Volume XIV, Number 4, May 1975

Letters to the Editor

Dear Sir,
I am a new member of your council and I enjoyed the annual conference very much, but I would suggest that there could have been a "hot seat" type of approach to Dr. Eicholz. Both Edmonton school boards seem to be going away from his texts, and it would have been interesting to have heard Dr. Eicholz's reaction. Dr. Eicholz is very articulate, and would probably have welcomed the opportunity to explain his text in the present form.

The November issue of DeZta-K gave a great deal of food for thought.
The guide for evaluation of texts is interesting, but I wonder if it is not rather dated. I have taught mathematics at most grade levels and feel that our present emphasis is on the elite who wish to major in mathematics at universtity.

I have seen all too many students who have an excellent grasp of set theory, yet who do not have the computational skills necessary for the needs of everyday life. Knowing that 7×8 is seven sets of eight is useless if the students believe that the product is 53 .

We need priorities, but this evaluation does not even begin to address itself to the problems facing the discipline of mathematics.

First, texts must be written at the students' reading level. It also seems logical that very heavy emphasis be placed on whole number computation. A knowledge of measurement is also vital.

We must have a system of individualizing mathematics so that aspects such as problem solving are given to the student who likes, or needs, this kind of mental exercise. The original purpose of problem solving was to give a practical application to drill, but, like Frankenstein's monster, it seems to have developed a life independent of reason. You solve problems because they are written in the text; the problems are written in the text because we expect to have problems written in the text. Wow!

IN THIS ISSUE

1975 ALBERTA HIGH SCHOOL PRIZE EXAMS -WINNERS AND SOLUTIONS 3
BOOKS REVIEWED 16
A SYMPOSIUM ON THE EVALUATION OF MODERN MATHEMATICS CURRICULA -A REPORT 16
SOME COMMENTS ON METHODOLOGY 18
ON THE TRANSFORMATION OF RECTANGULAR REGIONS INTO RECTANGULAR REGIONS OF EQUAL AREAS 22
IDEAS AND MANIPULATIVES YOU CAN TRY 24
FORMULAE CHART AND SUMMARY OF MAIN POINTS, MATHEMATICS 20/30 27
MCATA ANNUAL CONFERENCE, 1975 35

It would be equally fruitful to critically examine the study of bases, sets, "logical thinking," irrationals, and such.

What is the answer? Modern thought seems to indicate that individualization is the way to go. I think the readership of Delta K would welcome a column in each issue devoted to the practical individualization of mathematics.

Ronald A. MacGregor
Teacher, St. Philip School, Edmonton

Dear Sir,
I am writing to comment on the latest issue of DeZta-K (Volume XIV, Number 3, February 1975).

I enjoyed this issue of Delta-K, as I have the ones in the past, and was very interested in the Metric Articles and Information Sheet that appeared. However, I was concerned about the spelling of "metre" (er instead of re). I realize there is some controversy in the United States regarding the spelling of metre and litre, but in Canada, it is very clear the "re" spelling is preferred (see National Standard of Canada CAN-3-001-01-73 or CSA Z234.2-1973). I was surprised to see the "er" spelling in an article written by Dr. S.A. Lindstedt, because of his use of the "re" spelling in his Metric Workshop.

Perhaps the "er" spelling was a typographical error and not intended to suggest a change in spelling. If this is the case, I think a statement to this effect should be made in the next edition of Delta-K so that confusion does not arise.

The Information Sheet was very well done and I'm sure will be used by teachers. It is unfortunate the error occurred on such a valuable article.

A second point, which is not as serious as the first but probably bears mentioning, relates to the use of the script " ℓ " for litre. The " ℓ " should be used when litre is the unit (i.e. 10ℓ) but is not necessary if the unit is a multiple or sub-multiple of litre (i.e. 10 ml or 5 kl). Because the script " ℓ " cannot easily be typed or printed, its use should be restricted only to instances where confusion might result.

In conclusion, I hope you will accept these as positive comments because I did enjoy both the article and information sheet, and feel they will be appreciated by professional teaching personnel.

Leonard J. Hall
Metric Coordinator, Calgary Board of Education

EDITORIAL NOTE: Over the years it has been the practice of the publications department, ATA, to use the webster dictionary. Since the issue of Delta-K which Mr. Hall mentions, we have received an official paper from the Metric Commission of Canada in which we have noted its preference; henceforth, in our publications, "er" appearing in things metric will, indeed, be a typographical error. (The information sheet has been corrected and reprinted and is attached to this publication. 1

1975 Alberta High School Prize Exams - Winners and Solutions

Following is a list of the winners and their prizes in the 1975 Alberta High School Prize Examination in Mathematics. Congratulations to the finalists and our commendation to all who participated.

