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GUIDELINES FOR MANUSCRIPTS _ ____ __ _ 

delta-K is a professional journal for mathematics teachers in Alberta. It is published to 
• promote the professional development of mathematics educators, and
• stimulate thinking, explore new ideas and offer various viewpoints.

Submissions are requested that have a classroom as well as a scholarly focus. They may include
• personal explorations of significant classroom experiences;
• descriptions of innovative classroom and school practices;
• reviews or evaluations of instructional and curricular methods, programs or materials;
• discussions of trends, issues or policies;
• a specific focus on technology in the classroom; and
• a focus on the curriculum, professional and assessment standards of the NCTM.

Manuscript Guidelines 

1. delta-K is a refereed journal. Manuscripts submitted to delta-K should be original material. Articles cur
rently under consideration by other journals will not be reviewed.

2. All manuscripts should be typewritten, double-spaced and properly referenced. All pages should be num
bered.

3. The author's name and full address should be provided on a separate page. If an article has more than one
author, the contact author must be clearly identified. Authors should avoid all other references that may
reveal the author's identity to the reviewers.

4. All manuscripts should be submitted electronically, using Microsoft Word format.
5. Pictures or illustrations should be clearly labelled and placed where you want them to appear in the article.

A caption and photo credit should accompany each photograph.
6. If any student sample work is included, please provide a release letter from the student's parent/guardian

allowing publication in the journal.
7. Limit your manuscripts to no more than eight pages double-spaced.
8. A 250-350 word abstract should accompany your manuscript for inclusion on the Mathematics Council's

website.
9. Letters to the editor ·or reviews of curriculum materials are welcome.
10. Send manuscripts and inquiries to the coeditors: A. Craig Loewen, 414 25 Street S, Lethbridge, AB TIJ 3P3;

fax (403) 329-2412, e-mail loewen@uleth.ca or Gladys Sterenberg, 3807 104 Street NW, Edmonton, AB
T6J 219; e-mail gladyss@ualberta.ca.

Submission Deadlines 

delta-K is published twice a year. Submissions must be received by August 31 for the fall issue and 
December 15 for the spring issue. 

MCATA Mission Statement 

Providing leadership to encourage the continuing enhancement 
of teaching, learning and understanding mathematics. 
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EDITORIAL ______________ _ 

Conversations that began at the 2004 Mathematics Council of the Alberta Teachers' Association (MCATA) 
conference continue with this issue. Coeditor Craig Loewen collected and assembled a photographic essay that 
reminds us of our commitment to professional and personal growth within a community of teachers and other 
educators. Because the summer months can afford us time to reflect on recent developments in mathematics 
education, I have included several lengthy articles that offer more in-depth investigations of topics presented 
at the conference. 

I thank all those who have contributed to this issue. Your thoughtfulness when writing and your willingness 
to stimulate thinking and extend our understandings of new ideas in teaching mathematics are appreciated. 

Coediting this issue of delta-K has been a challenging and satisfying experience for me. I am very grateful 
for the mentorship provided by Craig Loewen, the encouragement from Len Bonifacio and other members of 
the MCATA executive, and the direction provided by Karen Virag, ATA publications supervisor. Many people 
have provided much encouragement and support as I begin this new endeavour. This has been invaluable as I 
attempt to continue the tradition of providing high-quality articles pertaining to the professional development 
of mathematics educators. 

On behalf of the MCATA executive, Craig and I are pleased to announce that, as of August 2005, delta-K 
will become a refereed journal. A refereed review process gives a voice to teachers as authorities in the math
ematical educators' communities. It is our belief and hope that by establishing delta-Kasa refereed journal, 
teachers will participate as authors and reviewers and will engage in ongoing professional conversations about 
mathematics instruction. We also hope that this process will help build an important mechanism for sharing 
the many marvellous activities, developments, resources and achievements that are evident across this 
province. 

I invite you to consider making a contribution to delta-K. This could be in the form of articles, classroom 
activities, letters and problems. It is your active participation and your willingness to share your ideas and 
teaching strategies that makes this journal a relevant and useful resource for mathematics educators. 
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Gladys Sterenberg 
Coeditor 
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FROM YOUR COUNCIL _ _________ _ 

From the President's Pen 

With the provincial election behind us and a new cabinet in place, I thought 
it would be appropriate and timely to write about how these changes may affect 
education and mathematics educators. 

We have a new education minister for the first time in five years. Gene 
Zwozdesky, a former teacher, took over the portfolio from Dr. Lyle Oberg. It 
was encouraging to hear him speak about wanting to address issues in educa
tion, including class size concerns, Grade 12 completion rates, the Learning 
Commission's recommendations and the stresses that teachers face in doing 
their jobs. This was very refreshing, and we hope that teachers in all subject 
areas and all grade levels will see a more cooperative and less adversarial re
lationship with the provincial ministry. 

It is also worth noting that advanced education has again become a separate 
ministry, after having been combined with basic education only a few years 
ago. The new minister is Dave Hancock, who is considered to be approachable 

and very aware of education issues. The reasons for separating the departments are not clear, but as a mathemat
ics educator, I am concerned that this will add distance to the relationship between secondary education stake
holders and postsecondary institutions. More dialogue with postsecondary officials is needed, especially in the 
areas of acceptance of mathematics courses at the postsecondary level and the use of technology in mathemat
ics education. 

Despite these reservations, I feel positive about the changes in general and I think mathematics educators 
have reason to believe that our working relationship with the provincial ministries will improve. Let's see what 
the new school year brings. Thank you. 

Len Bonifacio 
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MCATA Annual Conference 2004 

The 2004 MCATA annual conference in Calgary was a great success. We did expect a larger registration, but 
with over 450 delegates, we did well. We scheduled around 70 sessions for teachers, and offered both 60-minute 
lectures and 90-minute workshops to choose from. Thank you for all the supportive comments. We are looking 
forward to the 2005 conference in Edmonton. As the information becomes finalized, it will be posted on the 
MCATA website at www.mathteachers.ab.ca. 

Sandra Unrau, 2004 Conference Director 
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President Len Bonifacio gets the conference 
under way. 

The registration desk. 

Past president Sandra Unrau 
thanks the speaker. 
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Photos and layout 
by A. Craig Loewen, 

coeditor, delta-K

MCATA Annual Conference 2004 

A Photographic Memory 

Keynote speaker Dr. /vars Peterson "The Jungles of Randomness." 

President Len Bonifacio leads 
the annual general meeting. Keynote speaker Dr. Brent Davis. 
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Dr. Art Jorgensen presents the award named in 
his honour to Lisa Hawk-Meeker. 

Len Bonifacio presents Percy Zalasky with Math 
Educator of the Year Award. 
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Dr. Art Jorgensen 

Two new Friends of MCATA: Helen McIntyre ( centre) and Carol 
Klass (right). 

Percy Zalasky (right) with nominator Darryl Smith. 
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Some Sessions and Conference Speakers 

Joanne A dome it and Alice Laird, "You Too Can Problem Salve_!" 
Stephanie Gower-Storey, "Assessment 
for Learning in Applied Math 30" 

Dave Walker, "Using the New 
Math Type 5 Effectively" 

Betty Morris, 
"Best Practices in 
Mathematics" 

Dr. Marie Hauk and Bryan Quinn, 
"Math in Outer Space" 
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Marian Oberg, "In 
Search of Meaningful 
Practice" 

Garry Bell, "Turning 
Your Kids on to 
Calculators" 

Dr. Nola Aitken, "Native Ways 
of Knowing Mathematics" 
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READER REFLECTIONS __________ _ 

Times Have Changed 

Frank Jenkins 

A few years back I wrote an article for The Science 
Teacher indicating the critical shortage of chemistry, 
physics and mathematics teachers in the province 
(and worldwide). The typical situation was that we 
at the University of Alberta supplied about 75 biol
ogy majors and 12 physical science majors (a 6: I 
ratio)-whereas the demand in the high schools was 
for a ratio of2:3 (biology:chemistry+physics). About 
four years ago we graduated two chemistry teachers 
from the University of Alberta. Fortunately we have 
had a surplus of biology majors to take some of the 
physical science positions; however, many of these 
students did not even have a physical science minor. 

Compounding the critical shortage in Alberta was 
the same shortage worldwide. Many of our physical 
science and mathematics students use a major and/or 
minor as a ticket to travel and see the world. This is 
a recruitment tool that sometimes backfires. We hope 
that some of these students will be back some day. 

Today I am happy to report that we have had some 
success turning this situation around. For example, 
the numbers of majors plus minors in the physical 
sciences now exceeds the number of majors plus 
minors in biological sciences. The word has got out 
to students about the career opportunities for physical 
science and mathematics teachers, and we have cre
ated chemistry and physics majors and minors to 
remove some barriers to specialization and honours 
science students entering our faculty. The numbers 
of our students in the University of Alberta education 
system-year 2-5-are: 
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Subject Majors Minors Total 

Biology 131 117 248 

Chemistry 51 48 99 

General 81 39 120 

Physical 46 33 79 

Physics 31 28 59 

Math 200 139 339 

One problem that remains is to communicate this 
information to department heads, principals, human 
resource officers and superintendents; that is, the 
people who are hiring chemistry, physics and math
ematics teachers. There are still reports of non-science 
majors being hired to fill science positions, because 
the person doing the hiring thinks that there is still a 
critical shortage of graduating science-education 
students. On the contrary, we now have specialists to 
fill these vacant positions. Similar conditions exist 
for mathematics�ducation students. 

Please help by getting the word out to the people 
who do the hiring in your district-send them a copy 
of this article. Talk to them directly. 

It's nice to have some good news to spread. 

Frank Jenkins is an adjunct associate professor and 
director of the Imperial Oil Centre for Mathematics, 
Science and Technology Education in the Department 
of Secondary Education at the University of 
Alberta. 
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FEATURE ARTICLES ___________ _ 

Emergent Insights into Mathematical 
Intelligence from Cognitive Science1

Brent Davis 

In this article, I point to a handful of recent devel
opments in cognitive science in an attempt to high
light how they might contribute to a rethinking of the 
nature of mathematical intelligence. ln the process, 
I also offer some preliminary speculations on what 
these developments might mean for the teaching of 
mathematics. 

I must begin with a disclaimer: Cognitive science 
is a burgeoning field. It is really only a half-century 
old, and it has just taken off in the last decade, spurred 
along by the invention of technologies that enable 
researchers to peer into brains in real time. Some 
surprising observations have been made-ones that 
have compelled researchers to question and reject an 
array of deeply entrenched assumptions about how 
people learn, how brains work, what thinking is and 
what intelligence is all about. 

Cognitive science isn't actually a field. The phrase 
is an umbrella term that stretches across certain re
search in artificial intelligence, linguistics, cultural 
studies, philosophy, experimental psychology, neurol
ogy, neurophysiology, ecology, cybernetics and 
complexity science-to mention a handful of the 
more prominent areas. In brief, the emergence of 
cognitive science as a domain of research might be 
taken as recognition that investigations into such 
phenomena as learning and intelligence require a 
transdisciplinary approach. None of the above-men
tioned fields on its own has the capacity to answer 
the big questions about human cognition. 

With regard to education, this move toward trans
disciplinarity is a significant development. For most 
of the past century, educators relied almost exclu
sively on psychology for their formal definitions of 
intelligence, the tools to measure it and advice on 
how to nurture it. As it turns out, much of that advice 
was good, despite some troublesome assumptions. 
But much of it was also a bit problematic. In particular, 

the reliance on psychology has contributed to some 
deeply ingrained and unfixable dichotomies-be
tween, for example, skills-based and understanding
oriented instruction, or between teacher-centred and 
learner-centred instruction. Most of what we've bor
rowed from psychology compels us to take one side 
or the other, or to live with some uncomfortable 
compromise. 

But, as John Dewey ( 1910) noted a century ago, 
we never solve such radical splits. We simply get over 
them. So none of what l present here should be taken 
as an argument for or against, for example, skills
based or student-centred instruction. Rather, I'm 
actually arguing that recent cognitive science pro
vides us with a way of sidestepping these sorts of 
quagmires and opening spaces for more interesting 
and productive discussions. 

Before going too much further, it's important to 
be clear about how cognitive science defines intel
ligence-and let me emphasize that this definition 
represents a break with popular and psychology-based 
orthodoxies. For instance, for the cognitive scientist, 
intelligence is not what IQ tests measure, as might 
be inferred from the fact that some patently unintel
ligent machines are able to perform at the genius
level on most fQ tests. As well, an individual's IQ 
score can vary by as much as 50 points, depending 
on the time of day, warm-up activities, hunger, thirst 
and so on. 

Cognitive science uses a much broader definition: 
Intelligence is the capacity to respond to new situa
tions in ways that are not only appropriate, but that 
open up new spaces of possibility. Intelligence, then, 
is not merely about getting the right answer to a trick 
question. ft is about coming up with solutions to real 
problems, with answers that go beyond routine re
sponses and that enable the person to go further than 
he or she could before taking on the problem. 
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Intelligence, in these terms, is about breeding new 
possibilities, opening up new vistas, not about re
sponding to mind-twisters devised by others. 

Point #1: Consciousness is small. 

One solid, rigorously demonstrated conclusion of 
the research out of 19th- and 20th-century psychol
ogy was that human intelligence is greatly constrained 
by some rather severe biological limitations on con
sciousness. In particular, a frequently cited factoid is 
that humans are capable of juggling a maximum of 
6 or 7 details in their heads at a time, but can only do 
that for about 15 seconds before some or all fall away. 
This 6-7 limitation is especially interesting when 
considered against the total number of sensory recep
tors in an average human body, which is estimated to 
be somewhere in the 10 to 20 million range. (Some 
researchers contest that the total is in the order of 
1010; see [Norretranders 1998].) To drive that point 
home, fewer than one in every million sensory events 
(and the number may be closer to one in a billion 
events) ever rises to consciousness. 

This insight is actually an old one, thoroughly 
demonstrated in the 1800s. It was a key tenet in the 
emergence of discourses as diverse and incompatible 
as B. Skinner's behaviourist psychology and Sigmund 
Freud's psychoanalysis, both of which were under 
development about a century ago. 

A brief demonstration might be useful here. First 
read the following instruction, then follow it. Close 
your eyes and imagine two dots, then three. then four, 
then five, then 20, then I 00. 

Chances are that your image of three was arranged 
in a triangle, that your four was a square, your five 
was either a pentagon or a square with a dot in the 
middle. You shouldn't have been able to imagine 20 
or 100, but you might have invoked a strategy like a 
grid to think of these quantities in terms of smaller. 
more readily imagined amounts. 

Now repeat the tasks, this time with all of the 
imagined objects in a single row-no grids, polygons 
or subgroupings allowed. You will likely max out at 
five. I know of no one who can imagine six side-by
side, ungrouped objects. 

There is some compelling evidence that the capac
ity to imagine small quantities might actually be built 
in. It's been established that very young babies can 
discern between one object and two objects, likely 
between two and three, and perhaps between higher 
quantities (see Gopnik, Meltzoff and Kuhl 1999). It 
also seems that we share that ability with lots of 
mammals, some birds and a few other species. 

The realization that consciousness is so tremen
dously limited is one of the principles that undergirds 
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the highly parsed structure of modern curricula, es
pecially mathematics curricula, which have been the 
subject of more psychologically based research than 
any other topic area. (In fact, math curricula have 
been the focus of more research than all the other 
areas combined.) The practice of structuring a lesson 
around one small topic, such as adding integers, long 
division or factoring a trinomial, originated in part 
from the embrace of the factory model of schooling, 
but the bolt that holds it in place is research into the 
limitations of consciousness. 

In fact, that research is so compelling that I have 
structured this article around it. My psychologist 
colleagues tell me that the best I can hope for is that 
you' II retain at most six or seven bits of information. 
So I've limited my foci to seven points. 

Before moving on to the second of those seven, I 
want to nod to a few implications of this first point 
for our efforts to nurture mathematical intelligence. 
Two implications: 

• We have to limit the amount of new information
in any given learning event.

• We have to use design learning in ways that help
learners focus their attention on what really matters.

