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Believed to be one of the oldest algorithms, 
Euclid's algorithm (also called the Euclidean algo
rithm) was presented in Proposition 2, Book VII of 
Euclid's Elements as a method for finding the greatest 
common factor (GCF) of two integers. To convention
ally determine the GCF of the integers a and b, let 
a = k · a
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know that GCF(a,b) = k. However, if we also have 
0

1 
= b

1
, then GCF(a,b) = k · a

1
, and so on. That is, the 

GCF of two numbers will contain all factors common 
to both numbers, as the name suggests. In this article, 
I present two ways to apply this algorithm in the 
secondary mathematics classroom. 

GCF: The Silent Partner 

Why can't we reduce 3/7? Why do we multiply 
2 x 3 to determine the lowest common multiple 
(LCM) of 1/2 and 1/3, but the product of 2 x 6 does 
not give us the LCM of I /2 and I /6? Why can't we 
combine ✓3 + ..fi? Why does rationalizing 

I ✓
6 

✓
6=

6 
immediately give us a radical expression in lowest 
terms, but 

2 ✓6 2✓6 

✓6 . ✓6 6 
is not completely reduced? Why is the LCM of sin x and 
cosxtheirproduct? Why can we use a cross-multiplication 
rule to obtain an equivalent expression for 

x-(x+h) ----as----
x+h x x(x+h) 

-h ___ ') 

x(x + h) 

The answer to all of these questions involves a GCF 
of I. Like a silent partner, the GCF is always there 
when we need it, but it is never in the forefront. A GCF 
of I is almost always taken for granted, for without 
it we could not justify the steps of our procedure. 

delta-K, Volume 43, Number 2, June 2006 

A GCF of I is the reason we can or cannot proceed 
with some of the most fundamental procedures in 
mathematics. It is our rationale for the answers we 
give to the questions raised above. Quite simply, we 
cannot reduce 3/7, since GCF(3,7) = I. We perform 
2 x 3 = 6 to obtain the lowest common denominator 
of 1/2 and 1/3 because GCF(2,3) = I, but performing 
2 x 6 = 12 does not give us the lowest common de
nominator of 1/2 and 1/6 because GCF{2,6) :;c I. We 
cannot combine J5 + ✓7, since GCF(3, 7) = 1, and 
we rationalize 1/ ✓6 immediately, since GCF( 1,6) = I. 
Rationalizing the denominator of 2/ ✓6 does not 
immediately give us a radical in simplest form, because 
GCF(2,6) :;c I. The same holds tnie for common denom
inators in the mathematics of trigonometry and cal
culus. For example, GCF(sin x,cos x) = 1, and there
fore the LCM is their product, sin x cos x. Finally, a 
cross-multiplication rule can be used to determine an 
equivalent expression (reduced to lowest terms) for 

I I 
x+h x 

since GCF(x + h,x) = 1. 
The nature and calculation of the GCF should take 

a more prominent role in the curriculum and, hence, 
in the classroom because it is so fundamental. It is 
time to reinforce basic skills so that students can un
derstand the logic behind the mathematical proce
dures they discover and are taught. Understanding 
and basic skills, such as the division algorithm, will 
greatly enhance students' mathematical literacy. 

Now, let's pursue our discussion of the GCF by 
examining its role in reducing fractions and rational 
expressions. Consider the task of reducing 57/95 to 
lowest terms without using a calculator. Many stu
dents would first wonder if it was possible and then 
how to proceed. The quickest method is to calculate 
GCF(57,95) using Euclid's algorithm. 
Step 1. Divide the smaller number into the larger, 
keeping track of the remainder. 

I 
57)95 

57 
38 

37 



Step 2. Divide the remainder into the previous divisor, 
again keeping track of the remainder. 

1 
38)57 

38 
19 

Step 3. Repeat Step 2 until the remainder is 0. 

2 
19) 38 

38 
0 

Step 4. The divisor that yields a remainder of O is our GCF. 

Here, GCF(57,95) = 19, so to reduce 57/95, we 
simply divide both top and bottom by 19 to obtain 

57 7 19 - 3 
95 + 19 - 5

. 

This skill may also be applied to a task such as reduc
ing the rational expression 

x2 -x - 6 
x2 +x-12 

to lowest terms, as is required in Grades l 0, 11 and 
12. Students are usually instructed to factor both top 
and bottom and then reduce . Logically, it would be 
better to first answer the key question, Will this ra
tional expression reduce at all? If GCF (x2 

- x - 6, 
x2 + x -12) = I, then the answer is no. However, if 
the GCF is not 1, then we must proceed. 