PROVINCIAL PRIZES

Student	Amount	School
${ }^{1}$ Terry Wu	\$400	Lindsay Thurber High School, Red Deer
${ }^{2}$ Norman C. Hutchinson	\$400	Brooks High School, Brooks
${ }^{3}$ Donald \cdot J. Reble	\$200	Concordia College, Edmonton
4William R. Graham	\$200	Harry Ainlay High School, Edmonton

SPECIAL PRIZES
${ }^{5}$ Malcolm W. Kern $\$ 100$
${ }_{6}{ }^{6}$ Kith Fenske
\$100
W.R. Myers High School, Taber

Harry Ainlay High School, Edmonton

DISTRICT PRIZES (\$50 EACH)

District
Number

Student/School

(none awarded)
Shawn R. Golby, Lorne Jenken High School, Barrhead
Larry I. Tennis, Wetaskiwin High School, Wetaskiwin
Leo B. Hartman, Camrose Composite High School, Camrose
Daniel A. Boulet, Olds High School, Olds
Emil L. Hallin, Crescent Heights High School, Medicine Hat
7 (1) Raymond Kwan, Bonnie Doon High School, Edmonton
(2) Masao Fujinaga, Harry Ainlay High School, Edmonton

8 (1) Herman J. Ruitenbeek, Lord Beaverbrook High School, Calgary
(2) John Soong, St. Mary's Community High School, Calgary

[^0]
NATIONAL OLYMPIAD NOMINEES

Name (grade)

1. WU, Terry C.-Y. (12)
2. REBLE, Donald J. (12)
3. GRAHAM, William R. (12)
4. HUTCHINSON, Norman C. (12)
5. KERN, Malcolm W. (12)
6. HARTMAN, Leo R. (12)
7. FENSKE, Keith (10)
8. KWAN, Raymond R.K. (12)
9. RUITENBEEK, Herman J. (12)
10. GOLBY, Shawn R. (12)
11. SOONG, John H.-C. (12)
12. FUJINAGA, Masao (11)
13. LAKE, Robert M. (12)
14. CAMPBELL, Murray S. (12)
15. ROGERSON, Richard D. (12)
16. HOUSTON, Gary M. (12)

School
Lindsay Thurber High School, Red Deer Concordia College, Edmonton
Harry Ainlay High School, Edmonton Brooks Composite High School, Brooks W.R. Myers High School, Taber

Camrose Composite High School, Camrose Harry Ainlay High School, Edmonton Bonnie Doon High School, Edmonton Lord Beaverbrook High School, Calgary Lorne Jenken High School, Barrhead St. Mary's Community High, Calgary Harry Ainlay High School, Edmonton Ross Sheppard High School, Edmonton Ross Sheppard High School, Edmonton McNally Composite High School, Edmonton Lindsay Thurber High School, Red Deer

CANADIAN MATHEMATICAL CONGRESS

1975 Alberta High School Examination

PART I - Answer Sheet

To be filled in by the condidate.
PRINT:
$\overline{\text { Last Name }}$ First Name Initial

Name of School

ANSWERS :

To be completed by the Deparmtent of Mathematics, University of Alberta.

Points	Points Correct	Number Wrong
$1-20 \quad 5$	$5 \mathrm{x} \quad=$	$1 \mathrm{x} \quad=$
Totals	$\mathrm{C}=$	$\mathrm{W}=$

SCORE $=\mathrm{C}-\mathrm{W}=$
(DO ALL PROBLEMS. EACH PROBLEM IS WORTH FIVE POINTS.) TIME: 60 Minutes