We've already mastered the first point. The second
one is a little more complex than it might appear. 

There is a connection between intelligence and 
discernment. In fact, intelligence was originally 
conceived as the capacity to discern what is really 
important in a situation. As it turns out, there are 
teaching strategies that can support people's 
discernment-making abilities-that is, that help them 
be intelligent. 

Anne Watson of Oxford University and her hus
band John Mason of the Open University in the 
United Kingdom have done considerable work on 
this issue. An example based on their work is the 
following: 

Compare the two lists here: 

3 : 3 

1.7: 1.7 
x:x 

eni: eni 

and 

3:3 

6/4 
2 to 9 
...un_ 
0.36n2 

The point Anne intends through this sort of com
parison may seem counterintuitive. She argues that 
the first list mjght be a better pedagogical tool because 
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it is designed to assist the learner to make a key 
mathematical discernment. In contrast, the second 
list obscures the discernment. Too much is going on. 
Her argument is that if there is not much variety, we 
generalize. If there is too much variety, we categorize. 
And for the most part, the intelligent mathematical 
action is about making the sorts of discernments that 
enable generalization, not categorization. 

The first list sets itself up for questions like, What's 
the same? What's different? Is it always, sometimes, 
or never true? Are there examples that don't fit the 
pattern? In other words, even though it might look 
like there is less there, it's much easier to strike up a 
conversation about what is presented-that is, to 
pinpoint and emphasize what really matters. 

The fact that consciousness is limited also points 
to the need for repetition and practice, which is some
thing that traditional mathematics teaching has done 
well and that reform teaching has often done less well. 
Let me underscore this point. 

Point #2: Intelligence relies on the capacity to 
routinize knowledge and procedures so that con
sciousness is freed up to work on other tasks. 

Consider this sequence of numbers: 
I, 11, 21, 1211, 111 221, 312 211 
What comes next? 
The following discussion will be more meaningful 

if you actually try to respond to the question. 
When you first take on this sort of problem, your 

brain activity spikes and continues to do so until you 
either find a solution or give up on it. If you do in fact 
come up to a solution, your brain very quickly works 
to routinize things by delegating the task to a sub
regions or clusters of subregions while the rest of 
the brain returns to its usual near-resting state. 

The realization of the importance of routinization 
for intelligence is quite a recent development. Or, at 
least, the proof for it is recent. Now that we can watch 
the brain in action, we can see that brains respond in 
different ways to novel situations. When presented 
with an unfamiliar problem or context, all brains 
begin to fire rapidly. And the whole brain fires when 
it meets a novel problem, not just parts of it (see 
Calvin 1996). I'll return to this point later. 

The quality that most distinguishes the intelligent 
brain from the unintelligent brain is that it quickly 
settles on what's important, routinizes it and assigns 
it to subconscious processes. So, in terms of the pro
file, there's an initial spike of whole-brain activity 
that settles very quickly into lower-level, region-spe
cific activity. By contrast, the unintelligent brain 
continues at a high level of whole-brain activation, 
apparently groping for what's important. 

12 

The happy thing is that the brain can improve its 
abilities to make vital discernments. One key is prac
tice. Let me tell you a quick story. 

Each week for the past three years, I've been meet
ing with Krista, an adolescent, about her mathematics. 
When I first met her, she was in Grade 9 and was 
unable to see patterns in lists of numbers like 

I 4 9 16 25 36 49 64 

2 3 5 8 13 21 

It didn't take much probing to discover that a large 
part of the problem lay in the fact that she couldn't 
work with even single-digit numbers reliably. Calcu
lations like 6 + 7 and 5 • 3 were problems for her. 

This meant that she was failing mathematics 
badly, and had been doing so since Grade I. The 
school board had been testing her annually and she 
had had at least eight years of focused help with 
special needs teachers. Yet in Grade 9 she couldn't 
do things that are routinely expected of children in 
Grades 2 and 3. I decided to work with her because 
I thought she might be one of those interesting cases 
of people with location-specific brain injuries, which 
I imagined could be a fascinating thing to study from 
the point of view of an educational researcher. 
It turned out that I was quite mistaken in this 
suspicion. 

The first year of our association was spent on what 
I thought of as educating her intuition-a phrase that 
refers to engagement with processes and situations 
intended to help one develop a feeling for quantities 
and manipulations of quantities. For instance, we 
spent a total of about six hours (a month's work to
gether) figuring out different ways to estimate the 
number of grains of rice in a bowl. We spent consid
erably more time on paper-based activities, such as 
folding, cutting, assembling and dismantling. We did 
anything I could think of that might be interpreted in 
terms of basic operations on whole numbers, integers 
and rationals. 

Significantly, I insisted on practice. Krista had 
daily homework exercises, which included flashcard 
drill on multiplication facts, writing out explanations 
of why things seem to work how they work, spending 
time on non-routine problems and so on. Six months 
into our work together, the psychornetrician who had 
worked with her for three years was surprised to note 
that her score on the mathematics portion of the test 
he used had soared from Grade 2.3 (at the end of 
Grade 8) to Grade I 0.8 (in the last half of Grade 9). 

I cite those statistics cautiously. Krista really was 
not working at a Grade 10.8 level. (I had no access 
to the test, so I cannot comment on what was really 
being assessed.) But the numbers do suggest that 
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something important had happened. At the time of 
this writing, she is enrolled in the Grade 12 applied 
stream mathematics course. Her average in mathe
matics is consistently in the 80 per cent-range. That's 
gratifying, but what is really exciting is that while 
she's writing an exam she can now tell whether or 
not she's doing well. Two years ago, she couldn't tell 
you what sort of grade she might get on a test. If she 
passed (which was not often), she attributed it to luck. 
Now she can predict her score with a high degree of 
accuracy. 

1 recently asked her about her new capacity to 
predict her exam results and how she could feel so 
sure of her predictions. She responded that a few years 
ago, her brain would "just go crazy in math exams." 
She couldn't focus, she couldn't remember. Now, in 
her exact words, her "brain just goes calm" when she 
realizes she can respond to the questions. 

I haven't had a chance to monitor her brain activity, 
but I'm fairly confident in the assertion that two years 
ago, in a test situation, her brain was spiking through
out the test, to no avail. Now, it's spiking and settling 
in-just as an intelligent brain is supposed to do. 

As for teaching implications, a central point is one 
that we all know deeply-if we want to be proficient 
in an activity, much of it has to be routinized. Be it 
playing hockey, playing the piano or adding fractions, 
certain levels of practice are needed not only to de
velop the basic mechanical competencies but to get 
a feel for what one is doing. 

There is one caveat here. Practice must be contex
tualized. The brain resists learnings that lack context 
or that are not anchored in purposeful activity for 
reasons that I will develop later. But first, l want to 
make one more point on the role of practice. 

Point #3: Mathematical genius (in fact, any category 
of genius) is, in general, much more about focus and 
practice than it is about innate, biologically rooted 
talents or gifts. 

Rena Upitis of Queen's University often asks audi
ences to do the following: Think about something 
you're really, really good at. Now answer two questions: 
Do you practise it? And did you learn it at school? 

You probably said yes to the first and no to the 
second. 

The fact of the matter is that talent and genius are 
dependent on practice. So long as the basic biology 
of the brain isn't compromised, an otherwise typical 
person can obsess his or her way toward genius in 
some domain of activity because the brain is what 
neurologist and psychologist Merlin Donald (200 I) 
describes as a "superplastic structure" whose resources 
can be co-opted and reassigned through dedicated 
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practice. if those resources are focused on mathemat
ics-or golf, or the cello, or plumbing-otherwise 
ordinary individuals can achieve quite extraordinary 
feats after years of focused effort. 

One interesting statistic in this regard is that the 
rates of mental illness, particularly obsessive com
pulsive disorders, are several times higher among 
elite mathematicians, musicians, athletes and other 
high performers (Richardson 1999). This is not to say 
that obsession is a good thing; it is merely to underscore 
that, biologically speaking, most of the super geniuses 
of the world began life with capacities that were very 
similar to the ones the rest of us were born with. 

I'm not suggesting that people are all born with 
the same cognitive architectures or that there's no 
such thing as natural mathematical talent. Clearly, 
such notions are misguided. The point is that most of 
the differences that we observe among adults have 
more to do with habits of mind than with raw horse
power. A person who begins with typical ability but 
who is obsessive about mathematical concepts can 
be a much better mathematician than a person with 
considerable natural ability but no inclination to 
develop his or her own capacities. 

I return to Krista here. Two years ago, she was 
mathematically inept. She is far from a mathematics 
genius, but she is now mathematically capable. And 
just being capable means that her mathematical intel
ligence has skyrocketed. 

The claim here is that one can become more intel
ligent, and it is an assertion that flies in the face of 
some deeply engrained beliefs and practices. IQ tests, 
for instance, are developed around the assumption 
that something innate is being measured, not some
thing that can be honed through practice. Howard 
Gardner's theory of multiple intelligences is anchored 
in the assumption that differences in human capacities 
for mathematics, interpersonal relations, music and 
so on are all rooted in variations among inborn brain 
structures. And we are confronted with tale after tale 
based on the assumption-and that advances the 
belief-that mathematical talent is innate. Consider 
the popular Hollywood films Good Will Hunting, 
Little Man Tate, A Beautiful Mind. The implication 
in these stories often seems to be that education is 
supposed to stay out of the way of a genius. 

But the fact of the matter is that there are no 
documented cases, anytime or anywhere, of a full
blown mathematical genius who became that way 
without extensive practice and some formal educa
tion. It simply doesn't happen. By contrast, there is 
no shortage of evidence to support that assertion that 
mathematical intelligence is not fixed. We can make 
ourselves smarter. 
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Teachers can play an important role here. Emotions 
like curiosity and pleasure can be infectious. In fact, 
all emotions are. We humans are prone to being 
caught up in others' emotional expressions. So it's 
worthwhile asking yourself what emotions are you 
expressing in your classroom toward the mathematics? 
Enthusiasm? Indifference? Amusement? Obsession? 
(See [Damasio 1994) for a discussion of the relation
ship between emotion and logical competence.) 

On the issue of making ourselves and our students 
smarter, it turns out that there are critical moments in 
life for nurturing one's intelligence. 

Point #4: Brains are constantly changing-and 
they change most rapidly in the first few years of 
life and during early adolescence. 

What do you see in the inkblot below? 

,;.,· 
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Now, what if I tell you that this is actually a picture 
of two people squatting back-to-back holding ducks 
in their laps? 

Once you apply this interpretation into the image, 
you can't help but see what you were told to see. 

In other words, I have affected your brain struc
tures by imposing a specific interpretation. That in
terpretation is compelling because your brain im
mediately went to work to activate the associations 
necessary for you to perceive the image as described. 
That is, your brain is physically different because of 
my intervention. Every lived experience entails a 
physical transformation of your brain. 

Now consider such common turns-of-phrase as 
"taking things in," "attaining one's personal poten
tial" and "brain as computer." We have dozens of 
such expressions, all of which assume and assert a 
fixed brain architecture-as though the brain were 
some kind of preset and unchanging receptacle. Noth
ing could be further from the truth. Some details: 

1. Brains account for about 5 per cent of the body's
weight, but consume about 20 per cent of the
body's energy. In other words, they're incredibly
physically active, and when I say physical, I mean
physical. Things are actually moving about up
there. On an MRI the brain looks vastly more like
an anthill than it does a computer.
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2. Infant and adolescent brains operate in overdrive,
consuming two to three times as much energy as
a typical adult brain. The claim has been made that
if only a three-year-old could have an adult's
knowledge and experience, all of the great prob
lems of science would be solved in short order
(Gopnik, Meltzoff and Kuhl 1999). They're ge
niuses. Super geniuses. And we might expect as
much. They have to develop language, put to
gether a theory of how the world works and mas
ter the complexities of interpersonal relationships
in just a few years. None of us adults can do that.

Until about five years ago, it was believed that 
brain activity undergoes a gradual and steady de
cline from toddlerhood to adulthood. But some 
recent research has demonstrated that there's a 
renewed surge of brain activity in early adoles
cence, e�pecially around junior high age. They're 
geniuses again. 

Some, including Pinker ( 1997), theorize that 
this second surge in brain growth and activity is 
an evolutionary response to the need to cope with 
some new and fairly significant distractions. 
Whether or not that's the case, it would seem to 
make sense to take advantage of their amplified 
cognitive powers. 

3. One of the differences between intelligent brains
and not-so-intelligent brains is the density of neu
rons. Einstein's brain is pretty normal in size. There
are no odd bulgy areas. However Einstein's neu
rons were more tightly packed and more intri
cately interconnected than typical brains.

It turns out that neuronal interconnections can 
be grown. In fact, whole new neurons can be 
grown. These things happen in response to experi
ence and need. As Canadian neurologist Donald 
Hebb (1949) wrote 50 years ago, "Neurons that 
fire together, wire together." A key here is, once 
again, contextualized and rich practice. 

Considered together, the above points underscore 
an important conclusion: Your brain, at this moment, 
is different from the brain that you had when you 
started reading this article. Every experience you have 
contributes to the ongoing restructuring of the brain. 
Put in somewhat different terms, the brain isn't hard
ware and knowledge isn't data or information. These 
popular and pervasive ways of talking about learning 
and knowledge are way, way off. 

In terms of implications for teaching, the sorts of 
things that contribute to increased neural density and 
interconnectivity are the sorts of things that force 
learners to think outside the box. Such activities in
clude sustained engagements with mathematical 
puzzles, attending to the different ways that concepts 
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can be interpreted and doing things that are unfamil
iar and nonroutine. In particular, for a learner to de
velop mathematical intelligence and robust mathe
matical understandings, she or he has to be aware of 
how mathematical concepts can be interpreted in 
different ways. I tum to an example of this presently. 

Point #5: Human thought and learning are main
ly associative not rational-that is, analogical, not 
logical. Mathematical intelligence and creativity 
are rooted in the capacity to select and blend ap
propriate associations. 

What is multiplication? 
It turns out that this question has at least a dozen 

distinct responses, all of which are correct. In a recent 
workshop with a group of K-12 teachers, the follow
ing list was generated: 
• Repeated addition: 2 x 3 = 3 + 3 or 2 + 2 + 2
• Grouping process: 2 x 3 means "2 groups of 3"
• Sequential folds: 2 x 3 can refer to the action of

folding a page in two and then folding the result
in 3

• Many-layered (the literal meaning of multiply):
2 x 3 means "2 layers, each of which contains
3 layers"

• Grid-generating: 2 x 3 gives you 2 rows of 3 or
2 columns of 3

• Dimension-changing: a two-dimensional rectangle
of area 6 units2 can be formed when one-dimen
sional segments of lengths 2 units and 3 units are
placed at right angles to one another

• Number-line-stretching or -compressing; 2 x 3 = 6
means that "2 corresponds to 6 if a number-line is
compressed by a factor of 3"

• Rotating: for example, multiplication by -1 means
rotate the number line by 180

° 

-which reverses
its direction

This list is far from exhaustive. It could easily be
extended to include interpretations that are needed to 
make sense of the multiplication of vectors, matrices 
and other familiar mathematical objects. 

It's important to emphasize that all of these inter
pretations point to distinct actions. They can be 
mapped onto one another, but they cannot be reduced 
to one another. And it's important that they're distinct. 
The power of mathematical processes like multiplica
tion is not that they can be reduced to a single defini
tion or process, but that they actually consist of 
clusters of interpretations. 

There are some major teaching implications here. 
For most of the past four centuries, school mathematics 
has been organized around the assumption that math
ematical learning proceeds logically and sequentially, 
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like the construction of a building. Think of some of 
the metaphors that tend to be used: solid foundations, 
the basics, a cornerstone of logic, the structure of 
knowledge, and building and constructing ideas. 

There is a popular assumption that the history of 
mathematics unfolded logically and sequentially as 
well. Nothing could be further from the truth. The 
more recent histories of mathematics underscore this 
point (for example, Mlodinow 200 I; Seife 2000). The 
great leaps in the emergence of mathematical knowl
edge didn't occur through moments of logical insight, 
but through the development of new analogies. The 
concept of multiplication, for instance, has grown 
over the centuries as new interpretations have been 
proposed and blended into the existing definition (see 
Lakoff and Nunez 2000; Mazur 2003). 

