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Two Great Escapes 

Jerry Lo 

The Great Amoeba Escape 

The world of the amoeba consists of the first quad­
rant of the plane divided into unit squares. Initially, 
a solitary amoeba is imprisoned in the square in the 
bottom left corner. The prison consists of six shaded 
squares, as shown in Figure 1. It is unguarded, and 
the Great Escape will have succeeded when the entire 
prison is unoccupied. 

Figure 1 

• 

In each move, an amoeba splits into two, with one 
going to the square directly north and one going to 
the square directly east. However, the move is not 
pem1itted if either of those two squares is already 
occupied. 

Can the Great Escape be achieved? 

The Great Beetle Escape 

The world of the beetle consists of the entire plane 
divided into unit squares. Initially, all the squares 
south of an inner wall constitute the prison, and 
every square is occupied by a beetle. Freedom lies 
beyond an outer wall four rows north of the inner 
wall. If any beetle reaches any square outside 
the unguarded prison, such as the shaded one in 
Figure 2, it will trigger the release of all the surviv­
ing beetles. Then the Great Escape will have 
succeeded. 
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Figure 2 

� 
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In each move, a beetle can jump over another 
beetle in an adjacent square and land on the square 
immediately beyond. However, the move is not per­
mitted if that square is already occupied. The beetle 
that is jumped over is removed, making a sacrifice 
for the common good. The jump may be northward, 
eastward or westward. 

Can the Great Escape be achieved? 

REMARK I. The reader may wish to attempt to solve 
these two problems before reading on. At the least, 
the reader should delay reading beyond Strategies. 

Strategies 

In both problems, the configuration keeps chang­
ing, with more and more amoebas in one case and 
fewer and fewer beetles in the other. The changes 
must be carefully monitored before things get out of 
hand. What we seek is a quantity that remains un­
changed throughout. Such a quantity is called an 
invariant. 

In the amoeba problem, the situation is simpler at 
the start, with only one amoeba. After one move, we 
have two amoebas. However, ernch is less than one 
full amoeba. Suppose we assign the value I to the 
initial amoeba, x to the one going north and y to the 
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one going east. After the move, the initial amoeba is 
replaced by the other two. lf we want the total value 
of amoebas to remain 1, we must have x + y = 1. By 
symmetry, then, y = x. 

In the beetle problem, the situation is simpler at 
the end, with one beetle beyond the outer wall. Let's 
assign the value 1 to that beetle. It has reached its 
current position by jumping over another beetle. Let's 
assign x to the jumped-over beetle and y to the beetle 
before making the jump. After the move, the final 
beetle replaces the other two. For the total value of 
the beetles to be invariant, we must have x + y = I, 
as in the amoeba problem. 

A beetle with value z could jump over the beetle 
with value y to become the beetle with value x. If we 
choose y = x, as in the amoeba problem, then we must 
make z = 0 to maintain z + y = x. This is undesirable. 

A better choice is y = x2
. Then we can make z = x3

• 

Since x2 + x = l, we indeed have z + r = x1 + x2 
=

x(x2 + x) = x. 
The idea of an invariant is an important problem­

solving technique. For further discussion and practice, 
see Fomin, Gcnkin and Itenberg ( 1996, 123-33, 
254-57) and Tabov and Taylor (I 996, 93-109).

Solution to the Amoeba Problem 

We now put into practice the strategy discussed 
earlier. Clearly, the value of an amoeba is detennined 
by its location. So we may assign values to the squares 
themselves, as shown in Figure 3. 

Figure 3 
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The total value of the squares in the first row is 

I I 1 
S=l+-+-+- +···. 

2 4 8 

Then, 

I I 1 
2S = 2 + l + - + - + - + · · · . 

2 4 8 

Subtracting the first equation from the second, we 
have S = 2. Since each square in the second row is 
half the value of the corresponding square in the first 
row, the total value of the squares in the second row 
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is 1. Similarly, the total values of the squares in the 
remaining rows are ½, ¼, 1/8, .... Hence, the total
value of the squares in the entire quadrant is 4. 

Note that the total value of the six prison squares 
is 2¾. Remember that the total value of the amoebas 
is the invariant 1. If the Great Escape is to be suc­
cessful, the amoebas must fit into the non-prison 
squares with total value 1 ¼. Though there is no im­
mediate contradiction, we do not have much room to 
play about. 