1. The sum of three consecutive positive integers is always
(a) odd
(b) even
(c) a perfect square
(d) divisible by 3
(e) none of these
2. Which of the following holds true?
(a) $\log _{3} 2<\log _{2} 3$
(b) $\log _{3} 2=\log _{2} 3$
(c) $\log _{3} 2>\log _{2} 3$
(d) $\log _{3} 2=1$
(e) $\log _{2} 3=1$
3. For the triangle as shown, which of the following is true
(a) $a=b$
(b) $b=2 a$
(c) $c=2 a$
(d) $c=2 b$
(e) none of the previous are true
4. "The operation \circ is commutative" means
(a) $x^{\circ} 1=1$
(b) $x^{\circ} x=x$
(c) $x \circ y=y \circ x$
(d) $x \circ(y \circ z)=(x \circ y) \circ z$
(e) none of the previous
5. If $x=.1102$ (base 3), then x^{2} is (base 3)
(a) . 11021102
(b) . 10102
(c) . 01222111
(d) . 010211
(e) none of the previous
6. Given a square inscribed in a circle inscribed in an equilateral triangle, if each side of the triangle has length 6 , what is the length of each side of the square?
(a) $\frac{1}{2} \sqrt{6}$
(b) $\sqrt{3}$
(c) $\sqrt{6}$
(d) $2 \sqrt{3}$
(e) none of these
7. Which is larger, the volume of a sphere of radius 1 or the volume of a right circular cone of height 1 and base radius 2 ?
(a) these volumes do not exist
(b) they are equal
(c) the sphere
(d) the cone
(e) none of the above are true
8. $\frac{a^{4}+a^{2} b^{2}+b^{4}}{a^{2}+a b+b^{2}}=$
(a) $\mathrm{a}^{2}+a b+b^{2}$
(b) $\mathrm{a}^{2}+a b-\mathrm{b}^{2}$,
(c) $a^{2}-a b-b^{2}$
(d) $a^{2}-a b+b^{2}$
(e) none of the previous
9. Five years from now Bill will be twice as old as he was two years after he was half as old as he will be in one year from now. His age is
(a) 16
(b) 13
(c) 8
(d) 41
(e) cannot be determined
10. The number $1.1313 \widehat{13} \ldots$ (the pair 13 is repeated ad infinitum) is the same as
(a) $\frac{112}{99}$
(b) $\frac{113}{99}$
(c) $\frac{100}{99}$
(d) $\frac{1131313}{1000000}$
(e) none of these
11. A jar contains 15 balls, of which 10 are red and 5 are black. If 3 balls are chosen at random the probability that all three will be red is
(a) 0
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{8}{27}$
(e) none of these
12. The square $A B C D$ has side length 1 . Given that $A G \perp E F$ and that $\overline{E F}=\sqrt{\frac{7}{6}} \overline{\mathrm{BF}}=\sqrt{\frac{1}{7}}$ then $\overline{A G}$ is

(a) $\sqrt{\frac{7}{6}}$
(b) $\sqrt{7}$
(c) $\sqrt{\frac{6}{7}}$
(d) $\sqrt{\frac{8}{7}}$
(e) none of these.
13. Which is the largest of $2^{4^{3}}, 2^{3^{4}}, 4^{2^{3}}, 3^{2^{4}}, 3^{4^{2}}$?
(a) $2^{4^{3}}$
(b) $2^{3^{4}}$
(c) $4^{2^{3}}$
(d) $3^{2^{4}}$
(e) $3^{4^{2}}$
14. A circle of radius 3 has centre C. Let A be at a distance 5 from C and $A B$ be a tangent to the circle. Let $A C$ meet the circle at D and let E lie on $A B$ with $E D \perp A C$. Then the length $\overline{E D}$ is
(a) 1
(b) 2
(c) $\sqrt{2}$
(d) $\sqrt{3}$
(e) none of these

15. The system of equations $2 x-3 y=4,2 y-4 x=8$ has
(a) ten solutions
(b) two solutions,
(c) one solution
(d) no solutions
(e) none of the previous
16. Suppose that a_{1} is an integer not divisible by 3 and that $a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}$ is divisible by 3 , where a_{2}, \ldots, a_{n} are integers. Then n is
(a) arbitrary
(b) at least 3
(c) at most 2
(d) Always odd
(e) none of these
17. According to the diagram, $\overline{X Y}$ cannot equal
(a) 2
(b) 4
(c) 7
(d) 10

(e) any of these
18. Assume the earth is a perfect sphere and a wire is stretched tightly around the equator. The wire is lengthened one meter and then expanded uniformly so as to form a somewhat larger circle. The new radius will be approximately how many meters larger than the old one?
(a) .016
(b) . 032
(c) . 16
(d) . 32
(e) 1
19. School X has 100 students and school Y has 50 students. These schools are to be replaced by a single school Z. If the students live in the immediate vicinities of their respective schools (\mathbf{X} or Y), where should Z be placed so as to minimize the total distance travelled by all the students.
(a) at X
(b) at Y
(c) half way in between
(d) one third of the way from X to Y
(e) at none of these
20. An urn contains 100 balls of different colours, 40 red, 27 green, 26 blue, and 7 white. What is the smallest number of balls that must be drawn without looking to guarantee that at least 15 balls have the same colour?
(a) 86
(b) 50
(c) 43
(d) 39
(e) none of these

PART II

TIME: 110 Minutes
Instructions to Candidates
Attempt the problems in any order you wish. Partial credit is given for significant progress. Use any methods you like. Each problem is worth 20 points.