What does th.is mean for mathematical intelligence? 
Let me preface my answer to that question with a 

quick visit to the field of artificial intelligence (Al) 
research. AI started in the 1950s when computers 
were beginning to outperform their programmers on 
some difficult mathematical tasks. Based on this 
early success, computer scientists and science fiction 
writers began to make confident predictions about 
the future of machine intelligence, forecasting that 
electronic intellects would soon dwarf flesh-based 
intellects. 

Fifty years later, we see that they were spectacu
larly wrong. The reason for the collective error is 
instructive: They assumed-as did the original lQ-test 
inventors, many curriculum designers and writers of 
Star Trek-that logic is the root of intelligence. The 
belief was supported by their own experiences. Like 
most people, they found logical tasks very difficult. 

And there is a reason why they're difficult-it's 
because our brains are analogical. That is, the root of 
intelligence is not logic, but the capacity to make 
new associations among experiences-through story
ing, analogy, metaphor and other figurative devices. 
Ours is an intelligence that is capable of logic, but 
that capacity rides on top of very different sorts of 
competencies. 

There's a rather shocking implication here-our 
current mathematics curriculum might be stifling 
mathematical intelligence, not supporting it, an as
sertion that might be linked to Point #2. Brains resist 
decontcxtualized, overly abstract constructs. When 
the brain meets something new, it works very hard to 
weave the experience into the web of existing asso
ciations. But if the new topic comes without obvious 
associations, then it can't be learned on any level 
other than the mechanical. But human brains are 
notoriously unreliable when it comes to rigidly pro
cedural knowledge. 
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One of the major implications for teaching is 
something that we can't do much about at the mo
ment. Mathematics curricula are structured after the 
model of the logical proof. You begin by developing 
the premises or basics and proceed by assembling 
those premises into more sophisticated truths. In 
terms of the analogical nature of human cogni
tion-and, in fact, in terms of the emergence of 
mathematical knowledge-this instructional se
quence amounts to putting the cart before the horse. 
Logical justification has always come after the de
velopment of a new way of interpreting things. 

Speaking of the model of formal logic, did you 
know that Euclid's five axioms aren't sufficient for 
his geometry? He missed some necessary axioms 
because he was thinking analogically, not logically. 
About a century ago, David Hilbert ( 1988/1899) 
identified several others that are needed for Euclid to 
be logically complete. It took more than two millennia 
for mathematicians to notice the gap. Why? Because 
humans are much more analogical than logical. 

But, of course, we can't wait for full-scale curricu
lum restructuring. In the meantime, to nurture your 
students' mathematical intelligence, I recommend 
that you work with them to try to uncover the asso
ciations that have been built into mathematical con
cepts. Start with addition. What arc some of the ways 
we interpret adding? (If you want one answer to that 
question, you might check Lakoff and Nunez 2000.) 

Let me re-emphasize that robust understandings 
and flexible applications of mathematical ideas-that 
is, the underpinnings of mathematical intelligence
are completely dependent on access to the range of 
meanings that are knitted together in a concept. 

Point #6: The real power of mathematics arises in 
cleverly structured symbolic tools, which collect 
together but conceal the arrays of interpretations 
and experiences that underlie concepts. 

Close your eyes and imagine v'-15. 
It's not so easy. And yet, as it turns out, v'-15 is 

utterly imaginable. Barry Mazur, a Harvard Univer
sity mathematician, explains how in his 2003 book 
Imagining Numbers. Space prohibits an adequate 
summary of his discussion, but I can mention that to 
imagine v'-15, you have to know that the concept 
relies on the notion of multiplication-as-rotation. That 
is, multiplication by a negative means a 180'-rotation 
and multiplication by two negatives means a 360'
rotation (which takes you back to the starting orienta
tion). One more detail is needed: one might think of 
a square root as half of a multiplication, as indicated 
by the exponent of 1/2. If you blend these ideas-as 
mathematicians did a few centuries ago-you get the 
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root of a negative is a half of a 180'-rotation, which 
is a 90' -rotation, which generates the complex plane. 
The roots of -15, then. are the points that are just 
beneath the +4 and just above the ---4 on the i axis of 
the complex plane. 

Lakoff and Nunez (2000) take this sort of thinking 
even further and demonstrate how it's possible to 
imagine Euler's formula: eni + I = 0. Even more 
significantly, they attempt to impress that this very 
complex notion is rooted in bodily action, like mov
ing forward, spinning and so on. (See Elizabeth 
Mowat's article in this issue for a fuller discussion of 
Lakoff and Nufiez.2) 

My point here is not really that such imaginings 
are doable nor that we should be doing them in our 
math classes-although I do believe that they are 
doable and that we should be doing them in our math 
classes. It is, rather, that knitted into these symbols 
are an incredible array of experiences and possibili
ties. They are intelligently designed tools that 
greatly expand what we are able to do. 

To put a finer point on it, tools such as language, 
mathematical symbols, and calculators aren't just the 
product of human intelligence-they are bestowers 
of intelligence. Humans with language are much more 
intelligent than humans without language. And, al
though I don't have nearly the raw intelligence of 
Archimedes or Newton or other mathematical giants 
of history, I can do things that they didn't even imag
ine doing because of the tools they helped to build. 

Now, by psychologistic definitions of intelligence, 
you might argue, the fact that I can solve an unsolved 
differential equation by typing it into Maple does not 
make me a mathematical genius. And according to 
measures of IQ, that's true. But going by the cognitive 
science definition of intelligence (that is, intelligence 
is the capacity to respond to new situations in ways 
that arc not only appropriate, but that open up new 
spaces of possibility), intelligence is about an ever
growing horizon of possibility, not the capacity to 
master what's already been established. What's more, 
intelligence is obviously not an individual phenom
enon. Not only can we make ourselves smarter, we 
can contribute to the intelligence of others by giving 
them access to the tools of our intelligence. On this 
point, it's important to emphasize that we're rou
tinely asking high school students to perform math
ematical operations that were accessible only to the 
geniuses of a few centuries ago. 

Now, to be clear, I'm not suggesting that technology 
on its own makes us smarter. Giving an iMac to a cave
man would be a bit of a waste. And we have probably 
all seen people grab a calculator in order to add O or to 
multiply by l .  Those are decidedly unintelligent acts. 
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The point is, rather, that intelligence is not some 
mysterious quantity that's locked in our heads. Intel
ligence is about appropriate and innovative action, 
and to be intelligent in mathematics in this day and 
age requires more than a mastery of the conceptual 
tools that have been developed by our forebears. 
Intelligence is greatly enabled by a facility with con
temporary tools. That's certainly true among research 
mathematicians. Our mathematics pedagogy hasn't 
adapted to take that into account, even though elec
tronic technologies have contributed to dramatic re
shaping of the landscape of mathematics research. 
We have to think about ways of incorporating these 
technologies to amplify possibilities, not just to brush 
aside tedious calculations as we cling to a curriculum 
that hasn't much changed in 400 years. 

Point #7: The clinically based research that supports 
point# 1 is flawed, and the flaws are instructive. 

Most of the consciousness research that was con
ducted through the 20th century was undertaken 
in laboratories. And it turns out that if we isolate 
people in a room without any of the tools we use to 
extend intelligence, their conscious capacities will 
turn out to be not just amazingly limited, but amaz
ingly equal, whether they are Nobel Prize laureates 
with something to prove or six-year-old brats who 
couldn't care less. 

Now, it seems to me that this fact should have 
prompted curriculum developers to hesitate a little 
before structuring programs of study around the 
limitations of consciousness by parsing up concepts 
into small, 45-minute-lesson-sized concepts. But it 
didn't. It seems that no one thought to ask what it 
might be that enables some people, with essentially 
the same conscious capacities, to achieve such re
markable feats. Inborn ability is certainly part of a 
factor, but the range of inborn abilities is simply too 
limited to explain the variations in achievement that 
we see. Obsession is a huge factor, too, but we all 
know that obsessing about something doesn't neces
sarily lead to great insight. 

A major clue into the difference between ordinary 
and extraordinary performances has emerged over 
the past few decades, as we've developed the techni
cal abilities to study humans in contexts that are a bit 
more natural than the laboratory setting. Some sur
prising things have been shown. One of them is that 
humans have the capacity to "couple their conscious
nesses" (Donald 2001 ); that is, to link their minds, to 
coordinate the rhythms and cycles of their brains' ac
tivities. In the process, they can fonn grander cognitive 
unities. One common sort of coupled conscious
nesses is a "conversation." 
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It turns out that, in the context of a conversation, 
humans are able to collectively juggle not 7 ideas, 
nor 7 + 7 ideas, but more in the order of 7 x 7 ideas. 
And some of those ideas can endure not for l O or 
15 seconds, but for minutes and hours. 

This point is critical to the production of mathe
matical knowledge. The image of the focused and 
still mathematician labouring alone in a locked cham
ber is not at all representative of how research math
ematicians work. There may be moments when 
they're on their own, but like anyone in any domain 
who is concerned with the development of new in
sights, they surround themselves with others and 
others' ideas. No mathematician is an island. 

Elaine Simmt, also of the University of Alberta, 
and I have been trying to understand the sorts of col
lective structures that support the work of mathema
ticians. Drawing from complexity science (see, for 
example, Kelly 1994 ), we have identified a handful 
of conditions that are common to such intelligent 
collectives (see Davis and Simmt 2003). This think
ing is still in its infancy, but J can report briefly on 
what is involved in prompting the emergence of an 
intelligent collective in the classroom-a collective 
that, in turn, supports the development of each indi
vidual's mathematical intelligence. 

Over the past 20 years, complexity scientists have 
been labouring to identify the sorts of conditions that 
enable the emergence of complex systems-how, for 
example, ants interact to form anthills, species couple 
together within ecosystems, cells knit themselves into 
organs, and organs into individuals, and individuals 
into societies and so on. Among the necessary condi
tions for these happenings, the following six seem to 
have a particular relevance to the work of the math
ematics teacher: 

• Internal Diversity-Internal diversity refers to the
pool of possibilities that a system has to choose
from when it's faced with a novel circumstance.
It is the basis of the collective's intelligence. A
system in which all of the components are ex
pected to do the same thing at the same time will
not be an intelligent one.

• Internal Redundancy-That being said, it's impor
tant that the agents in a system have enough in
common to be able to work together, whether talk
ing cells, birds, people or social systems. Redun
dancy is also necessary for a robust system. If one
agent fails, another can step in.

Some redundancies among participants in a col
lective have a lot to do with actions and competencies 
that are automatized. This is where traditional math
ematics teaching has focused. The only way that 
a system's diversity can be a source of intelligence 
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is if its agents are sufficiently alike for the bit of 
diversity to be embraced and elaborated. 

• Neighbour [nteractions-This condition might
seem ridiculously obvious. Of course the agents
in a system need to interact if that system is to
become a system.

But in the context of the classroom, the agents 
that need to interact aren't necessarily people. They 
can also be ideas or interpretations. As already 
mentioned, mathematics knowledge emerges as 
new ideas are blended with old ones. These blend
ings open up spaces for more powerful notions. 
So the phrase neighbour interactions doesn't refer 
to pod seating or group work, but to ensuring there is 
a sufficient density of diverse thought represented 
for the possibility of new ideas, as in the example 
of the varied interpretations of multiplication. 

• Liberating Constraints-Consider these three tasks:
I) Write down all that you know about three

fourths.
2) Write down two fractions equal to three

fourths.
3) Write down three things that you know about

three fourths.
In most classroom contexts, the first of these is

much too broad to generate much that is interest
ing. The second suffers from being much too nar
row, but has the same result-it likely won't 
generate much that's interesting either. But the 
third, like Baby Bear's porridge and bed, might be 
just right. It's open enough to allow for diverse 
possibilities, but sufficiently constrained to ensure 
that ideas won't be too diverse to prevent them 
from working together. (Of course, whether it is 
suitable depends on the collective.) 

Complex systems have to maintain this delicate 
balance between so much structure that they lock 
into place and so little structure that they decay 
into chaos. And the tasks that you set will deter
mine whether or not intelligent-once again, ap
propriate and innovative-action can emerge. 

• Organized Randomness-With a complex system,
there's always a bit of randomness. Some of that
randomness is ignored by the system-which is to
say, it doesn't really affect what the system does.
Other bits of randomness come to be really impor
tant-the unexpected observation, the sudden in
sight, the fact that this student's father is a painter
and he knows the world doesn't work the way the ques
tion about ratios says it should work. Really intel
ligent systems, it seems, take advantage of more of
these random events, and they're able to do so be
cause they have strategies to organize such events.
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• Decentralized Control-One of the big changes at
Microsoft, Apple, IBM, Hewlett Packard and
other locations of cutting-edge knowledge produc
tion has been an abandonment of the top-down
model of centralized management in favour of a
more distributed sort of control. Intelligent collec
tive action can't be orchestrated into existence, at
either the individual or the collective level. Space to
negotiate the parameters and possibilities is needed.

All this being said, we have a long way to go before
we' II be able to give much more direct advice on how 
to nurture mathematical intelligence. However, we can 
be quite specific about the opposite-on how to militate 
against the emergence of intelligent action. For in
stance, if diversity (among interpretations and among 
people) is suppressed, if ideas aren't plentiful and not 
permitted to bump against one another, if tasks are too 
open or too narrow, if control of the outcomes is strictly 
in the hands of the teacher, then chances are that intel
ligence will be stifled-intelligence of not just the 
collective, but of the individuals in the collective. 

Notes 

I. Some of the research data reported in this article are drnwn
from stullies supported by the Social Sciences and Humanities 
Research Council of Canada. The article itself is a modest revi
sion of a presentation made at the NCTM Regional Conference 
in Edmonton on November 22, 2003. 

:2. The reviews of Where Mathematics Comes From have been 
varied, especially with regard to the issue of whether Lakoff and 
Nuiic1. actually succeed in explaining the bodily basis of Euler's 
formula. Nevertheless, most reviewers have acknowledged that 
their discussion of the analogical substrate of our logical abilities 
is compelling and has significant implications for the teaching 
of mathematics. 
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Embodied Mathematics and Education 

Elizabeth M. Mowat 

Does understanding mathematics involve nothing 
more than learning symbols, axioms and theorems? 
For George Lakoff and Rafael Nunez (2000), authors 
of Where Mathematics Comes From: How the Em
bodied Mind Brings Mathematics into Being, under
standing mathematics means comprehending how 
mechanisms of the brain and mind enable people to 
reason mathematically. They use results of research 
in cognitive science to explore how mathematical 
ideas are possible and why they make sense. 

Lakoff and Nunez suggest that the teaching of 
mathematics may be enhanced by an understanding 
of this cognitive perspective of embodied mathemat
ics. In this article, I will attempt to show how ideas 
put forth in Where Mathematics Comes From may be 
helpful in mathematics education. The article is di
vided into three parts. The first section describes some 
aspects of embodied mathematics, based on ordinary 
human cognitive and bodily mechanisms, which are 
presented in Where Mathematics Comes From. The 
second section reviews ways in which the theory of 
embodied mathematics explains sources of student 
difficulties and the third section discusses how teach
ers can use these ideas in designing effective instruc
tion for their classrooms. 

Embodied Mathematics 

Where Mathematics Comes From can be consid
ered a study of the nature of mathematical intuition. 
The authors claim that automatic, unconscious un
derstanding is developed and refined through activi
ties and experiences in the real world. Lakoff and 
Nunez provide empirical evidence that this intuitive 
understanding is neither vague nor ill-defined, but is 
precise and rigorous enough to form a foundation for 
mathematical thought. 

They assert that mathematics exists by virtue of 
the embodied mind. Cognitive structures used in 
mathematical thinking are based on physical sensa
tions and activities. The brain receives input exclu
sively from the rest of the body. Therefore, what the 
body is like and how it functions in the world deter
mine the form and content of thought. The mind 
emerges from distinctive characteristics of the human 
brain and body; it is embodied. "The detailed natures 
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of our bodies, our brains and our everyday function
ing in the world structures human concepts and hu
man reason. This includes mathematical concepts and 
mathematical reasoning" (Lakoff and Nunez 2000, 5). 

