2. Find the area of all five triangles.
3. Make a chart to show the base, height, and area of all of the triangles.
4. Express as many ideas as you can as a result of your investigations.
5. Is there a relationship between the base and height of a triangle and its area?
6. Find the perimeters of the five original triangles and chart the perimeter and area of each. Which triangle has the shortest perimeter?
7. Predict the area of five triangles that have the same base as those in 1 above but are twice as high.
8. Draw the triangles in 7 on dot paper and find the areas to see whether you were correct.
9. Predict the area of five triangles that have the same height as those in 1 above, but have a base twice as wide.
10. Again draw the triangles and check your prediction.
11. Predict the area of five triangles that are twice as high and twice as wide as those in 1 above. Draw the triangles and check your predictions.
12. Find the triangle that encloses the largest area if the perimeter is 12 units.

mISCELLANEA

- The November, 1970, issue of "The NTA Bulletin" (Newfoundland Teachers ' Association) carries a news item of interest to Alberta mathematics teachers: "125 teachers from across the province met in Gander on October 24 and formed a Mathematics Council... Guest speakers for the day were Dr. Joan Kirkpatrick who dealt with primary and elementary Mathematics..."
- We have received one copy only of a pamphlet entitled "Positional Notation in the Gaussian Integers". MCATA members may borrow this document. Address your request to the Editor.
- We remind you that letters to the editor are welcome anytime.