1. Given a regular octagon of side length d inscribed in a square of side length 1 as shown, what is d ?

2. A prime number is a positive integer bigger than one, which is evenly divisible only by one and itself. Show that if a prime number is divided by 30 , the remainder is prime.
3. Find all integers k so that

$$
x^{2}+k(x+1)+7=0
$$

has only integer solutions.
4. Given triangle A B C with M the midpoint of $B C$. Prove that $\overline{\mathrm{AB}}+\overline{\mathrm{AC}}>2 \overline{\mathrm{AM}}$.
5. Find a positive number n, which is smaller than 25 such that the expression

$$
(n-1)^{3}+n^{3}+(n+1)^{3}
$$

is evenly divisible by 102.
6. Is the inequality $(99)^{n}+(100)^{\mathrm{n}}>(101)^{\mathrm{n}}$ always true, where n is a positive integer? Justify your answer.
7. Given the right triangle as shown; and that a, b, c is an arithmetic progression. Show that $\mathrm{a}: \mathrm{b}: \mathrm{c}=3: 4$: 5 .

8. Let a, b, c, d be four consecutive integers. Prove that a • b • c • d + 1 is a perfect square.
9. A group of students write a set of k exams. Suppose that a_{1} of the students failed at least 1 exam, a_{2} failed at least 2 exams, •• , a_{k} failed exactly k exams. What was the total number of failed exams?
10. Given the three squares as shown,along with the angles α, β, γ. Show that $\alpha+\beta+\gamma=90^{\circ}$.

SOLUTIONS

1975 ALBERTA HIGH SCHOOL

PRIZE EXAMINATION IN MATHEMATICS

PART I: - KEY

E	A	B	E	D	B	D	C	A	B
11	12	13	14	15	16	17	18	19	20

PART II: - ANSWERS

1. By symmetry, the octagon divides the square into the octagon itself and four right triangles, each of side lengths x and hypoteneuse length d, such that $2 x+d=1$. By the Pythagorean theorem, $2 x^{2}=d^{2}$, or $x=\frac{\sqrt{2}}{2} d$, so that $\sqrt{2} d+d=1$ or $d=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1$.
2. Let P denote the prime and r the remainder. Then for some integer d we can write $p=30 d+r$. Note that $1 \leq r \leq 29$. All non-prime integers in this range are divisible by either 2,3 , or 5 . Thus, if r is not prime, then r is divisible by 2,3 or 5 (which also divides 30). The same number would then have to divide P. Since p is a prime, this cannot occur. Therefore, r is prime.
3. If r, s are the roots, then $r \cdot s=7+k, r+s=-k$. From this second equation it is clear that if k and r are integers, so is s. If r is a root of $r^{2}+k(r+1)+7=0$, then

$$
k=-\frac{r^{2}+7}{r^{2}+1}=-(r-1)-\frac{8}{r+1}
$$

Therefore both k and r are integers if and only if $8 \div(r+1)$ is an integer,

$$
\frac{8}{r+1}=j, \text { or } r=-1+\frac{8}{j} \text { for }
$$

some integer f. For r to be an integer, $j= \pm 1, \pm 2$, $\pm 4, \pm 8$. We can construct the following table.

j	1	-1	2	-2	4	-4	8	-8
$r=-1+\frac{8}{1}$	7	-9	3	-5	1	-3	0	-2
$k=1-r-j$	-7	11	-4	8	-4	8	-7	11

Thercfore $k=-7,11,-4,8$ with corresponding root pairs $(7,0),(-9,-2),(3,1),(-5,-3)$.

Hence, $\overline{\mathrm{AB}}+\overline{\mathrm{AC}}=\overline{\mathrm{AB}}+\overline{\mathrm{BD}}>\overline{\mathrm{AM}}+\overline{\mathrm{MD}}=2 \overline{\mathrm{AM}}$, since the shortest distance between two points is a straight line.
5. $n^{3}-3 n^{2}+3 n-1+n^{3}+3 n^{2}+1=3 n^{3}+6 n=3 n\left(n^{2}+2\right)$ We require $3 n\left(n^{2}+2\right)=102 j$ for some integer j, i.e. $\frac{n\left(n^{2}+2\right)}{2.17}=j$
If n were odd, so would be $n^{2}+2$, and then so would be $n\left(n^{2}+2\right)$. Thercforc n is even.