Lakoff and Nunez base their assertions of this 
thesis on the empirical findings of scientists from a 
wide variety of disciplines: developmental psychol
ogy, cognitive neuroscience, neuropsychology, cogni
tive linguistics and cognitive psychology. Convergent 
evidence from these fields is used to support and 
structure the theory presented in Where Mathematics 
Comes From. This book shows how mathematics is 
embodied through innate arithmetic abilities, the 
mind's cognitive mechanisms and its basis in bodily 
experience through grounding metaphors. 

Innate Arithmetic Abilities 

Lakoff and Nunez argue that humans are born with 
certain arithmetic capacities. The very notion of 
numher is engraved on our brains. Highly specialized 
sets of neural circuits enable us to subitize; that is, 
instantly and accurately recognize very small num
bers of objects. At an early age, people possess an 
understanding of limited addition and subtraction, 
capacities needed for simple counting and numerosity, 
which is the ability to make rough consistent estimates 
for larger numbers. Areas of the brain involved in these 
activities are thought to be located in the inferior pa
rietal cortex which links vision, hearing and touch. 

Cognitive Mechanisms 

Knowing which parts of the brain are activated 
when people use these very limited innate capacities 
does not explain where normal arithmetic and more 
sophisticated mathematics come from. Lakoff and 
Nunez explain that mathematical thinking engages 
the same conceptual structures used by humans in 
other kinds of sense making. These cognitive mech
anisms, used automatically and unconsciously in 
reasoning, are referential systems that assist people 
in understanding and employing concepts. 

Abstract reasoning using cognitive mechanisms is 
grounded in basic bodily experiences. For example, 
balance is part of everyday life for all humans. We first 
encounter balance as babies wobbling across the floor. 
Over the years, balance becomes such an intrinsic 
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part of our lives that we are hardly aware of it, but it 
is extremely important for our coherent perception 
of the world (Johnson 1987). This type of universal 
body-based experience becomes a cognitive mechanism 
that can be used to reason about many things like cheque 
books, relationships or solving equations. Lakoff and 
Nunez discuss three cognitive mechanisms that are 
particularly important: the image schema, the con
ceptual metaphor and the conceptual blend. 

The Image Schema 

Image schemas, for qualities like balance, straight
ness or verticality, represent the spatial logic inherent 
in physical situations. Image schemas are not just 
mental pictures, but are general and flexible patterns 
developed through sensori-motor experiences that 
make our perceptions of the world meaningful. 

The container image schema is of particular im
portance in mathematics. Because our experiences 
with physical containers involve sight, touch, lan
guage and reasoning, the container image schema 

Figure 1 

Container Image Schema 

Physical container 'Cognitive' container 
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utilizes the corresponding regions of the brain. Lakoff 
and Nunez use the image of a set as a "cognitive" 
container to represent the container image schema 
(see Figure I). 

The logic of the physical container is projected 
onto the cognitive container, which can be used to 
reason about nonspatial situations (Johnson 1987, 34 ). 
Normal language use illustrates how common this is. 
Statements often refer to components of the con
tainer: its boundary (he's on the brink of disaster), its 
exterior (she's out of her league) and its interior (he's 
always getting into trouble). Modes of reasoning 
developed through experience with ordinary contain
ers are an essential part of the image schema. Figure 2 
shows how the container image schema can link 
physical experience to mathematics. 

The power of the image schema is that it can in
troduce new ideas or extensions that do not arise from 
the original physical experience. We can imagine two 
sets overlapping (Figure 3) even though two physical 
containers cannot intersect in this way. 

Figure 3 

Concept of intersecting sets introduced by 
the abstract container image schema 
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Figure 2 

Reasoning from physical experience transferred to abstract mathematics 
through the container image schema 

The stone is in the cup. 
The cup is in the pail. 
Therefore, the stone is in the pail. 
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P is an element of set A. 
Set A is a subset of set B. 
Therefore, Pis an element of set B. 
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The Conceptual Metaphor 

Image schemas are linked together by another 
important cognitive mechanism, the conceptual 
metaphor. Conceptual metaphors are the basic means 
by which conceptual thought is made possible. An 
essential part of all types of human understanding, 
conceptual metaphors enable people to think about 
an unfamiliar, abstract concept as if it were familiar 
and concrete. Many conceptual metaphors arise ini
tially from the everyday experiences of children. A 
child, held in his mother's arms, feels both love and 
warmth. Associating affection with cuddling leads to 
the metaphor of affection as warmth. Evidence of the 
existence of the metaphor is seen in everyday lan
guage. We say "they warmed up to each other" or 
"she gave him an icy stare." Experiences in the source 
domain of warmth are mapped onto relationships in 
the target domain of affection. 

Conceptual metaphors are not just linguistic de
vices, but empirically observable mechanisms of the 
mind. The simultaneous activation of two different 
areas of the brain establishes new neural connections 
between them and generates a single complex expe
rience. Because the inferential structure inherent in 
these experiences is preserved, the abstract concept 
of affection can be understood in terms of the concrete 
experience of warmth. 

Conceptual metaphors can also introduce new 
elements or extensions in the target domain. The 
statement, "I had to work hard to get that question" 
is evidence of the metaphor of learning as a job. 
Subtle aspects of this metaphor, like those set out in 
Figure 4, are absorbed and unconsciously influence 
thinking. 

Figure 4 

Implications of the metaphor of learning 
as a job 

Learning is work. 
Learning is routine. 
Learning is difficult. 
I deserve some compensation for learning. 

Learning is not play. 
Leaming is not fun. 

The Conceptual Blend 

Two conceptual metaphors can be combined 
through a conceptual blend. Lakoff and Nunez offer 
this example: the unit circle is a conceptual blend of 
a circle in the Euclidean plane and a Cartesian plane 
with coordinate axes (see Figure 5) 1

• In the Euclidean 
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plane, a circle consists of all points in the plane a 
fixed distance, called the radius, from a fixed point, 
called the centre. The two-dimensional Cartesian 
plane is defined by two axes set at right angles to each 
other. The horizontal or x-axis and the vertical or y-axis 
intersect at a point called the origin, 0. By using a 
unit length on each axis and forming a grid, the posi
tion of any point on the Cartesian plane can be de
scribed using (x, y) coordinates. The unit circle 
conceptual blend combines characteristics of both of 
these metaphors. 

In the unit circle conceptual blend, new connec
tions are formed between the neural structures re
lated to the two original types of geometric planes. 
Thus the blend possesses characteristics of both of 
the original domains. A circle is still composed of 
points a set distance from the centre. But now this 
centre is at the origin, the radius has a length of one 
unit and coordinates are used to describe points on 
the circle. Moreover, new concepts or extensions 
arise. The unit circle blend has properties related to 
trigonometry that are not part of either of the original 
metaphors (see Figure 5). 

Grounding Metaphors 

Grounding metaphors are conceptual metaphors 
that establish correlations between physical activities 
of the body and innate arithmetic. In mathematics, 
the grounding metaphor is the primary tool that en
ables the extension of innate numerical abilities to 
arithmetic within the set of natural numbers and ul
timately to more sophisticated concepts. Lakoff and 
Nunez pay special attention to four grounding 
metaphors: 

• Arithmetic is object collection
• Arithmetic is object construction
• The measuring stick metaphor
• Arithmetic is motion along a path.

Human understanding is grounded in already ac
quired understanding of ordinary actions. A child who 
puts blocks into piles is establishing neural connec
tions between areas of the brain responsible for the 
physical action and innate arithmetic. This initiates 
the metaphor of arithmetic as object collection, 
whereby numbers are identified with collections of 
objects. Adding involves putting two collections to
gether, while subtracting involves taking a small 
collection from a larger one. The natural number 
system, which includes numbers too large to be subi
tized (instantly recognized), is formed. Properties of 
number-collection entities are consistent with those 
of innate mathematics, but are extended to include 
new properties. Since the sum of any two collections 
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is another collection, the sum of any two numbers 
must be another number. Thus, the natural numbers 
possess the property of closure, which is not part of 
innate arithmetic. 

A similar grounding metaphor is arithmetic as 
object construction. Children start to form this meta
phor when playing by putting things together to 
construct a new object. Numbers are identified with 
wholes made up of parts. Imagine a child building a 
tower out of blocks; a tower five blocks high represents 
the number five. Addition means adding more parts 
to the object. Subtracting means taking some of the 
parts away. This metaphor ties innate arithmetic to the 
natural numbers, but can be extended farther. A whole 
object can be broken up into smaller equal parts giving 
an embodied meaning to the concept of fractions. 

Lakoff and Nunez's third grounding metaphor is 
the measuring stick metaphor in which objects are 
measured using physical segments. Blocks might be 
used to measure the size of a new toy or hands to 
measure the size of a pony. Number-physical segment 
entities are created. Addition is putting two segments 

together end to end, and subtraction is taking a 
smaller segment away from a larger one. This meta
phor is similar to arithmetic-as-object-collection and 
arithmetic-as-object-construction metaphors, but has 
different extensions. ln this metaphor, any physical 
segment or anything that can be measured can be 
considered a number. Consequently, some irrational 
numbers are grounded. 

Figure 6 

Grounding v2 and :rr using the measuring 
stick metaphor 

Jt 

Figure 5 

Features of Euclidean and Cartesian geometry combined into the unit circle 

Euclidean plane 
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The fourth grounding metaphor is arithmetic as 
motion along a path. Numbers are point locations on 
a line. Addition involves moving from a position on 
the line away from the origin, whereas subtraction 
involves moving toward the origin. This metaphor, 
which grounds natural numbers, fractions and irra
tional numbers, has two unique extensions. Allowing 
motion on either side of the origin provides a physi
cal basis for integers. Moreover, because a path-num
ber can have any length, the metaphor provides a 
grounding for the real numbers. 

Arithmetic as motion along a path differs significantly 
from the other grounding metaphors. Lawler and Breck 
(1998) point out that this metaphor, built on early expe
riences of crawling and walking, is based on ambulation, 
involving legs and feet, while the first three grounding 
metaphors are based on manual manipulation. More
over, it implies continuous motion rather than discrete 
objects or segments. The arithrnetic-as-motion-along
a-path metaphor is the only grounding metaphor that 
cannot be combined with subitizing (Chiu 2000). 
Another unique characteristic is its inherent concept 
of zero, which is located at the origin of the path. 

These four grounding metaphors are not imaginary. 
Evidence of their existence is found in language and 
in mathematical constructs of the past. The metaphor 
of arithmetic as object collection appears in such 
expressions as "add some lettuce to the salad" and 
"rake a logfmm the woodpile." Arithmetic as object 
construction is seen in Roman numerals like IX and 
VII where parts are being added to or subtracted from 
a whole. The measuring-stick metaphor is shown in units 
of measurement like cubits, feet and paces. Arithme
tic as motion along a path appears in expressions like 
"6 is close to 8" and "starting at 20, count to 50." 

These four grounding metaphors are not arbi
trarily chosen. Of the many grounding metaphors that 
exist, Lakoff and Nunez found that only these four 
have physical sources with properties and logic suf
ficient to form a connection with inborn numerical 
capacities. "Each of them forms just the right kind of 
[correlation) with innate arithmetic to give rise to just 
the right kind of metaphorical mappings so that the 
inferences of the source domains will map correctly 
onto arithmetic ... " (Lakoff and Nunez 2000, 102) 
and ultimately onto more complex mathematics. 

Where Does Mathematics Come From? 

From a rather limited set of inborn skills, mathemat
ics is extended through an ever-growing collection of 
metaphors. These cognitive mechanisms, which are 
neurally embodied structures of the mind, abstract pat
terns of inference from physical experience. Ground
ing metaphors form correlations between innate 
arithmetic and physical action to make elementary 
arithmetic possible. Other conceptual metaphors link 
arithmetic to more abstract mathematical concepts. 
Each layer of metaphors carries inferential structure 
systematically from one domain to another. Complex 
networks grow as domains that are connected to each 
other by conceptual blends, and new metaphors in
volving these blends are formed. Even the most ab
stract mathematical concept bears traces of its origin 
in physical perception and motor activity and is, thus, 
embodied. "The only mathematics that human beings 
know or can know is a mind-based mathematics, 
limited and structured by human brains and minds" 
(Lakoff and Nunez 2000, 4). Hence, the study of em
bodied mathematics sheds light on difficulties expe
rienced by students in the mathematics classroom. 

Table 1 

Characteristics of the Four Grounding Metaphors 

Grounding Object collection Object construction Measuring stick Motion along a path 
metaphor 

Numbers are ... Collections Wholes with parts Physical segments Points on a line 

Addition is ... Adding items Adding parts Putting segments Moving away from the 
together ongm 

Subtraction is ... Taking items Removing parts Taking a segment Moving toward the 
away away origin 

Number systems Natural numbers Fractions Irrational numbers integers, real numbers 

Physical Manipulation Manipulation Manipulation Ambulation 
experiences 

Properties Discrete Discrete Discrete Continuous 
Zero is the origin 
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Understanding Student Difficulties 
Because metaphors are the basis of embodied 

mathematics, the study of their use in the classroom 
may reveal problems experienced by students in 
learning mathematics. Metaphors are not usually 
learned through formal instruction, but arise through 
informal everyday experiences and develop gradu
ally over time. While conceptual metaphors make 
mathematics possible and very rich, they can also 
cause confusion and even apparent paradox if they 
are not made clear or are taken literally (Nunez 2000). 
Students may not understand everything that is im
plicit in a metaphor, what it hides and what it intro
duces. Research examining how students use and 
misuse common metaphors has identified some com
mon difficulties experienced by students in their use 
of metaphors. 

Using an Inappropriate Metaphor 

Use of an inappropriate metaphor can cause dif
ficulties for students who are trying to comprehend 
a mathematical idea. Edwards (2003) found that 
children and adults studying transformation geometry 
had difficulty fully understanding the concept of 
rotation. Rotations of an object about a point that was 
inside the object were well understood. But all learn
ers, regardless of age, had trouble with situations 
where the centre of rotation was outside the object 
(see Figure 7). 

Figure 7 

Types of rotations about a point 

Well understood Poorly understood 

Edwards realized that learners were using their 
embodied understandings of turning to make sense 
of rotations. When students considered babies rolling 
over or skaters spinning on ice, they thought of them
selves as the centre of rotation. Stating that human 
perception tends to place the body at the centre of the 
universe, Johnson ( 1997) clarifies why the metaphor 
of rotation as turning is used for reasoning about 
transformations. 

For Edwards, this explained why problems in which 
the centre of rotation was inside the object being rotated 
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were easily understood. Even situations in which a 
physical link existed between the object being rotated 
and the centre of rotation were grounded in experi
ences like playing on a swing and, consequently, were 
fairly straightforward. But when the centre of rotation 
and the object being turned are not in physical contact, 
the questions were harder to deal with. The metaphor 
rotation as turning was not useful in understanding 
these types of rotations in transformation geometry. 

Misunderstanding the Source Domain 
of the Metaphor 

The source domains of metaphors provide the 
foundation for mathematical reasoning. If students 
do not clearly understand these fundamental patterns 
of thought, they are unlikely to be able to understand 
related concepts. "Inadequate understanding of the 
source domain of a metaphor limits a person's reason
ing through that metaphor" (Chiu 2000, 7). 

Students may have trouble using a metaphor whose 
source domain has subtle extensions. For example, 
difficulties are often experienced in the study of prob
ability, particularly in questions containing the word 
or. These questions often make use of the categories
are-containers metaphor. Consider the following prob
lem: If you draw one card from a deck of 52, what is 
the probability that it is red or a queen? In this ques
tion, learners are dealing with two categories of cards, 
those that are queens and those that are red. Students 
see these two categories as mutually exclusive (see 
Figure 8) when in reality they intersect (see Figure 9). 

