of the hidden, 
very ordinary origins of complex concepts in math­
ematics can only result in more effective learning and 
teaching. 

Notes 
I. Figure 5 was my own attempt to illustrate che unit circle

conceptual blend. Later, I discovered that it has a remarkable simi­
larity to figures on pages 390-392 in Where Marhemacics Comes 
From. Independent development of the diagram illustrates how 
particular metaphors compel certain interpretations. It is likely 
that any graphic representation of the unit circle conceptual blend 
would closely resemble Lakoff and Nunez's images. 
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