Applying Euclid's algorithm, we get 

1 
X

2 + X -12 )x2 
- X - 6 

x2 +x-12 
-2x+ 6 

-h-2 
-2x + 6 )x2 +; - 12 

x2
- 3x 

4x- 12 
4x- 12 

0 

Here. -2x + 6 ;e I necessarily, and since -2x + 6 = 

-2(x - 3), the binomial factor (x - 3) is common to 
both x1 

-x - 6 and x2 + x-12. For students who have 
difficulty with factoring, half the work ofreducing is 
now already done. That is, we know that the expres
sion can be reduced, and we know the factor needed 
to begin the process. 

The above procedure is another way to approach 
a common algebra problem, but it is not helpful for 
every student. Some students may have forgotten the 
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division algorithm altogether, and others would rather 
try their luck at factoring. On the other hand, through 
this approach, some students will add to their under
standing of mathematical process and become more 
independent learners. They may even recognize the 
power of division and Euclid's algorithm. A high
energy honours class may appreciate the power of 
reducing fractions without a calculator and how the 
approach serves as a natural lead-in to calculating 
LCMs using 

ab 
LCM(a,b)= ---, 

GCF(a,b) 

which is the method used in Asia. A teacher who is 
going back to the basics may also appreciate this ap
plication of the division algorithm. 

ln short, the calculation of the GCF is simple and 
direct, and an understanding of the significance of I 
as the GCF of two numbers or expressions may help 
students understand the logic behind many mathe
matical processes. This silent partner need not be si
lent anymore! 

Radical Radicals 

Today's math student does not like radicals any 
more than yesterday's math student did. Although the 
modem student is usually armed with a calculator, 
the process of guessing how to break down radicals 
or when to rationalize the denominator still dominates 
the thinking and strategy processes. Also, students 
are not always sure that their final answer is in lowest 
terms, especially when dividing. There has to be a set 
approach to all operations involving radicals that 
students can use to resolve these issues. 

Consider v75 + ,tYT. We suggest to our students 
that they reduce the radicands before combining 
terms. The logical question, of course, is whether 
these terms can be combined and, if they can, how to 
proceed. ln this case, how are numerically challenged 
students supposed to know that they should start with 
3, especially ifwe have taught them to extract perfect 
squares from each of the given radicals? How is the 
student to proceed with confidence and certainty from 
the outset? 

We may tell our students that we cannot add or 
subtract the terms if the GCF of the radicands is I .  
ln simplifying v75 + -/27, the trained eye observes 
that GCF(27,75) is not 1 but 3; thus, it may be possible 
to simplify the expression. Since 3 is a common factor 
of both 75 and 27, we can now express v75 and -127 
in terms of v'3. Instead of having to guess how to 
break down both 75 and 27, we already have one of 
the key factors. The student then has the simple 
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task of dividing 3 into both 27 and 75 before simplify
ing the terms to obtain 

m+m=�+vT-9 = 5
✓

3 +3✓
3 = (5 +3)✓3 

=8✓
3

. 

The expression v'75 + m can be simplified, since 
GCF(27,75) is 3 and removing a GCF of 3 from each 
radicand (that is, a common factor of v3 from each 
radical) reveals a factor that is a perfect square in each 
radicand. 

We might also suggest that students not multiply 
or divide until they have determined the GCF of the 
radicands. Consider the conventional way of multi
plying two radicals, such as v'28 and i/63. Many cal
culator-oriented students would perform 28 x 63 =
1,764 and then try to simplify (v'l,764 = 42). If we 
suggest that students simplify the radicals before 
multiplying, a guessing or guess/estimating process 
begins in an attempt to determine what numbers go 
into both 28 and 63. It is discovered that v'28 

= 
2vi 

and that v63 = 3vi, but only after dealing with the 
radicands one at a time. 

The process of Radical Radicals involves consider
ing both radicands at the same time by finding their 
GCF using Euclid's algorithm (without using a 
calculator). 

For example, find GCF(28,63). 
Step 1. Divide the larger number by the smaller num
ber, keeping track of the remainder. 

2 
28)63

56
7

Step 2. Divide the remainder into the previous 
divisor. 

4 
7)28

28
0

Step 3. Continue Step 2 until the remainder is 0. 
Step 4. The divisor that yields a remainder ofO is our 
GCF. 

Since the divisor of 7 gives us a remainder of 0, 
we know that 28 and 63 have 7 as a GCF, so v'28 and 
v63 have v'7 as a common factor. This brings about 
a different way of doing radicals, because we work 
with two radicands at a time, not one. Also, when it comes 
time to break down the radicals, we will already know 
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one of the factors and, therefore, half the work will 
have already been done. Thus, guessing or guess/es
timating is reduced dramatically. 

Now consider v'26 · v'65. Instead of looking at 
v'l,690, we determine that GCF(26,65) = 13 and ex
press each factor in terms of vII This gives us 

v'26 . v'65 = v'2 ' v'l3 . v'5 . vTI
= m . m . v12 . v'5
= 13vW 

The numbers never become large, so simplifying is 
easier. 