, 

Figure 8 

Students' View of Categories as 
Physical Containers 
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Figure 9 

Categories as Containers Using 
Container Image Schema 

25 



Students' experiences with physical containers 
limit their thinking about cognitive containers, which 
are identified in this example with categories. They 
do not understand the container image schema, which 
is the source domain of the categories-are-containers 
metaphor. 

This misunderstanding reflects a problem in the 
thinking processes of students, not in their mastery 
of the mathematical techniques. In discussion with a 
colleague, Mr. Michaels, a social studies teacher, 
found that understanding the container-image schema 
helped him to understand why his Grade 9 class had 
difficulty responding to a question about the Russian 
Revolution. When comparing how Russian people 
lived under the Czarist and the Communist regimes, 
students were able to list differences in lifestyles, but 
could not identify any similarities. Many existed, but 
their misunderstanding of the source domain of the 
categories-are-containers metaphor held students back. 
As in probability, they thought of physical containers 
(see Figure I 0) rather than the cognitive containers 
of the container image schema (sec Figure 11 ). 

Not Recognizing Limitations of Metaphors 

Because metaphors are used unconsciously, learn
ers may fail to recognize their inherent limitations. 
Tall (2003) found that automatic usc of previously 
mastered metaphors may cause confusion. Young 
children tended to feel that adding two numbers 
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Figure 10 

Students' View of Categories as 
Physical Containers 
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Russia 

Figure 11 

Communist 
Russia 

Categories Are Containers Using 
Container Image Schema 
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should always yield a larger sum and that multiplying 
should lead to a very much larger product. These 
properties are true for arithmetic as object collection. 
But addition of integers can lead to a smaller sum 
(2 and -7 makes -5) and multiplication by fractions 
can lead to a much smaller product (6 x 1/12 = 1/2).
Confusion arose in students' minds because they 
could not realize the limitations of the metaphor they 
are using. They were held back in their development 
of arithmetic skills by their reliance on what Tall calls 
"met-befores." 

Relying Exclusively on a Single Metaphor 

In studies of students doing arithmetic with signed 
numbers, Moses and Cobb (200 I) found that children 
failed to progress because of their reliance on the 
arithmetic as object collection metaphor. He felt that 
the arithmetic as motion along a path would be more 
useful in this situation and developed activities using 
experiences familiar to students, like riding on the 
subway, to strengthen this metaphor. With such tech
niques, he was successful in improving children's 
understanding of integer arithmetic. 

Using Two Metaphors That Conflict 

Nunez, Edwards and Matos ( 1999) are particularly 
interested in conflicting metaphors used in the study 
of continuity of functions. High school students are 
introduced to "natural" continuity, which is defined as 

lim/(x) = j(a) 
.{-)-Q 

This notion of continuity, used by Newton and 
Leibniz, is often described using Euler's idea of "a 
curve freely leading the hand" (Nunez I 997). Such 
a perspective is based on motion and uses the meta
phor a line is the motion of a traveller tracing that 
line. The line does not move, but to the learner's 
understanding it does. Expressions commonly used 
in mathematics reflect this: a function reaches its 
maximum at ( l ,  l ); the line crosses the x-axis; two 
curves meet at a point; the line goes through (2,3); 
and the limit exists as x approaches 2. 

At the university level, students are introduced to 
a new interpretation of continuity. The Cauchy
Weierstrass portrayal of continuity is very different. 

lirn f (x) = L
,. -,,, 

if and only if for every £ > 0, there ex isl� a o > 0 such that 

if O <Ix-�< 8, then lf(x) - W < £. 

This definition is based on the metaphor a line is 
a set of points. The idea of continuity here is in terms 
of preserving closeness: for every x close to a,f(x) is 
close to L. 
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While both definitions arise from metaphors 
grounded in experience, they are not compatible. 
Natural continuity is dynamic, based on properties 
of motion. The Cauchy-Weierstrass definition is 
static, based on closeness in containers. Although 
both definitions are useful, they have very different 
inferential structures, and this causes difficulties for 
learners. 

Students of calculus are never told that the Cauchy
Weierstrass definition of continuity has a completely 
different embodied foundation than natural continu
ity (Nunez 1997; Nunez, Edwards and Matos 1999; 
Lakoff and Nunez 2001). Indeed, they are often told 
that it captures the essence of natural continuity. To 
compound the problem, both techniques talk of a 
limit as x approaches a, even though this terminol
ogy is inconsistent with the metaphor that the Cauchy
Weierstrass definition is based on. Because the two 
metaphors are not integrated into a coherent whole, 
it is understandable that students have trouble adapt
ing to the Cauchy-Weierstrass method. 

Not Integrating Multiple Metaphors 

Metaphors have their own inferential structures 
and can "lead to different conscious and unconscious 
beliefs that can cause obstacles to drawing various 
aspects into a central core concept" (Watson, Spyrou 
and Tall 2003). Students commonly learn two meth
ods for adding vectors: the parallelogram method and 
the triangle method, as illustrated in Figure 12. Both 
methods are based on embodied metaphors and, al
though the underlying metaphors are different, both 
techniques arc useful in understanding operations 
with vectors. 

The parallelogram method is based on the vector 
as a force metaphor. Situations like two people pull
ing a sled or having two friends grab your arms and 
drag you along are within the experience of students. 
Both result in the sled or the person moving forward 
as if one force pulls it. It is natural therefore to think 
of the combination of two forces as a single force 

Figure 12 

Two Approaches to Adding Vectors 

Parallelogram method Triangle method 
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acting between the two forces. On the other hand, the 
triangle method is based on the vector as a journey 
metaphor. The sum of two vectors consists of two 
successive moves. We first move from A to B and 
then from B to C. The result is a journey starting at 

. .7.. ➔ ➔ A and endmg up at C: flli + BC = AC. 
Students who are introduced first to addition of 

vectors using the triangle method may have diffi
culty understanding general properties of vectors like 
the commutative law. In a journey where the order of 
the two components does matter, BC + AB does not 
make sense. Consequently, the vector as a journey 
metaphor is not helpful in making sense of commu
tativity. In contrast, from the perspective of the vec
tor as a force metaphor lying behind the parallelogram 
method, the commutative law is obvious. Watson and 
Tall (2002) found that emphasizing the vector as a force 
metaphor in this context was of benefit to students. 

In turn, the parallelogram method does not easily 
explain subtraction of vectors. As shown in Figure 
13, the difference 1 -b lies on the di�{mal of the 
parallelogram. It joins the endpoints of a and band 
ends where the minuend a ends (see Figure 13). 
Nothing in everyday experience corresponds to this 
force. The vector as a journey metaphor explains 
subtraction much better. Students can think ofa - b 
as a + -b by reversing the direction of the second 
component of the journey as shown in Figure I 4. 

Figure 13 

Subtraction of Vectors Using the 
Parallelogram Method 

Figure 14 

Subtraction of Vectors Using the 
Triangle Method 
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Knowledge of both methods with their underlying 
metaphors is necessary for a thorough understanding 
of operations on vectors. Hsu and Oehrtman (2000) 
found that students became confused when they were 
not able to integrate multiple metaphors that could 
be used to structure a mathematical concept. 

Implications for Teaching 

"Mathematical concepts on the surface may seem 
to be neat and well organized, but underneath, in the 
workings of the brain, all sorts of conflicts and confu
sions occur" (Tall 2003 ). Many theorists feel that 
teachers would find knowledge of cognitive structures 
inherent in mathematical concepts useful (Nunez 
2000; Nunez, Edwards and Matos 1999). With this 
understanding, they could assist students to better 
understand mathematical concepts through appropri
ate use of metaphors. 

Activities can be designed to provide initial 
grounding for conceptual metaphors (Nunez, Edwards 
and Matos 1999; Tall 2003 ). For example, working 
with scales can provide experience with balance thus 
developing a basis for metaphoric thinking when 
solving equations. Grounding metaphors that rely on 
everyday experiences of students, like playing or even 
taking part in cultural activities, have been found 
to have a powerful effect on student understanding 
(Chiu 2000). 

Teachers can strongly encourage the use of 
metaphors in classroom communication. Using 
metaphors in classroom discussions encourages stu
dents to accept metaphoric thought as a normal 
method in mathematics. Madden (2001) mentions 
the importance of social interaction in determining 
the efficacy and usefulness of patterns of metaphoric 
thought. Communities of learners, like communities 
of mathematicians, can share and explain the 
metaphors they use and adopt or correct them as 
needed. When metaphors are legitimated and spread 
among students, metaphoric thought is strengthened 
(Bazzini 2001 ). 

The importance of metaphoric thinking in the his
tory of mathematics can be highlighted. Making 
students aware of different metaphors used at various 
times in the development of concepts like calculus 
will help them understand why conflicting metaphors 
sometimes appear in mathematics. 

Mathematics is traditionally taught as a collection 
of techniques, skills and attitudes that students must 
acquire. Pure logic holds a dominant position. "The 
body has been ignored because reason has been 
thought to be abstract and transcendent, that is, 
not tied to any of the bodily aspects of human 
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understanding ... [Our] bodily movements and inter
actions in various physical domains of experience are 
experiential in structure ... and that structure can be 
projected by metaphor on to abstract domains" (John
son l 987, XV). A better understanding of the hidden, 
very ordinary origins of complex concepts in math
ematics can only result in more effective learning and 
teaching. 

Notes 
I. Figure 5 was my own attempt to illustrate che unit circle

conceptual blend. Later, I discovered that it has a remarkable simi
larity to figures on pages 390-392 in Where Marhemacics Comes 
From. Independent development of the diagram illustrates how 
particular metaphors compel certain interpretations. It is likely 
that any graphic representation of the unit circle conceptual blend 
would closely resemble Lakoff and Nunez's images. 
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Developing Algorithms for Fluency and 
Understanding: A Historical Perspective 

Gladys Sterenberg 

Recent reforms in mathematics have called for a 
decreased emphasis on pencil-and-paper computa
tions {National Council of Teachers of Mathematics 
2000; Alberta Leaming 1997). However, a tension 
between fluency and mathematical understanding 
exists in many elementary classrooms as teachers 
grapple with the place of algorithms in the curriculum. 
A review of the historical development of addition 
and subtraction algorithms suggests that this tension 
is not a recent phenomenon. Moreover, many of the 
standard algorithms used in Canadian classrooms 
today do not represent the most efficient or peda
gogically sound approach to adding and subtracting 
(Carroll and Porter 1998). By considering the his
torical development of algorithms, perhaps we can 
reframe the link between tluency and understanding. 

Many of the algorithms used today can be traced 
to the work by Islamic mathematicians in the eighth 
century. Of particular importance was Muhammad 
ibn-Musa al-Khwarizmi, who presented a variety of 
algorithms in his book on addition and subtraction. 
In fact, our word algorithm is derived from his name. 
His book demonstrated the advantages of using a 
numeration system involving place value and a base 
of ten. Interestingly, the development of the Hindu
Arabic numeration system coincided with the creation 
of algorithms and increased mathematical activity in 
these societies. Barnett ( 1998, 76) suggests: 

Not only did each new success give rise to the 
possibility of yet more success in the future, but the 
newly developed algorithms also allowed mathe
maticians to concentrate their creative energy on 
more complicated problems without having to 
think about the earlier "steps." This suggests that 
the search for algorithms is-in a very real sense
the driving force of mathematical development. 

Prior to the adoption of the Hindu-Arabic nu-
meration system, western societies did not use algo
rithms for adding and subtracting. Mathematical 
development stalled there during the European Dark 
Ages. Finally, in the 12th century, Fibonacci introduced 
notations and algorithms of al-Khwarizmi to Western 
Europe. The "new math" created much controversy 
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as mathematicians argued with abacus users about 
potential benefits and advantages of algorithms over 
calculating devices. 

New algorithms that combined calculating devices 
and algorithms for adding and subtracting emerged 
in the 15th and 16th centuries. One such example is 
the use of reckoning on lines by merchants to deter
mine customer purchases (Mason 1998). This algo
rithm uses manipulatives to reinforce ideas of place 
value, regrouping and trading equals for equals, thus 
appearing to deepen mathematical understandings. 

Although new algorithms continued to emerge, the 
debate over their importance remained unresolved. 
This debate continued throughout much of the 16th 
century and is still retlected today in current discus
sions on the use of calculators and paper-and-pencil 
algorithms. Although controversial, the debate about 
the importance of algorithms sparked a resurgence 
of mathematical development. Indeed, the mathemat
ical creations of Descartes, Fermat, Newton and 
Leibniz in the 17th century are still evident in today's 
lessons on analytic geometry and calculus. The con
nection between the creation of algorithms and 
mathematical development appears to be strong. 

[n the 19th and 20th centuries, algorithms for add
ing and subtracting became increasingly abstract. 
Emphasis was placed on memorizing the steps of the 
procedure and connections to manipulatives were 
diminished. Place value identifiers were dropped. 
Mathematics became disconnected from the physical 
world and focused on axiomatic structures of math
ematicians (Jones and Coxford 1970). Gaining flu
ency through the use of algorithms seemed to become 
the primary goal of mathematics. 

However, the tension between mathematical flu
ency and understanding continued. As arithmetic 
became an elementary school subject at the end of 
the 19th century, educators became increasingly 
concerned with student understanding. Jones and 
Coxford (1970, 32) write 

Mental discipline as a viable goal of education, 
and drill as a procedure, were retained along with 
other newer goals and processes for more than 
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thirty years after 1894, but the three step process 
of 'state a rule, give an example, practice' was 
yielding to inductive, reasoning, and discovery
teaching processes. 

has been to lead the pupil to derive his own methods 
of operation" (p. iv). Algorithms for addition are 
presented with examples, place-value labels have 
been included, and teachers are encouraged to dem
onstrate regrouping using "bundles of splints bound 
together with India rubber bands" (p. 13). Several 
algorithms for subtraction are presented, including 
decomposition and equal additions. The student is 
not told which one to use and, presumably, alternative 
algorithms are acceptable. 

In the first textbook approved for use in Alberta, 
Kirkland and Scott ( 1895) address the problem of 
teaching rules by differentiating their approach from 
conventional textbooks: "The rule is given as a con
venient summary of the methods employed in the 
solutions of the examples which precede it. The aim 

Method A 

368 
+ 453

700
110

_11
821

Method B

300 + 60 + 8 
+ 400 + 50 + 3

700 + 110 + l l 
800 + 20 + 1
821

Method C 

368 = 3 hundreds and 6 tens and 8 ones 
+ 453 = 4 hundreds and 5 tens and 3 ones

7 hundreds and 11 tens and 11 ones 
7 hundreds and 11 tens and ( I ten and I one) 
7 hundreds and ( 11 tens and I ten) and I one 
7 hundreds and 12 tens and I one 
7 hundreds and (I hundred and 2 tens) and lone 
(7 hundreds and I hundred) and 2 tens and I one 
8 hundreds and 2 tens and I one 
821 

Method D 

368 368 368 368 
+ 453 +453 +453 + 453

7 71 711 711
8 82 821

Method E 

1 11 I 
368 368 3_fi8 }68 
453 45_3_ 7 4 

+ 128 I 4,23 153 

li.L 2 8 

9 12.8 128 
49 

949 
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Begin with the hundreds, then the tens, then the ones. 
Record each sum. Add them together. This method is 
sometimes called partial sums (Reys et al. 2004). 

Write each number in expanded form. Add the hundreds, 
tens and ones. Regroup each to get the expanded form of 
the answer. Write the answer in standard form (Nova Sco
tia Department of Education 2002). 

Write each number in expanded form using place value 
names. Add the hundreds, tens and ones. Regroup the ones 
if necessary. Put the tens together. Write in a simpler way. 
Regroup the tens if necessary. Put the hundreds together. 
Write in a simpler way. Write the answer in standard form 
(Lock 1996). 

Begin with the hundreds to get 7, then add the tens to get 11. 
Change the 7 to an 8 because of the additional 100. Add the 
ones to get 11. Change the I to a 2 because of the addi
tional 10 (Nova Scotia Department of Education 2002). 