Also, since $0<n<25$, n cannot be an even multiple of 17 , therefore $n^{2}+2$ is a multiple cf $17, n^{2}+2=17 k$, or $\mathrm{n}=\sqrt{17 \mathrm{k}-2}$.

We have:

k	1	2	3	4	5	6
に	$\sqrt{15}$	$\sqrt{32}$	$\sqrt{49}=7$	$\sqrt{66}$	$\sqrt{83}$	$\sqrt{100}=10$

So $n=10$ will do ($n=7$ is not even). If one checks all the cases $k=1,2, \ldots, 37$ one finds that this is the only solution with $n \leq 25$. (The checking was done with the help of a digital computer).
6. Divide the inequality on both sides by $(100)^{n}$ to get $(.99)^{n}+1$ $>(1.01)^{\mathrm{n}}$. The left hand side is always less than or equal to 2 for every positive n. However, the right hand side increases without bound as n gets larger, so that for large enough n, the inequality must be false. (The smallest integer for which the inequality is not true is $n=49$)..
7. Let $a=b-d$ and $c=b+d$. Then $(b+d)^{2}=b^{2}+(b-d)^{2}$, or upon simplifying, $b=4 d, a=3 d, c=5 d$. Hence $a: b: c=$ $3 \mathrm{~d}: 4 \mathrm{~d}: 5 \mathrm{~d}=3: 4: 5$.
8. $n(n+1)(n+2)(n+3)=n^{4}+6 n^{3}+11 n^{2}+6 n+1=\left(n^{2}+3 n+1\right)^{2}$.
9. We first count how many people failed exactly 2 exams for

$$
z=1,2, \ldots, k:
$$

$$
a_{1}-a_{2} \text { failed exactly } 1 \text { exam }
$$

$$
a_{2}-a_{3} \quad " \quad 4 \quad 2 \text { exams }
$$

$a_{k-1}-a_{k} \quad " \quad " \quad k-1$ exams
$a_{k} \quad " \quad " \quad k$ exams

The total number of failed exams is then $1\left(a_{1}-a_{2}\right)+2\left(a_{2}-a_{3}\right)$

$$
+\cdots+(k-1)\left(a_{k-1}-a_{k}\right)+k a_{k}=a_{1}+a_{2}+\cdots a_{k}
$$

10. $\tan \alpha=s / s=1, \tan \beta=s / 2 s=1 / 2, \tan \gamma=s / 3 s=1 / 3$.

$$
\begin{aligned}
& \text { Hence } \alpha=45^{\circ} . \quad \tan (\beta+\gamma)=\frac{\tan \beta+\tan \gamma}{1-\tan \tan \gamma}=\frac{1 / 2+1 / 3}{1-1 / 6}=1, \\
& \text { giving } \beta+\gamma=45^{\circ} \text {. Hence } \alpha+\beta+\gamma=90^{\circ} .
\end{aligned}
$$

A Metric Handbook for Teachers, edited by Jon L. Higgins, is a joint project of the NCTM and the Educational Resources Information Center (ERIC) Clearinghouse for Science, Mathematics, and Environment Education. Contributions by seventeen authors have been compiled in this 144 -page handbook to provide practical suggestions for teaching the metric system. The articles - some reprints from recent issues of the Arithmetic Teacher, some written especially for this publication are divided into five sections: "Introducting the Metric System," "Teaching the Metric System: Activities," "Teaching the Metric System: Guidelines," "Looking at the Measurement Process," and "Metrication, Measure, and Mathematics." The books sell for $\$ 2.40$, with discounts on quantity orders shipped. to one address, as follows: 2-9 copies, 10 percent; 10 or more copies, 20 percent. Make cheques payable to the National Council of Teachers of Mathematics.

Once again...

At the business session of the annual meeting (October, 1974) two changes in the constitution were approved. (A copy of the constitution with these changes incorporated was mailed with the November issue of Delta-K.) Fees were increased to \$6 (regular membership and subscription), \$3 (students), effective January 1, 1975.

Also effective January 1, 1975, the costs for the Metric Missionary Workshops include expenses of participants, plus an honorarium to MCATA in an amount to be negotiated (minimum $\$ 50$). The program has been extended to June 1 and could be renewed next year if there is sufficient need expressed.

MCATA annual meeting, 1974. Were you there?

The 1975 MCATA annual meeting is scheduled for Calgary - October 3/4, at the Calgary Inn.

A new series of ten 15-minute color instructional TV programs has been developed to combat math phobias. "Math Matters" is designed for the intermediate level, and these programs can be used for both refresher work and to introduce new mathematics topics. Lessons in this new series include fractions, metric measurement, geometry, and mathematical properties. "Math Matters" was produced by KLRN-TV, Southwest Texas Public Broadcasting Council in Austin, and is being distributed by the Agency for Instructional Television (AIT), Box A, Bloomington, Indiana 47401.