The disadvantage of this method is that students 
must find the GCF of two numbers with little help from 
a calculator. lts advantages are that once the GCF has 
been found, half the work is already done; guessing 
is virtually eliminated; and the numbers never in
crease in size, which reduces the frustration and errors 
that come with working with large numbers. 

In summary, the steps to this new approach are as 
follows: 
Step 1. Find the GCF of the radicands. 
Step 2. Express each radicand in terms of the square 
root of the radicand. 
Step 3. Pair off like radicals. 
Step 4. Simplify remaining terms. 

If you thought multiplication done in this way was 
efficient, let's now look at division. This is where this 
method really shines! We do not rationalize the de
nominator unless the GCF of both the numerator and 
the denominator is 1. 

Consider v'l 75 / vITI. lf students do not recognize 
that 7 is a common factor, they might multiply top 
and bottom by vTI2, giving them horrendous num
bers to work with. Instead, we use Euclid's algorithm 
to find that GCF(l 12,175) = 7. Thus, we have 

v'175 � v7 v25 
v'll2 = v'7 · 16 = vi . v16 

. 

Since v25 = 5, vI6 = 4 and the radical factors vi
divide to give us 1, we are left with the answer 5/4. 

What happens if the GCF of the numerator and the 
denominator is 1? We simply multiply top and bottom 
by the denominator, knowing that we will not have 
to reduce the fraction after multiplying the terms. For 
example, 

vT5 vT5 vi v' 105 
vi = vi . vi = -7-, 

We realize that v'105 cannot be simplified, since 
GCF(l5,7) = 1. 

Now, what�pens if the numerator is not a radical? 
Consider 2N10. Here, we do not multiply top and 
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bottom by v'IO, since GCF(2, I 0) = 2 (not I). Instead, we 
recall that Ya · Ya = a, and in this case Y2 · Y2 = 2. 
Since GCF( I, l 00) = 1, we ex,eress both numerator 
and denominator in terms of v2.This gives us 

2 Y2 Y2 -=-·-· 
v'ITI Y2 vs 

The -./2 I ....f2 divides to give us 1, and we are now left 
with -./2 / VS. Since GCF(2,5) = 1, we can now mul
tiply top and bottom by VS and not have to worry 
about reducing the final form of the quotient. Finally, 
we have 

-./2 vs v'ITI 
-·- =--· 

VS VS 5 
We do not have to go backward or look over our 
shoulder to see if the quotient can be reduced, since 
the GCF is 1. Our rule, then, is to multiply top and 
bottom by the denominator factor only when the GCF 
of the radicands is I. 

In general, the steps for division are as follows: 
Step I. Find the GCF of both numerator and 
denominator. 
Step 2. Express each radicand in tem1s of the square 
root of the GCF. 
Step 3. Pair off like radicals and reduce. 
Step 4. Simplify remaining terms. 
Step 5. Multiply top and bottom by the denominator 
term only when the GCF of numerator and denomina
tor is I. 
For division, then, we merely add Step 5 to the method 
used for multiplication. 

These new processes for multiplication and divi
sion now simplify the processes for addition and 
subtraction, because we can operate only if the GCF 
is not 1. Hence, v3 + vi cannot be sim_E.!ified any 
further, since GCF(3,7) =I. Forv'24 + v54, we find 
that GCF(24,54) = 6. We then have 

v'24 + v'54 = v'4 . ../6 + v'9 . v6 
= v6 (2+3) 
= 5¥6. 

Again, we look at two radicands at a time. We as
certain that it may indeed be possible to combine 
terms if their GCF is not I. If we have more than 
two terms, we can look for two or more with the 
same GCF. 
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For combined operations, we again look at two 
GCFs as opposed to one. Consider v3 (v'15+v'21). 
Since GCF(3, 15) = 3 and GCF(3,2 l) = 3, we have 
v'15 = ../3 · VS and v2I = ../3 ·vi.Thus, we can write 

../3 (v'15+v'21) = v3 ('1/3. vs+ v3. vi) 
= 3 (VS+vi). 

For division, consider 
5 

vi -y'j_ 
Since GCF(5,7,2) = I, we multiply top and bottom 
by the conjugate vi +-./2. This gives us 

5 vi + -./2 _ S(vi + -./2) 
vi_7 ___ v2_2 vi + -./2 - 7 -2

= 5(vi + -./2) 
5 

= vi+'12. 
ln summary. by finding the GCF of the radicands, 

we introduce the idea of working with two or more 
radicands at a time. Once we have the GCF, we cut 
the work by at least half because we already have one 
of the factors of the radicand. We eliminate large 
numbers, the errors caused by large numbers and the 
frustration that results from guessing. We streamline the 
process by keeping the numbers simple and neat. 

In my experience, student feedback on this process 
is always the same: "This is easy compared to what 
1 used to do 1" 
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