Begin by adding the ones of the first two numbers to get 
11. Record this number by writing the ones digit and put
ting the tens digit above the tens column. Add the ones
from the third number to this to get 9, recording the new
ones number and putting the tens digit above the tens col
umn if necessary. When the ones column is complete, repeat
with the tens column and the hundreds column. This is
known as Hutchings' low-stress algorithm (Lock 1996)
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Perhaps the tension between fluency and mathe
matical understanding can be reframed. Instead of 
viewing them as ends of an either/or dichotomy, 
historical accounts suggest they are deeply intercon
nected. Barnett (1988, 77) cautions, 

Alternative Algorithms for Adding 
Presented below are several different methods for 

adding. These algorithms show step-by-step procedures 
for computing sums that have been used at some point 
in the history of mathematics education. I suggest that 
you familiarize yourself with the procedure by trying 
it out. Create new problems for yourself to develop your 
understanding. Think about why the procedure works. 

We have encountered this same difficulty [de
creased mathematical understanding] in the past 
when we allowed the current algorithms we teach 
to become an end in themselves. Our challenge as 
educators is to identify what is being learned from 
the algorithm (whether it be a traditional one or 
not) besides the ability simply to execute it. 

Alternative Algorithms for 
Subtracting 

Encouraging students to create alternative algo- Presented below are several different methods for sub
tracting. These algorithms show step-by-step proce
dures for computing differences that have been used 
at some point in the history of mathematics education. 
Again, I suggest that you familiarize yourself with 
the procedure by trying it out, creating new problems 
and thinking about why the procedure works. 

rithms for adding and subtracting could strengthen 
the links between fluency and understanding. 
By connecting the development of algorithms to 
mathematical knowing, educators can begin to re
consider how addition and subtraction are taught 
and learned. 

Method A 

81 
- 25

56

Method B 

81 
-25

56

Method C 

81+5=86 
-25 + 5 = 30

56 

Method D 

81 +50
-25 +5

±.l 
56 

Method E 

81 
-25

60
-4
56
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Begin with the ones column. Subtract the second digit from the first. If necessary, regroup 
the tens of the first number and rename the ones by increasing the ones by ten and di-
minishing the tens by one. Repeat with the tens column. This method is known as the 
decomposition algorithm and is the standard algorithm used in Canadian classrooms. 

Begin with the ones column. Subtract the second digit from the first. If necessary, add 
10 to the top number and add 10 to the second number. Do this by increasing the ones 
by IO in the first number and the tens by I in the second number. Repeat with the tens 
column. This method is known as the equal additions algorithm. It was taught in North 
America until the 1940s (Cathcart et al. 2003 ). 

Add a number to the second number (subtrahend) to make it a multiple of I 0. Add this 
same number to the first number (minuend). Subtract. This is known as subtraction by 
base complement additions (McCarthy 2002). 

Consider how far apart 81 and 25 are. Begin from 25 and add, in steps, the numbers that 
bring you closer to 81. Record these numbers. When you reach 81, find the sum of these 
numbers. This will be the answer. This method is known as adding up (Carroll and Porter 
1998). 

Move left to right. Begin with the largest place value (in this case, 10s). Record the dif-
ference between the two numbers in each column. If the first number (subtrahend) is 
larger, the difference is recorded as a deficit or a negative number. Combine the partial 
differences (Carroll and Porter 1998). 
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Pi in All Its Glory 

Sandra M. Pulver 

As William Schaaf ( 1998) in The Nature and History 
of Pi remarked, "Probably no symbol in mathematics 
has evoked as much mystery, romanticism, miscon
ception and human interest as the number :rr." 

Humans lived for millions of years before the 
significance of :rr was grasped. Circles surrounded 
them in many forms other than the wheel, including 
the pupil of the eye and heavenly bodies like the sun 
and moon. But it was only after the appearance of 
organized society, approximately 2000 BC, that a 
relationship between the diameter of a circle and its 
area was recognized such that 

circumference : diameter= constant for all circles. 

An Egyptian scribe named Ahmes, circa 1650 BC, 
showed in the Rhind Papyrus that the ratio of the 
circumference to the radius equals 256/81 or 
3.160493827-Ahmes's value was off by less than 
l per cent from the true value of pi. However this
value did not become known because a thousand
years later the Babylonians and early Hebrews simply
used 3 for pi. In the Bible, both 1 Kings 7:23 and 2
Chronicles 4:2 contain the following verse: "Also he
made a molten sea of ten cubits from brim to brim
[the diameter], round in compass, . ..  and a line of
thirty cubits did compass it round about."

In the fourth century BC, Antiphon and Bryson of 
Heraclea attempted to find the area of a circle using 
the principle of exhaustion. They took a hexagon, 
found its area and then continued to double its sides 
and double them again until the polygon almost be
came a circle. Antiphon first estimated the area of a 
circle by inscribing the polygon in a circle and then 
calculating the area as each successive polygon came 
closer to being a circle. Bryson calculated the area of 
two polygons, one inscribed in a circle and one cir
cumscribed around a circle. The area of a circle would 
then fall between the areas of the two polygons. 

Two hundred years later, Archimedes of Syracuse 
(287-212 BC) was the first mathematician to produce 
a method of calculating pi to any degree of accuracy. 
He doubled the sides of two hexagons four times, 
resulting in two 96-sided polygons. Using polygons 
inscribed and circumscribed in a circle, he obtained 
for pi the bounds 

3 10/71 < pi< 3 1/7 
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or in decimal notation, 3.140845 ... < pi < 3.142857 .. .  , 
less than three ten-thousandths from the true value. 
This method of computing pi by using regular in
scribed and circumscribed polygons is known as the 
classical method. 

The next person of importance to take the pi chal
lenoe was the astronomer Claudius Ptolemy (AD 87-165) 

0 

who used a 192-sided polygon. In his text Megale 
Syntaxis tes Astronomias, he stated that pi was 3° 8' 30" 
in the sexagesimal system, or 3 + 8/60 + 30/3,600 
which is 3.14166667. His value of pi was within 
0.003 per cent of the correct value. 

The Chinese were considerably more advanced in 
arithmetical calculations than their western counter
parts, because in AD 264 Lui Hui calculated the 
value of pi to be between 3. 141024 and 3 .142704 
using the same method as Antiphon and Bryson. ln 
the fifth century, Tsu Ch'ung-Chih and his son, Tsu 
Keng-Chih, used polygons with 24,576 sides (they 
began with a hexagon and doubled the sides 12 times) 
and determined that pi was approximately 355/133 
which equals 3.1415929. This is only 8 millionths of 
l per cent from the real value of pi, a value not found
in the western world until the 16th century.

About AD 530, the great Indian mathematician 
Aryabhata came up with an equation that he used to 
calculate the perimeter of a 384-sided polygon, find
ing it to be {9.8684::::: 3.1414. 

Brahmagupta (598-670), another famous Indian 
mathematician, said that the value of pi was v' l0. First 
he calculated the perimeter of inscribed polygons 
with 12, 24, 48 and 96 sides and he got v'9.65, v'9.8 l ,  
v'9.86, v'9.87. Then he thought that as the polygons 
approached the circle, the perimeter and therefore pi, 
would approach v'I 0. Of course, he was quite wrong. 
He didn't see that his square roots were converging 
to a number significantly less than the square root of 
l 0. In fact, the square of pi is just over 9.8696. Nev
ertheless, this was the value he expounded, and many 
mathematicians throughout the middle ages used it. 

Since the middle of the first millennium, many 
other mathematicians came up with values of pi, but 
none of them was more accurate than the early Greek, 
Chinese and Indian calculations. In fact, it was not 
until the late 16th century that another significant step 
was taken. 
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In 1579, a French lawyer and mathematician, 
Frarn;ois Yiete (I 540---1603 ), used the Archimedean 
method of inscribed and circumscribed polygons to 
determine that 3.1415926535 < n < 3.1415926537. 

To achieve this, he doubled the sides of two hexa
gons 16 times and got two 393 216-sided polygons. 

In 1593, he broke down his polygons into triangles 
and found that the ratio of perimeters between one 
regular polygon and a second polygon with twice the 
number of sides equalled the cosine 0. With this 
identity in hand, he used the half angle formula and 
found a way to describe n as an infinite product: 

_3_ = [ X ✓}._+}._ [ X }._+}._✓}._+}._ fI X ...
TT V2 2 2 f2 2 2 2 2 fi 
This was probably the first time anyone had used 

an infinite product to describe anything, and it was 
one of the first steps in the evolution of mathematics 
toward advanced trigonometry and calculus. How
ever, even though the equation was a breakthrough, 
it was of little use when it came to actually calculat
ing n because it was very complicated to perform the 
square root calculations. 

Adriaen van Roomcn (1561-1615), also known as 
Adrianus Romanus, a Dutch mathematician, calcu
lated JT correct to 15 decimal places by using an in
scribed polygon that had over 100 million sides. 
Ludolfvan Ceulen (1540---1610), a German mathema
tician, calculated n to 20 decimal places, using the 
same classical method, but using polygons that had 
more than 32 billion sides. When he died in 1610, he 
had calculated 35 digits of n. In Germany today, n is 
still sometimes referred to as the Ludolfian number 
in his honour. 

After van Ceulen, mathematicians came up with 
new ideas to calculate n more efficient! y. In 1655, 
John Wallis ( 1616-1703) discovered a formula that, 
to this day, bears his name: 

IT 2x2x4x4x6x6x8 ... =
2 Jx3x3x5x5x7x7 ... 

Like Viete's, Wallis's equation is an infinite prod
uct, but it is different in that it only involves simple 
operations with no need for messy square roots. He 
reasoned that the first computed term would be 
higher than I", the second computed term would be lower 
than I. The third term would also be higher but 
closer than the first term. The fourth term would also 
be lower but closer than the second term and so on. 
This number would slowly converge to f.

In I 675, the Scottish mathematician James Greg
ory (1638-1675) obtained the extremely elegant in
finite series: 

J S 7 'i 11 
< < arctanx = x-.::_+.::_-.::._+.::_-�+ ... -l-x-1. 

3 5 7 9 11 
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Three years later, the German Gottfried Willhelm 
Leibnitz (1646--1716) inserted x = l into the series to get: 

1t 1 I I I I -=!- -+---+---+ ...
4 3 5 7 9 11 

This method of convergence was too slow to be 
put into practical use. It took more than 300 terms to 
even obtain :rr correct to two decimal places. (But 
although it took so very many terms, it was still 
faster than the old inscribing/circumscribing polygon 
method.) 

Isaac Newton ( 1642-1727) improved on this te
dious method using: 

. I x' I· 3 x' arcsm x = x + 2 3 + 2-4 5 + ...

Substituting x = .!.. , giving arcsin .!.. = �6, this series. Id 2 2 y1e s: 
1t I I I 1-3 I 13-5 I 
6 = 2 + 2 3-2' 

+ T-4' 5 2� 
+ 

2 4 6 7-2' + . . .

In this series, calculating just four terms would 
yieldn = 3.1416. 

In 1706, John Machin (1680-1752) used the dif
ference between two arctangents to find 100 digits of 
pi. He used 

1t I I-= 4· arctan--arctan-
4 5 239 . 

This formula turned out to be quite useful, because 
arc tan � is easy to calculate using Gregory's for
mula arid arctan -1- converges very quickly.

239 
In the middle of the 18th century, one of the great

est and most prolific mathematicians of all times, 
Leonhard Euler (1707-1783), found many arctangent 
formulas and infinite series to calculate pi. These 
formulas converged more quickly than those that 
came before. Some of his formulas were 

7t I l 
4 = 2 arctan 3 + arctan 7 
1t l 3 

4 = 5 arctan 7 + 2 arctan 79
1t

1 l I I I 
6 = I' + z' + J' + 4' + .. .

1t' I l l I =---+---+ 79
32 I' 3' 5

1 

7' 
7t 3x5x7xltxl3xl7xl9x23x .. . 
2 2x6x6x J0xl4xI8 xl8 x22 x .. . 

Euler also developed an equation that some believe 
to be among the most fascinating of all time: 

e ;11: + I = 0. 
The irrationality of :rr was proven by Johann Hein

rich Lambert ( 1728-1777) and Adrien-Marie Legen
dre (1752-1883). Lambert investigated certain con
tinued fractions and proved the following: 

If x is a rational number other than zero, then tan 
x cannot be rational. 
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From this, it immediately followed that: If tan xis 
rational, then x must be irrational or zero. 

(For if it were not so, the original theorem would 
be contradicted.) Since tan[�)= I is rational, [;) must 
be irrational and the irrationality of n is established. 

Legendre proved the irrationality of Jr more 
rigourously. He wrote: 

It is probable that the number Jr is not even con
tained among the algebraic irrationalities, i.e., that 
it cannot be the root of an algebraic equation with 
a finite number of terms whose coefficients are 
rational. But it seems very difficult to prove this 
strict! y. 
Legendre was correct on both counts; n is not al

gebraic, but transcendental. The equation 
n n-1 2 

an X + a
11_1 X + ... + a

2 
X + a

I 
X + a

O 
= 0, 

where n is finite and all the coefficients are rational, 
is called algebraic. Numbers that were not merely 
irrational but that could not even be roots of an alge
braic equation are transcendental. It was not at all 
obvious that such numbers exist. 

With the arrival of the age of computers, came n 
calculated to an ever-increasing number of decimal 
places. In 1947, D. F. Ferguson calculated 808 deci
mal places for :rr. It took the computer one year to do 
that. In 1949, ENIAC (Electronic Numerical Integra
tor and Computer) computed 2,037 decimals of Jr 
in 70 hours. In 1955, NORC (Naval Ordinance 
Research Calculator) computed 3,089 decimals in 
13 minutes. 

In 1959, in Paris, an IBM 704 computed 16,167 
decimals of n. Three years later, John Wrench and 
Daniel Shanks used an IBM 7090 to find I 00,265 
decimals. In 1966, in Paris, an IBM 7030 computed 
250,000 decimal places of .n. ln 1967, a CDC 6600, 
in Paris, computed 500,000 decimals. In 1973, Jean 
Guilloud and Martine Bouyer used a CDC 7600, in 
Paris, to compute one million decimals in less than 
one day. 

In 1983, Y. Tamura and Y. Kanada used a HlTAC 
M-280H to compute 16 million decimals of .n in less
than 30 hours. In 1988, Kanada computed 201,326,000
digits in six hours on a Hitachi S-820. In 1989,
the Chudnovsky brothers found I billion digits. In
1995, Kanada computed 6 billion digits. In 1996, the

36 

Chudnovsky brothers found 8 billion. In 1997, 
Kanada and Takahashi calculated 51.5 billion digits 
on a Hitachi SR220 l in just over 29 hours. The cur
rent record is over 60 billion digits of .n! 

This is not the end of our quest for knowledge of 
Jr. The number pi has been the subject of a great deal 
of mathematical and popular folklore. It has been 
worshipped, maligned, misunderstood, overesti
mated, underestimated and worked on by scholars 
and everyday laymen. People have dedicated their 
lives in the quest for pi. 

As David Blatner said in The Joy of Pi, "The search 
for pi is deeply rooted in our irrepressible drive to 
test our limits." 
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TEACHING IDEAS 

Explorations with Simulated Dice: 
Probability and the Tl-83+ 

A. Craig Loewen

The probability strand of the mathematics curricu
lum is most likely the one strand above others that begs 
for a great deal of exploration and creativity. Many 
different, fun activities and games can be implement
ed across the grade levels. The TI-83+ is a useful tool 
for conducting those explorations while engaging in 
a wide variety of creative problem-solving activities. 

The TI-83+ calculator has several nice features. 
First, many different applications are available and can 
be downloaded free from the Texas Instrument Inter
net site. One is called probability simulation, and I 
encourage the reader to explore this piece of software, 
as it is quite powerful and versatile. This application 
simulates rolling dice, flipping coins, drawing cards, 
twirling a spinner and drawing coloured marbles from 
a defined set with or without replacement. A creative 
teacher could devise many interesting and fun explo
rations from this application alone. However, one 
disadvantage is that it restricts the number and type 
of dice-the user may select up to three dice only, 
and all dice must have the same number of sides. 