BOOKS REVIEWED

Activities in Mathematics First Course \& Second Course Johnson, Hansen, Peterson, Rudnick, Cleveland, Bolster
Publisher - Scott, Foresman \& Co. (now Gage Publishing Limited), Price \$7.90.
by Art Jorgensen
Principal
Jubilee Junior High School Edson

The topics covered in these books are patterns, numbers, measurement, probability, graphs, statistics, proportions, and geometry.

The teacher's edition introduces each broad topic with a comprehensive overview. For each activity to be used in relation to the topic there is provided the objectives, an overview, a list of necessary materials, and practical procedures.

The students' books are very attractive and the vocabulary is very readable. The activities used to develop the desired understandings and concepts deal with contemporary issues of high interest to students. To avoid the monotony of drill, many activities are introduced using games. Emphasis is placed on student involvement. Among activities used to develop each topic are those that will interest and challenge students with a wide range of mathematical ability.

These books should prove of particular interest to students at the elementary and junior high school levels that have found mathematics to be difficult and uninteresting.

The textual material is supplemented with an excellent set of duplicating masters and overhead visuals.

A Symposium on the Evaluation of Modern Mathematics Curricula - A Report

D. Alexander, University of Toronto
J. Beamer, University of Saskatchewan w. Higginson, Queen's University

At the International Congress of Mathematicians, Vancouver, August 21-29, 1974, a three-day symposium was organized by the International Commission on Mathematical Instruction (I.C.M.I.) to discuss evaluation of Modern Mathematics Curricula. Reports were presented by representatives of the United Kingdom, Russia, Poland, Brazil, Japan, India, U.S.A., Canada, Germany, Denmark, and Hungary with a general discussion on the topic on the third day. An official report will be sent in due course to all affiliated organizations (in Canada, the Canadian Mathematical Congress). The following reflects the impressions of the Canadian representatives.

There appeared to be general agreement that initial evaluations conducted in the experimental phases of the new curricula had been favorable while the eval-
uations became less significant as the curricula were expanded to encompass more schools. Reference was made to three factors which could explain this: 1) the reduction in the selectivity of the secondary and tertiary student bodies which coincided with the introduction of the new programs in most countries; 2) the lack of adequate teacher training for implementing the new programs; 3) the inability to define "modern mathematics curricula" (is it primarily content or method; what content, what method?).

The only large-scale study reported was the National Longitudinal Study of the U.S.A. where the most important factor determined was the teacher. No characteristics were identified for the effective teacher and the effectiveness of the teacher was not consistent in successive years. It is expected that the Natiorial Assessment of Educational Progress will contain some evaluation of mathematics curricula in the U.S.

In the U.K. a study is just being undertaken which will be an observational type rather than statistical. There is a definite feeling that large-scale statistical studies are doomed to failure because of the many uncontrollable variables involved.

Dr. Christiansen (Denmark and UNESCO) emphasized the need for evaluation of curricula on the basis of well-established goals (i.e. the goals of a developing country like Brazil, where illiteracy is a major problem, are entirely different from those of the U.S.A.). He also referred to his experience with UNESCO as impressing him with the impossibility of successfully 'transplanting' curricula. "Each country must find its own salvation."

The Polish answer to teacher training was enlightening. At 4 p.m. on a given day each week, every elementary teacher will be required to watch an inservice T.V. program and assignments will be marked weekly by the local superintendent. This is one way of solving the teacher training problem. (It was not clear what happens to delinquents.)

Although no conclusions were reached on the evaluation of the modern mathematics curricula or on how such evaluation should take place -- or indeed even whether it should take place -- the symposium did provide a forum for an exchange of information and opinions on an international level and was valuable for this alone.

The ICMI is a commission of the International Mathematical Union. Canadian representation is through the Canadian Mathematical Congress. Dr. A.J. Coleman, President of the CMC, hopes to institute a mechanism for making this representation more effective in the future through the formation of a national committee or commission for mathematics education. It is hoped that he will find the support, political and financial, for such a committee.

A new booklet, The Overhead Projector in the Mathematics Classroom, by George Lenchner, describes how to get the most out of this ubiquitous but under-used aid. Describing precisely what materials to use, how to design and make them, and how to present them effectively, this booklet helps the classroom teacher make optimum use of his overhead projector. With many detailed diagrams and two-color illustrations, plus an extensive list of suppliers, this is a practical as well as an imaginative guide. The handy 32 -page booklet is available from NCTM for \$1.10.