Each of the first row and the first column holds 
exactly one amoeba at any time. If the amoeba on the 
first row is outside the prison, its value is at most 1k
The remaining space with total value 

1 1 1 1 
-+-+- +--· =­
) 6 32 64 8 

must be wasted. Similarly, we must leave vacant 
squares in the first column with a total value of at 
least 1k Since

I 1 
1--2x -=) 

4 8 
' 

we have no room to play at all. 
For the Great Escape to be successful, all squares 

outside the prison and not in the first row or first col­
umn must be occupied. However, this requires that 
the number of moves be infinite. Hence, the Great 
Escape cannot be achieved in a finite number of 
moves. 

Solution to the Beetle Problem 

As in the amoeba problem, the value of a beetle is 
dctcnnined by its location. So we may assign values 
to the squares themselves, as shown in Figure 4. 

Figure 4 
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The total value of the squares in the central column 
in the prison is 

S = xs + x6 + x1 + xx + .... 
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Then, 
xS = x6 + x1 

+ x8 
+ x9 + • ... 

Subtracting the second equation from the first, we have 
X S 

S=-. 
1-x 

Since each square in the adjacent column on either 
side is x times the value of the corresponding square 
in the central column, the total value of the squares 
in either column is 

1-x 

Similarly, the total values of the squares in the remain­
ing columns on either side are 

x, xR x9 
-- -- --

1-x' I-x' 1-x•···· 

The total value of the squares in the prison east of the 
central column and including this column is 

1 x
5 

-- (x5 
+ x� + x7 

+ .x1< + x9 + · · ·) = ---

1-x (1-x) 2 · 
Similarly, the total value of the squares in the prison 
west of the central column but excluding this column is 

6 X 
(l-x) 2 • 

Hence, the total value of the squares in the entire 
prison is 

(l-x)2. 
Recall thatr + x = I,  so 1-x =i2. Hence, the denom­

inator of the total value is ( l - x)2 
= (x2)2 = x4 . The 

numerator of the total value is x� + x5 
= x4(x: + x) = x4 

also, so the total value is exactly I. Thus the Great 
Escape can succeed only by sacrificing all but one 
beetle, and it cannot be achieved in a finite number 
of moves. 
REMARK 2. Everything up lO this point has been 
adapted from material in existing literature. The 
Great Amoeba Escape is from Kontsevich (see Taylor 
1993. 31, 37-39), and the Great Beetle Escape is from 
Conway (.�ee Honsberger 1976, 23-28). What follows 
is largely my own contributions. 

Further Amoeba Problems 

We define a prison in the amoeba world as a set of 
squares consisting of the southernmost a; squares in the 
i-th column for 1 S i � n such that a

1 
� a, � · · · � a . 

Such a prison is denoted by (a
1
, a

2
, ••• , ci,J We wish 

to detcnnine all prisons from which the Great Escape 
is achievable. We consider the following cases. 
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CASE 0. Q2 = 0. 

The Great Escape from all such I-shaped prisons 
is easily achieved. Figure 5 illustrates the Great Es­
cape from the prison (4) in a

1 
= 4 moves. 

• 

CASE J. Q2 = J. 

Figure 5 

• 

• • 

• • • • 

• • • • 

The Great Escape from all such L-shaped prisons 
is achievable in two stages. Figure 6 illustrates the 
Great Escape from the prison ( 4, 1, 1) in 12 moves. 
The first stage is the northward breakout in a

1 
= 4 

moves, exactly as in Case 0. The second stage is the 
eastward breakout inn - I = 2 phases, each involving 
a

1 
= 4 moves. 

Figure 6 

• • • • • • 

• • • • • • 

• ➔ • • ➔ • • • 
• • • • • • 

• • • • 

CASE 2. a
2 
= 2. 

By symmetry, we may assume that a
1 

� n. Since 
the Great Escape from the original (3,2, l) prison is 
not achievable, we may assume that a

3 
= 0. The prin­

cipal result is that the Great Escape from the prison 
(3,2) is not achievable. It then follows that it is not 
achievable from any P-shaped prisons (a

1
,2) where 

0
1 

� 3. 
Suppose the Great Escape from (3,2) is achievable. 