A second positive feature of the TI-83+ is that it 
is programmable, and this dramatically expands our 
possibilities-we can use the programmability of the 
calculator to overcome the limitations of the probabil
ity simulation application. It is quite easy to devise 
simple programs to explore situations with many dice 
with different numbers of sides. The calculator can 
store the results of the exploration in tables and lists 
for later analysis, if desired. 

Whether the explorations are quite simple or more 
complex, the TI-83+ calculator can be a powerful and 
flexible tool. 

Writing a Simple Program on the Tl-83+ 

The user will need to know a few key commands 
to program most probability explorations. First, the 
user will need to know how to select a random number. 
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The Tl-83+ makes this easy-there are two possible 
commands: rand and randlnt(vl.v2). Both com
mands can be accessed from the fourth menu (PRB) 
under the Math key. 

Try this: Select the rand command and press the 
enter key repeatedly. The calculator will display 10-
digit random values between O and I. Now, return to 
the PRB menu and this time select randlnt(. Com
plete the command by adding two values separated 
by a comma and enclosed by parentheses. Again, 
press enter several times to see the result. The calcu
lator will provide a series of random integers in the 
range specified, including the chosen values. 
• How could you use this command to simulate the

rolling of a 12-sided die?
• What happens when one (or more) of the values

you provide is less than zero?

Now, in order to conduct an experiment we will need
a command to have the calculator roll the die several 
times. The For command is very useful here. The fol
lowing mini-program causes the calculator to roll a six
sided die five times and display the results on the screen. 

PROGRAM:PROB1 
: ClrHol"te 
:ForCA,1,5) 
:OisP randlnt.(11 
6) 
:End 
:■ 

When the program is run, the following might 
appear on the screen. 

I 

5 
2 
3 
6 
1 

Done 
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Assume we want the calculator to keep track of 
the running total for 100 rolls of a six-sided die and 
display the average. One possible program follows. 

PROGRAM:PR082 
: C lrHor)e 
:0➔T 
: For(A, 1, 10�)) 
:T+randint(l,6)➔ 
T 
:End 
:oisP T/100 
:■ 

• What value should that average approximate?
Why?

• What would the average approximate for 100 rolls
of an eight-sided die? Why?

• Run the experiment several times. Find the average
of these averages. What does this value represent?

We now have enough simple commands to solve
a variety of fun and challenging problems. 

Lucky 11 
On the table you have a selection of 4, 6, 8, I 0, 12 

and 20-sided dice. There arc several of each kind of 
dice. You may select any two of the dice and roll 
them. Your opponent will do likewise, taking turns. 
The first person to roll lucky 11 wins. Which two dice 
should you select? 
• Try playing the game with your classmates. Have

each person select a different combination of dice.
Which combination(s) of dice seem to be the best?

A very basic program can be constructed that rolls
two dice 500 times and keeps track of how often the 
value 11 turns up. Presumably the program that gen
erates the result 11 most frequently is also the com
bination most likely to generate it first. In the following 
program, simulating the rolling of two 6-sided dice, 
T is a counter that is increased each time an 11 appears. 

PROGRAM:PROB3 
:clrHol"le 
:0➔T 
:For(A,1,500) 
:r.andlnt.(1,6)+ra 
ndint(1,6)➔R 
:If R=11:T+1➔T 
:End 
:OisP T 
:■ 

• When rolling two 6-sided dice, about how many
l l s  would you expect to appear in 500 rolls?

• How could this program be modified to simulate
rolling two 8-sided dice?
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• How many different combinations of dice are pos
sible in this problem? Can any combinations be
eliminated at the outset of the problem? Why?

• Are you better off to roll two 6-sided dice or a
4-and 8-sided die together?

• Which combination of dice is optimal for rolling
an 11? Can you explain your result theoretically?

• Rewrite the program above such that it will calcu
late the experimental probability (simulated) of
rolling an 11 with any combination of the same
two dice.

The Game of Pig 
This game appears in the book About Teaching 

Mathematics: A K-8 Resource by Marilyn Burns 
( l  992, 71 ). In this game a player rolls two 6-sided
dice and sums the results. The player must now make
a choice: accept the score or roll again. If the player
accepts the score, the points are added to the total
collected from previous turns and play passes to the
left. If the player rolls again, those points are added
to the total from the first roll. The player may con
tinue to roll as many times as he or she wants, but if
at any time the player rolls a one on either dice, the
player loses all the points collected on that turn and
play passes to the left. The points collected thus far
on each turn are risked each time a player rolls. lf at
any point in the game a player rolls double ones, the
score is reset to zero and the dice pass to the left. The
first player to collect I 00 or more points wins. This
game is appropriately titled because if you get too
greedy, eventually you will get caught. What is the
probability of rolling at least one I on any given
roll?

Again, the rolling of dice within this game can be 
simulated on your calculator. In this program, we 
simply have the computer check the results of both 
dice and if either dice equals one then our counter 
increases by one. 

PROGRAM:PR084 
:ClrHoMe 
: (HT 
:For(A,1,500) 
:randlnt(l,E.)➔B 
:randlnt(1,6)➔C 
:If 8=1 or C=1:T 
+1➔T
:End
:OisP T 
:■ 

• What is the probability of rolling at least one I on
a turn in this game? Can you prove this result
theoretically as well?
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• How would it change the game (and your strategy
in playing the game) if you used two 8-sided dice
instead of two 6-sided dice? Two 4-sided dice?

• How would it change the game (and your strategy)
if you used three 6-sided dice instead of two
6-sided dice?

• Challenge: What is the likelihood of completing
the whole game on one tum (using 6-sided dice);
that is, making it all the way to l 00 without rolling
a single 1?

Even the Odds 

Even the Odds (Loewen and Firth 1994) is a very 
simple game played with four regular 6-sided dice 
and a game board that includes a list of the values 1 
through 20. On a tum, a player rolls all four dice and 
may take the value of any one die, sum any two dice, 
sum any three dice or sum all four dice. The player 
crosses the chosen value off of his or her game board. 
The player must cross off all of the even values before 
crossing off any of the odd values. The first player to 
cross off all 20 values wins. 

When playing this game, it quickly becomes ap
parent that the most difficult values to cross off are 
19 and 20. In fact, typically, crossing off 20 takes 
several turns. What are the odds of rolling a sum of 
20 in a single roll with four regular 6-sidcd dice? 

This problem is very easy to model with the Tl-
83+. Here the calculator simulates rolling a die four 
times and sums the values; if the sum equals 20 the 
counter is increased by one. We need to ask the cal
culator to do this several times in order to get a rea
sonable estimate of the probability. 

PROGRAM:PR085 
:fHC 
:For(A,1,1000) 
=r�ndint(1,6)+ra 
ndint(1,6)+randI 
nt(1,6)+randint( 
1,6)�8 
:If 8=20:C+t➔C 
:End 
:OisP C 
=• 

The first time the program was run, I obtained a 
result of 1, implying the probability of rolling a sum 
of 20 with a single roll is about I in lOO. The second 
time the program was run, the result was 4, implying 
4 in 100. 
• How many rolls of the four dice are necessary to

get a reasonable estimate of this probability?
• How could you modify the program to simulate

rolling the dice 1,000 times?
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• What is the theoretical probability of rolling a sum
of 20 with four dice?
How can we calculate a theoretical probability for

this problem? To do this we need to know the number 
of possible combinations of dice that sum to 20 and 
the number of possible outcomes. 

Probabilit (20) = Possible Combinations of 20
y Total Possible Outcomes 

The number of possible outcomes is easy to cal
culate as it is simply 6 x 6 x 6 x 6 or 64. There are 
1,296 possible outcomes. 

There are a variety of ways to determine the pos
sible combinations of 20, but I turned to my calcula
tor again and used a simple routine. 

PROGRRM:AAR 
:0➔T 
: For CR , L 6 ) 
:For(B,1,6) 
: F or(C, L 6) 
:For(D,1,6) 
:If A+B+C+D=20:T 
+1➔T
: End
: End
: End
:End
:OisP T
:1

By running the program it was shown that there 
are 35 combinations that total 20. Using our formula, 
we can show that the probability of rolling a 20 is 

Probability(20) = �
1296 

The theoretical probability of rolling a sum of 20 
is about three times in 100 tries. 
• Calculate the probability of crossing off the value

19 with a roll of four dice.
• How can you calculate the probability of crossing

off the value l 8 on a turn? Remember, this can be
done with combinations of three or four dice!

• Challenge: Knowing that you can select any one
die, the sum of any two dice, the sum of any three
dice or the sum of all four dice, calculate the prob
ability of being able to cross off any given number
on a turn.

The Unusual Die 

Two players are trying a simple dice game in which 
they select one die at the start of the game and roll it 
five times, summing the values rolled. The player 
with the highest sum after five rolls wins. There are 
two different dice from which the player may select. 
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One is a regular six-sided die; the other die has six 
sides, but unusual values on its sides. The net for die 
is shown below. Which die should you select to 
maximize your chances of winning? 

The easiest way to simulate this game is to have 
the calculator roll both dice five times and compare 
the sums. If the calculator played the game several 
times, we could get an indication of the better die to 
choose. 

Note that rolling the unusual die is rather like flip
ping a coin where one side of the coin has a value of 
six, the other has a value of one. As an alternative, it 
may be interesting to try acting out this problem with 
a die and a coin. 

In the program below, the values for the regular 
die are summed and stored in the variable C, while 
the values for the unusual die are summed in D. The 
variable M counts the number of times the regular 
die wins, while the variable N counts the number of 
times the unusual die wins. The variable Q records 
ties. What is the variable T used for in this program? 

PROGRAM:PROB6 
: 0➔M: 0➔1--�: 0➔Q
:For(A,1,500) 
:0-+C 
:0➔0 
:For<B,1,5) 
:randlnl(1,6)+C➔ 
C 

rand!nt(1,2)➔T 
It T=2:6➔T 
T+D➔O 
End 
If C>D:1+M➔M
If D>C:l+H➔N 
If C=O:l+Q➔Q 
End 
Ois.P M,N�Q 
I 

• Try running the program several times to calculate
an average for M, N and Q, or try modifying the
program to play the game a larger number of times.
Can you draw any conclusions from these simu
lated experimental probabilities'>

• For each c.lie, what is the theoretical average sum
after five rolls? What is the theoretical probability
of the regular die winning? Of the unusual die
winning'> Of obtaining a tie?

• Which die is the better die for this game?

Horse Race 

The Horse Race game is played with two or more 
players. Players each roll a single regular six-sided 
die simultaneously and repeatedly. A player must roll 
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a one before he or she may roll for the two and so on. 
The first player to roll all of the values on the die in 
order wins. On average, how many rolls are required 
to roll each of the values one through six in order? 

Before we construct a program, it is worth consid
ering the given task a little more closely. At first the 
task feels a bit overwhelming because it is hard to 
comprehend the number of rolls necessary to finish 
the race. But, ask yourself this: is there any difference 
in the likely number of rolls necessary to obtain a two 
as compared with a one? No! The die does not care 
what we choose as our target value. In other words, 
the task is really just the same as racing to be the first 
to roll a one-six times over! We can simplify our 
problem, then, by asking this question: what is the 
average number of rolls necessary to roll a one? 

The following program instructs the calculator to 
keep picking random digits between one and six in
clusive until a one is selected, keeping track of the 
number of selections in the variable T. This program 
simulates rolling a die until a one appears. 

PROGRAM:PROB7 
0➔T 
0➔X 
While X;tl 
randlnl(1,6)➔X 
1+T➔T 
End 
DisP T 
I 

Of course, when we run the program as it is shown 
above, we only find the number of rolls until the first 
one appears. We may be lucky and get it on the first roll, 
or it may take several rolls. I ran the program several 
times, and some experiments required in excess of 
25 rolls! Sometimes I got it on the first try. We can have 
the Tf-83+ calculate an average for us by modifying 
the program slightly, placing our While loop inside 
of a For loop so as to repeat the experiment several 
times. The variable Q is used to calculate an average 
of the number of rolls required in each experiment. 

PROGRAM:PROB? 
:0+Q 
:For(A,1,11210) 
:0+T 
:0+X 
: Wh i 1 e X:;t 1 
:rand!nt(1,6)➔X 
:t+T➔T 
:End 
:Q+T➔Q 
:End 
:OisP Q/100 
:■ 
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• Modify the program above to simulate rolling
until you have obtained 500 ones.

• Modify the program above to simulate rolling for
a two instead of a one. How does this affect the
required number of rolls?

• Calculate the theoretical average number of rolls
required to roll each value from one to six in
sequence.

• What is the probability of rolling your way straight
through to the finish line in six rolls?

• How are the probabilities affected if you must roll
all of the even values in sequence before you may
roll the odd values, also in sequence?

• What is the average number of rolls needed to
complete the horse race with an eight-sided die?
with a ten-sided die?

Conclusion 

Unquestionably, there are a few limitations in 
programming on the TI-83+, primarily among them 
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the calculator's processing speed and data entry func
tions. However, the TI-83+ is a surprisingly powerful 
tool in conducting simple probability explorations. 
With a surprisingly small number of commands, the 
calculator can easily simulate rolling dice and thus 
enable the exploration of a wide variety of fun and 
challenging problem-solving activities. 
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Mathematical Stories for the 
Junior High Classroom: 

An Annotated Bibliography 

Gladys Sterenberg 

Stories have always existed. In earliest times, these 
stories were communicated verbally and pictorially. 
Over time, additional stories were written, and the 
study of human culture became centred on fine arts 
and literature. A fracture between arts and sciences 
emerged, and mathematics was placed firmly in the 
latter category. 

For much of the 20th century, we settled into a 
pattern portraying mathematics as tenselcss and time
less. We communicated mathematics through graphs, 
equations, proofs and algorithms. Our texts of math
ematics were the products or artifacts of mathemati
cal thinking. We seemed to have forgotten that 
mathematical texts throughout history included nar
rative letters, explanations, poetry and word prob
lems-the texts of patterned, storied thought. 

The separation of mathematics from the humanities 
is no longer feasible. Returning to and expanding the 
notion that mathematics is socially constructed and 
negotiated, mathematics educators and researchers 
are promoting new curricula that emphasize the 
mathematical processes of communication and con
nections. We are beginning to understand that the 
development of mathematical concepts occurs in a 
contextual and relational manner and that this context 
can provide meaning. When mathematics is placed 
in a social and cultural context, we can think of math
ematics as humanity. Using stories in mathematics 
classrooms enables us to experience the human di
mensions of mathematics. 

Considering mathematics as story suggests that 
using literature in school mathematics humanizes 
mathematics. By challenging common misconcep
tions of mathematics as a disconnected set of rules 
and procedures to be memorized, and of mathemati
cians as isolated social loners, stories show mathemat
ics as part of human culture. Perhaps this is the most 
compelling reason for teaching and learning through 
literature. Pragmatically, using literature integrates 
learning across curricular areas, thus addressing the 
issue of limited time resources. Students are interested 
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in stories, and literature provides an alternative way 
for communicating about mathematics. This bibliog
raphy attempts to explore possible ways of using 
literary resources in middle school mathematics 
classrooms. 

The bibliography is composed of picture books, 
puzzle books, novels and non-fiction writings orga
nized into five sections: number; patterns and rela
tions; shape and space; statistics and probability; and 
puzzles and recreational problems. Each book was 
read and analyzed on the basis of mathematical and 
literary standards. Particular elements noted in 
each entry include mathematical concepts, text fea
tures, possible teaching suggestions, and the place 
of the entry in the program of studies. A comprehen
sive bibliography of books for Grades 1-12 entitled 
Once Upon a Marhematical Time is available at 
www.ioncmaste.ca/homepage/resources.html. 

W hen mathematics is presented vibrantly and 
creatively, students begin to appreciate and under
stand mathematical concepts. By linking mathemat
ics and literature, the role mathematics plays in our 
society can be investigated. It is hoped that teachers 
will explore the potential of these books to promote 
mathematical thinking in their classrooms. 