Some Comments on Methodology

1. Think Metric: 100\% Immersion

There is consensus that the best approach to teaching and learning the metric system is by 100% conversion. It is unnecessary and unsatisfactory to teach a dual system. In particular, conversion from metric to Imperial units, and vice versa, is awkward, memory-taxing, and conceptually disruptive.

If measurement is being introduced to a Grade 1 class, only metric units should be used; if the advanced grades have been using Imperial units, they should be given a "crash" transitional progranme to develop a background in metric units and then carry on exclusively with the metric system. (Adults will probably want to make comparisons to the Imperial system because it is an engrained part of their thinking.)

2. Learn Measurement by Measuring

The best cardinal capsule for the method of teaching and learning measurement is the Dewey principle, "Learn by doing." Measure, measure, measure.
3. Conceptualization of Measurement

How does a pupil develop the concept of measurement? What is the learning pattern? Consider the following four steps:
A. The identification and understanding of what is being measured. We measure different attributes, each distinct and discrete, e.g., length (1-dimensional), area (2-dimensional), volume (3-dimensional) time, speed (length/time), acceleration, force, work, power, etc. Confusion as to what is being measured leads to very muddled thinking. We teach this phase in elementary grades by using examples: length refers to our height, the width of the room, the depth of the sea, how far we can step, how high we can jump, the distance to the zoo, or to the movie, how long the worm is, the thickness of a book, the distance around the yard. We sharpen our understanding of the attribute being measured by comparison: John is taller than Jim, the door is twice as high as it is wide, it is further to Edmonton than to Calgary, etc. Further understanding is developed by ordering various objects according to some measure, e.g., arranging rods in order of length, arranging cups in order of capacity, arranging stones in order of mass.
B. Identification and selection of a unit. An appropriate unit must possess the same attributes as the one being measured. You use a toothpick, or a bobbypin or a piece of string to measure length because they have the common attribute of length. Appropriate units may be non-standard and we usually (but not always) begin with non-standard units to accentuate the understanding of what we are measuring. However, we soon discover the inadequacies of non-standard units and introduce standard units. Metric, of course.
C. Measuring. The actual activity of measuring involves counting the units. In every case, we are faced with the problem of counting part of a unit -- part of a centimetre, or of a gram, or of a second. Counting of units is facilitated by using scales - really number lines with points matched to the number of units. The reading of scales, or rulers, or clock faces, or dials, needs to be carefully
developed. On the metric system, parts of a unit are in the decimal system of notation rather than in the fractional system. We develop a thinking pattern of "two point three kilograms of meat" (2.3 kg). We subdivide in multiples of ten rather than in halves, quarters, eighths, etc.
D. Symbolization. Finally we express in some meaningful way the measurement. In the metric system. The problem of symbolization has been carefully considered for universal application and understanding. The SI conventions for symbolization should be meticulously followed.

4. The Use of Estimating

The practice of estimating a measurement is educationally very worthwhile. It promotes and augments conceptualization. It reinforces the imagery of the unit that is being used, it makes one "think" of the attribute that is being measured.

Look (at the object to be measured) -- Visualize (the unit to be used) -Estimate (really "counting" of units in your mind) -- Measure (using standard units and your skill of reading scales) -- then Compare (your measurements to your estimate) to sharpen and develop the whole conceptualization process.

5. Utilitarian vs Structural Approach

How should we select and sequence measurement concepts? By their utilitarian value or by a rational, structural plan? For example, should we teach centimetres, metres and kilometres only, because they are the units of length that are commonly used, or should we teach all the subunits from milli- to kilo(including decimetres, decametres, hectometres) because together they form a rational, well-structured system? The answer to this dilemma and controversy is probably some kind of synthesis. Certainly, attention must be given to the common, everyday application of units of measurement in order to have enough relevancy to maintain the familiarity and understanding of the units.

On the other hand, understanding is enhanced by having some rational structure. A good solution is probably to select one attribute--length is undoubtedly the best one--and teach all the subunits, millimetre, decimetre, metre, decametre, hectometre, kilometre, in order to have a complete example, a referent, for the decimal structure of the metric system. Even though a decametre may never be used in the big wide world of applied measurement, the unit has a place in the logical scheme of the metric system and should be taught for educational (cognitive) reasons.

Having one complete example, it is probably unnecessary to include all the subunits in the measurements of other attributes, e.g., in mass, the units of kilogram, gram, milligram and megagram (tonne) will suffice.