The order of the moves is irrelevant, as long as we 
allow temporary multiple occupancy of squares. 
Thus, there is essentially one escape plan, if any ex­
ists. So we may begin an attempt by making a three­
move northward breakout followed by a three-move 
eastward breakout, as shown in Figure 7. 

Figure 7 

At this point, note that the amoeba on the first 
column and the one on the first row should not be moved 
any further, since they are outside the prison and 
not blocking the escape paths of any other amoebas. 
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We mark them with white circles. We now move the other 
five amoebas one row at a time, as shown in Figure 8. 

Figure 8 

0 • 0 • 0 • 

0 • 0 • 0 0 • • 0 0 • • 

• • --, • • --, • • --, 0 � • 

• • • • • • 0 0 

0 0 0 0 

We have five more amoebas to move, and they 
form the same configuration as before except shifted 
one square diagonally in the northeast direction. It

follows that in the Great Escape from (3,2) the amoe­
bas do not venture outside the two diagonals of 
squares, as indicated in Figure 9. 

Figure 9 
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The total value of the squares between and includ­
ing these two diagonals but outside the prison is 

2_ + 3 (_!_ + _l + _l + .. ·) = 2_ + l = I.
4 8 f 6 32 4 4 

Hence, the Great Escape cannot be achieved in a 
finite number of moves. 

Finally, the only prison for which a = 2 and from 
which the Great Escape is achievable i; (2,2), in eight 
moves, as shown in Figure I 0. 
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Figure 10 
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CASE 3. a
2 

� 3. 
Such a prison contains the prison (3,2) as a subset. 

By Case 2, the Great Escape from (3,2) is not achiev­
able. Hence, it is also not achievable for any prison 
with a

2 
� 3. 

Further Beetle Problems 

We have already shown that the Great Escape from 
the original prison in the beetle world is not achiev­
able. We modify the prison by reducing the distance 
d between the outer wall and the inner wall. It turns 
out that fort ::; 3 the Great Escape can be achieved 
in a finite number of moves. Thus, it involves a team 
of beetles, all but one of which will be sacrificed. 
What we want is to minimize the size of the team. 
We consider the following scenarios. 

ScE:\ARJO 0. d = 0. 
Clearly, two beetles lined up directly in front of 

the target square can serve as the escape team. A team 
of size one is insufficient, because the maximum value 
of the lone beetle is x, and x < x + x2 = I. 

ScE�ARJO 1. d = I. 
Four beetles positioned as shown in Figure 11 can 

serve as the escape team. After the first two moves, 
we can continue as in Scenario 0. A team of size three 
is insufficient, because the maximum total value of 
the beetles is x2 + 2x3 < 2x2 + x, = x + x2 

= I. 

Figure 11 

SCEJ\:ARIO 2. d = 2. 
Eight beetles positioned as shown in Figure 12 can 

serve as the escape team. After the first four moves, 
we can continue as in Scenario I. A team of size seven 
is insufficient, because the maximum total value of 
the beetles is x3 + 3x4 + 3x5 < x3 + 4x4 

+ 2x5 
= 3x3 +

2x4 = 2x2 + x3 = 1 . 

Figure 12 

� - -
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0 0 0 
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SCENARIO 3. d = 3. 

Twenty beetles positioned as shown in Figure 13 
can serve as the escape team. After the first 12 moves, 
we can continue as in Scenario 2. 

Figure 13 

� � 
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0 0 0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 

� 
.j. 

-

0 0 0 0 0 0 0 0 0 0 

0 0 0 t- 0 

0 0 
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An escape team of size 19 may just be sufficient, 
because the maximum total value of the beetles is 

x4 + 3.x5 + Sr'+ 7x1 + 3x8 

= x4 + 3x5 + 8x6 + 4x7 

= x4 + 7x5 + 4x6 

= 5x4 + 3x5 

= 3x3 + 2x4 

= I. 

If this is the case, the escape team must consist of 
the 16 beetles in Figure 14, plus three more on the 
squares marked with black circles. 

Figure 14 
-
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. 0 0 0 • 
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. 
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By symmetry, we may assume that at most one 
of the three additional beetles appears to the left 
of the central column. In each of the five cases 
shown in Figure 15, it is easy to verify that at least 
one beetle will remain to the left of the central col­
umn. This means that an escape team of size 19 is 
insufficient. 

Figure 15 
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