Number Strand 

The Curious Incident of the Dog in the Night-Time 
by M. Haddon, 2002. Toronto, Ont.: Douhleday. 
ISBN 0385659792. 
Math Concepts: arithmetic operations can be used to 
solve problems in logical ways (explicit) 
Text Features: novel; main character is a 15-year-old 
autistic boy; language warning 
Teaching Suggestions: students can solve the prob
lems presented in the text; students can discuss the 
experience of living in a world that is interpreted 
literally 
Program of Studies: Grade 7-SO #14, 15, 16, 21; 
Grade 8-SO #9, 10; Grade 9-SO #7, 8 
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Erin McEwan, Your D ays  Are Numbered by 
A. Ritchie, 1990. New York: Alfred A. Knopf.
ISBN 0679803211.
Math Concepts: numbers can be used to solve prob
lems (explicit)
Text Features: novel; imperial measurements used
Teaching Suggestions: students can construct math
ematics questions that arise from situations involving
consumer sales; students can use metric measure
ments to convert decimals into fractions
Program of Studies: Grade 7-SO #4, 6, 6, 7, 13, 1 4,
1 5, 17, 18, 21; Grade 8-SO#3, 6, 10, 12, 1 3; Grade
9-SO#7, 8

The Essential Aritlzmetricks by K. Poskitt, 1999. 
London: Scholastic. ISBN 0439011573. 
Math Concepts: algorithms can be used to demon
strate proficiency with calculations; understanding 
numerical patterns can encourage the development 
of a number sense for decimals (explicit) 
Text Features: information text; includes table of 
contents; cartoon drawings 
Teaching Suggestions: chapters can be read and dis
cussed throughout the teaching unit 
Program of Studies: Grade 7-SO #3, 4, 5, 6, 13, 14, 
15, 17; Grade 8-SO #10; Grade 9-SO #l, 7, 8 

Fabulous Fractions by L. Long
_, 

2001. New York: 
John Wiley & Sons. ISBN 0471369810. 
Math Concepts: numbers can be represented as frac
tions; problems can be solved using arithmetic op
erations with fractions (explicit) 
Text Features: games and activities book; includes 
contents and index 
Teaching Suggestions: problems presented in the 
text 
Program of Studies: Grade 7-SO #4, 5, 6, 7, 2 1; 
Grade 8-SO #3, 6, 9, 10; Grade 9-SO #l, 2, 7, 8 

Mathematickles by B. Franco, 2003. New York: 
Simon & Schuster. ISBN 0689843577. 
Math Concepts: number operations can be used to 
express relationships (explicit) 
Text Features: poetry; language and number opera
tions are combined into playful equations; colourful 
illustrations (picture book) 
Teaching Suggestions: students can write their own 
mathematical poetry (for example, crisp air+ shad
ows tall + cat's thick coat= signs of fall) 
Program of Studies: Grades 7-9-General Outcomes: 
develop and demonstrate a number sense; apply 
arithmetic operations while solving problems 

Much Bigger Than Martin by S. Kellogg, 1992. 
New York: Penguin Books. ISBN 0140546669. 
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Math Concepts: ratios can be used to solve problems 
(implicit) 
Text Features: narrative picture book 
Teaching Suggestions: students can calculate the 
height of the person throughout the book using ratios 
to compare the sizes of body parts 
Program of Studies: Grade 7-SO #19, 20 

The Number Devil by H. M. Enzensberger, 1997. New 
York: Henry Holt & Company. ISBN 0805062998. 
Math Concepts: numbers can be represented in multiple 
ways; numbers can be used to solve problems (explicit) 
Text Features: novel; colourful artwork; humorous 
Teaching Suggestions: students can generate and 
extend the number patterns presented in the text 
Program of Studies: Grade 7-SO #1, 3, 4, 5, 6, 13, 
1 4, 20, 2 1; Grade 8-SO#3, 7, 8, 9, 11; Grade 9-SO 

#1,2, 3,4, 7,8,9 

On Beyond a Million by D. M. Schwartz, 2001. 
New York: Dragonfly Books. 
Math Concepts: numbers can be expressed as powers 
with exponents and bases (explicit) 
Text Features: picture book; cartoon drawings; side
bars provide additional information 
Teaching Suggestions: students can express large 
numbers in scientific form 
Program of Studies: Grade 7-SO #l, 2 

Patterns and Relations 

Anno 's Mysterious Multiplying Jar by M. Anno and 
M. Anno, 1999. New York: Philomel Books. ISBN
0698117530.
Math Concepts: patterns can be expressed in terms
of variables; variables and equations can be used to
express and summarize relationships (explicit)
Text Features: picture book; includes afterword; re
cursive ending
Teaching Suggestions: as the book is read, students
can develop their own system of notation; introduce
students to factorial notation
Program of Studies: Grade 6-SO #I, 2, 3, 4; Grade
7-SO #1, 2, 3, 4; Grade 8-SO #l, 2, 3; Grade
9 -SO#2, 3

The Cowztingbury Tales by M. de Guzman, 2000. 
River Edge, NJ.: World Scientific. ISBN 9810240333. 
Math Concepts: games and beauty often compel 
mathematicians to develop concepts (explicit) 
Text Features: information book; includes table of 
contents and bibliography; historical; each chapter 
differs in degree of difficulty 
Teaching Suggestions: activities are presented in the text 
Program of Studies: Grade 7-SO #1, 3, 4 ;  Grade 
8-SO #I; Grade 9-SO #I
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Fascinating Fibonaccis: Mystery and Magic in 
Numbers by T. H. Garland, 1990. Palo Alto, Calif.: 
Dale Seymour. ISBN 0866513434. 
Math Concepts: patterns can be used to describe the 
world and to solve problems (explicit) 
Text Features: information book; includes diagrams, 
a few proofs and historical notes 
Teaching Suggestions: students can express patterns 
using variables 
Program of Studies: Grade 7-SO #1, 2, 3, 4, 5, 6, 7, 
8, 9; Grade 8-SO #1, 2, 3, 6; Grade 9-SO #1, 2 

A Gebra Named Al by W. Isdell, 1993. Minneapolis, 
Minn.: Free Spirit. ISBN 091579358X. 
Math Concepts: patterns can be expressed using 
variables ( explicit) 
Text Features: novel; includes table of contents, a 
map of mathematics, and a list of characters 
Teaching Suggestions: integrate with science unit on 
the periodic table 
Program of Studies: Grade 7-SO #4, 5, 6, 7, 8, 9; 
Grade 8-SO # 1, 2, 4, 6; Grade 9-SO # 1, 4, 6 

Shape and Space 

Around the World in Eighty Days by J. Verne, 1873. 
United Kindgom: Oxford University Press, 2000. 
Math Concepts: periods of time can be measured 
(explicit) 
Text Features: novel; includes full-page coloured 
illustrations 
Teaching Suggestions: students can construct a time
line of the journey 
Program of Studies: Grade 7-SO #3, 4 

Circles: Shapes in Math, Science and Nature by 
C. S. Ross, 1998. Toronto, Ont.: Kids Can Press.
ISBN 1550740644.
Math Concepts: everyday phenomena can be de
scribed and compared using circles (explicit)
Text Features: includes historical notes; contains
contents, circle formulas, answers, a glossary, and an
index; metric measurements are given
Teaching Suggestions: Pi is presented incorrectly
as 3.14; activities and games are presented in the
text
Program of Studies: Grade 7-SO #1, 2

Four Colours Suffice by R. Wilson, 2003. Prince
ton, N.J.: Princeton University Press. 
Math Concepts: design problems can be explored 
using properties of networks (explicit) 
Text Features: historical non-fiction; includes a table 
of contents, a preface, notes and references, a chro
nology of events, a glossary and an index; contains 
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photographs and diagrams; the text is dense and is at 
a high reading level 
Teaching Suggestions: students can investigate the 
four-colour problem and other problems using various 
maps and diagrams presented in the text 
Program of Studies: Grade 8-SO # 12 

Holes by L. Sachar, 2000. New York: Yearling. 
ISBN 0440414806. 
Math Concepts: everyday phenomena can be de
scribed and compared using measurement; the effects 
of dimension changes in 3-D objects can be described 
using volume measurements (implicit) 
Text Features: novel; national book award winner 
Teaching Suggestions: students can calculate the 
volume of the dirt removed from the holes and the 
surface area needed for the resulting conical piles 
Program of Studies: Grade 8-SO #3, 4, 5, 7, 9; Grade 
9-SO #5, I 1, 12

The Librarian Who Measured the Earth by 
K .  Lasky, 1994. Boston, Mass.: Little, Brown. 
ISBN 0316515264. 
Math Concepts: similar triangles may be used to solve 
problems; angle measurements are linked to the 
properties of parallel lines (explicit) 
Text Features: biography of Eratosthenes; picture book; 
includes the author's note, an afterword and a bibliography 
Teaching Suggestions: students can replicate Eratos
thenes' system of measurement using e-mail partners 
from another city 
Program of Studies: Grade 7-SO #1, 2, 5, 6, 7, 9; 
Grade 8-SO #3; Grade 9-SO #1, 3, 4, 8 

The Library of Alexandria by K. Trumble and 
R. M. Marshall, 2003. New York, Clarion Books.
Math Concepts: mathematics develops within a cul
tural context (implicit)
Text Features: information book; includes a table of
contents, maps, family trees, names and terms, a
bibliography, suggested reading lists, and an index;
full-page colourful and detailed illustrations; includes
short biographical notes on Euclid and Archimedes
Teaching Suggestions: students can determine the
volume of a sphere that fits exactly into a cylinder
Program of Studies: Grade 8-SO #4, 7; Grade 8-
SO #9; Grade 9-SO #5

Polylzedro11 Origami/or Beginnen· by M. Kawamura, 
2001. Tokyo: Nihon Vogue. ISBN 4889960856. 
Math Concepts: 3-D objects can be described and 
analyzed according to their characteristics and their 
relationship to 2-D shapes (explicit) 
Text Features: activity book; contains brightly
coloured photographs and diagrams; includes step
by-step instructions 
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Teaching Suggestions: students can construct, iden
tify, and classify polyhedrons 
Program of Studies: Grade 8-SO #8, 9 

Sir Cu mference  and the Dragon of  P i  by 
C. Neuschwander, 1999. Watertown, Mass.:
Charleshridge. ISBN 1570911649.
Math Concepts: properties of circles can be used to
solve problems; everyday phenomena can be de
scribed and compared using measurement (explicit)
Text Features: narrative adventure; the play on words
for characters' names reinforces vocabulary
Teaching Suggestions: imperial measurements are
used; the mathematically incorrect use of three and
one-seventh to describe Pi is corrected on the last
page of the book
Program of Studies: Grade 7-SO #1, 2

This Book Is About Time by M. Burns, 1978. Boston, 
Mass.: Little, Brown and Company. ISBN 
0316117501. 
Math Concepts: periods of time can be measured 
(explicit) 
Text Features: information book; includes a table of 
contents, an introduction, and a conclusion; line 
drawings 
Teaching Suggestions: activities are presented in the 
text 
Program of Studies: Grade 7-SO #3, 4 

Statistics and Probability 

Why Do Buses Come in Threes? by R. Eastaway 
and J. Wyndham, 2000. 
Math Concepts: everyday phenomena can be de
scribed using probability (explicit) 
Text Features: information book; includes a table of 
contents, a foreword, an introduction, references, and 
an index; contains dense text 
Teaching Suggestions: students can investigate the 
questions posed in each chapter 
Program of Studies: Grade 7-SO #9, 10, 11; Grade 
8-SO #8, 9, 10; Grade 9-SO #8, 9, 10

Puzzles and Problems 

50 Mathematical Puzzles and Problems by G. Cohen, 
ed., 2001. Emeryville, Calif.: Key Curriculum 
Press. ISBN 1559534982. 
Math Concepts: logic, symmetry and numbers can 
be used to solve problems (explicit) 
Text Features: collection of puzzles from the Inter
national Championship of Mathematics and Logic; 
includes a preface, a table of contents and solutions 
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Teaching Suggestions: puzzles are presented in the text 
Program of Studies: focuses on number and shape 
and space strands 

How Math Works by C. Vorderman, 1999. New 
York: Reader's Digest. 
Math Concepts: everyday phenomena can be de
scribed using mathematics (explicit) 
Text Features: activity and information book; his
torical notes are included; colourful pictures and 
diagrams; includes a table of contents, a glossary, 
answers to puzzles and an index 
Teaching Suggestions: activities are presented in the 
text 
Program of Studies: all four strands are addressed 

The Man Who Counted by M. Tahan, 1993. New 
York: W.W. Norton. 
Math Concepts: throughout history, people have 
engaged in solving mathematical problems; there are 
connections between philosophy, religion and math
ematics (explicit) 
Text Features: narrative; set in the I 3th century on 
the road to Baghdad; answers are provided within the 
text; historical references to traditional and classic 
problems are made 
Teaching Suggestions: students can investigate the 
problems as they are introduced and prior to reading 
the answer 
Program of Studies: focuses on the number 
strand 

Marvels of Math by K. Haven, 1998. Englewood, 
Colo.: Teacher Ideas Press. ISBN 1563085852. 
Math Concepts: mathematics develops in a social 
context and is a dynamic cultural activity (explicit) 
Text Features: biographies; a collection of 16 his
torical stories; includes a table of contents, an intro
duction and an index; brief summaries, terms to know: 
follow-up questions and activities are included for 
each story 
Teaching Suggestions: activities presented in the text 
tend not to support constructivist approaches and need 
to be adapted 
Program of Studies: all four strands are addressed 

Math Trek: Adventures in the Mathzone by 
I. Peterson and N. Henderson, 2000. New York:
John Wiley & Sons. ISBN 0471315702.
Math Concepts: numbers, arithmetic, geometry and
algebra can be used to solve problems and investigate
patterns (explicit)
Text Features: narrative; weak plot; includes a pref
ace, answers, a glossary, further readings and an in
dex; contains photographs, diagrams, drawings and
tables
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Teaching Suggestions: problems are presented in the 
text 
Program of Studies: focuses on number, shapes and 
space, and patterns and relations strands 

Women and Numbers by T. Perl, 1993. San Carlos, 
Calif.: Wide World Publishing/Tetra. ISBN 
093317487X. 
Math Concepts: women are actively engaged in cre
ating new mathematics; numbers can be used to solve 
problems (explicit) 
Text Features: biographies; includes a table of contents, 
timelines and solutions to activities; the historical 
backgrounds of conceptual developments are provided 
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Teaching Suggestions: activities are presented in 
the text 
Program of Studies: all four strands are addressed 

Gladys Sterenberg is a doctoral candidate in the 
Department of Elementary Education at the University 
of Alberta, Edmonton. Prior to returning to full-time 
studies in 2002, she enjoyed a 15-year career as a 
junior high, elementary and high school mathematics 
teacher and was privileged to work at the post
secondary level for two years instructing preservice 
educarion students. 
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A. Craig Loewen, Th.: (lnin:r.,iry of L.cthbriJ�c 

How many rectangles 

are there on a 
chessboard? 

Source. Mason, J. 1985. Thinking Mathematically Don Mills, Ont.: 
Addison-Wesley. 

>. :lf}i,��:������-Y:' ·_ · _··--: ·. . 
� How many ----... 1 · � ·/>>

rectangles of all(}) 1 ) 
sizes are there 

on a tennis 
court? 

Source.· Loewen, A. C. 1993. Mathematical Problem Solving in the 
Primary Grades. Barrie, Ont.: Exclusive Educational Products. 
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<:.::,<)'.::t/tJ��l��;f,I,��� . : . 

Jane is playing a dice game 
with Frank. One die is a 

regular 6-sided die, the other 
die afso has six sides, but has 
3 ones and 3 sixes. The game 

is played by rolling your die 
five times and summing the 

values rolled. The player with 
the highest sum after five rolls 
wins. Which die should Jane 
choose if she wants to win? 

1000 coins are placed in a 
row with the "tails" side up. 
The first person turns every 

coin over. The second 
person turns every second 
coin over. The third person 
turns every third coin over, 

etc. After 1000 people, 
which coins will show 

"heads"? 

(((((((((((((((((1: 
Source: Kantecki, C., and L E. Yunker. 1982. "Problem Solving for the 

High School Mathematics Student.' Math Monograph no. 7. 
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