6. Appropriate Teaching (learning) Materials

Teachers should select materials that relate clearly and directly to the ideas that are being taught. Rulers are a good example. If the centimetre unit is being introduced, the ruler should clearly and directly show the centimetre scale; it should not be obscured with millimetre, decimetre or metre markings. If measurement using decimetres to one place of decimal is being taught, the ruler should show decimetre markings with each decimetre divided into decimal parts (called centimetres!).

7. Decimal Notation vs Fractional Notation

Because the metric system is based on powers of ten, we should capitalize and exploit this principle. Parts of a unit are expressed by decimals. In most cases each place of decimal can be associated with a subunit, e.g., 6.75 m means 6 metres, 7 decimetres and 5 centimetres. The fractional notation $63 / 4 \mathrm{~m}$ does not have this added association to subunits.

Fractional notation for parts of a unit should be avoided with the exception perhaps of $\frac{1}{2}, \frac{1}{4}$ and maybe other unit fractions. These examples have a "visual imagery" impact and are therefore meaningful. But decimal notations will have greater dividends and lead naturally to other important ideas such as precision.

Decimal notation should be introduced in specific context. For example, we have always introduced two places of decimals in the context of writing dollars and cents. "Two dollars and sixty-five cents" is written as "\$2.65." In the same way "Two metres and sixty-five centimetres" can be written as "2.65 m."
8. Precision and Approximations

All measurements made by you and me and our pupils are approximations. (The on $\overline{l y}$ exact measurements are those that are defined, e.g., the length of 1650763.73 wavelengths in vacuum of the radiation corresponding to the transition between the levels $2_{\text {P10 }}$ and $5 \mathrm{~d}_{5}$ of the krypton- 86 atom is exactly 1 metre). We should avoid saying "Johnny is exactly 135 centimetres tall" (or even 1352 millimetres!).

The idea of approximate measurements leads us to a consideration of precision, or "tolerances" as the tradesmen and engineers would say. This is an impor$\overline{\text { tant }}$ educational idea - one that we have practically ignored in elementary grades.

Any notation of a metric unit gives the precision of the measurement, e.g., 1.925 m (my height) is a measurement precise to the nearer millimetre.

This attention to precision will lead in higher grades to the idea of scientific notation and significant digits.
9. "Ragged" Decimals

Before measures can be added or subtracted, they must have the same degree of precision. For example, consider the following problem:

If Amy measured the side $A B$ as 2.4 m and Betty measured the side $B C$ as 2.78 m and Christine measured the side AC as 2.923 m , what is the perimeter of the triangle?

2.4 m
2.78
2.923 m

Do we merely fill in the gaps in the "ragged" decimals with zeros? This ignores the precision of each measurement. Amy was content to measure to the nearer
decimetre, Betty to the nearer centimetre, Christine to the nearer millimetre. In order to find the perimeter to a known degree of precision, either Amy and Betty should remeasure and use the same precision as Christine did, or we must reduce the precision of the last two measures to Amy's standard, i.e.,

$$
\begin{array}{r}
2.4 \mathrm{~m} \\
2.8 \mathrm{~m} \\
2.9 \mathrm{~m} \\
\hline
\end{array}
$$

10. Problem Solving

Most of the mathematical problems in elementary textbooks (and in real life) involve measurements. As we look at methodology for teaching measurement, it is therefore relevant to look at the methods used for problem solving.

The usual initial step in solving a math problem is to formulate the problem situation, that is, to determine the essential components of the problem. When measurement is involved, it is useful at this stage to identify, select and visualize the units of measurements. Very of ten a diagram is a possibility.

The next step is usually to translate the problem situation into a mathematical sentence. Here, a clear understanding of the units used is important. Precision of units should be consistent.

The next step is usually computational. The comments made above in sections related to decimal notation, precision and ragged decimals are relevant.

Finally, in the interpretation of the solution to the problem, the complete understanding of units of measurement play an important part.

The work in problem solving will mean that decimal computation will be emphasized with a corresponding de-emphasis for fractional computation.

11. Concomitant Referents: All Subject Areas

As the change is made to the metric system, teachers should be aware of the appearance of metric referents in the environment. Metric units will appear more and more frequently in the supermarket and on packaging. Watch for them -refer to them.

Although the math and science teachers will probably be the "experts" in metrication, all teachers should be informed of the basic principles of the metric system. Maps in social studies can easily be changed to metric by changing the scale; references to measures in language and reading should be interpreted in metric terms. Of course, many references are merely expressions and carry with them little measurement connotation, e.g., "There was a crooked man, who walked a crooked mile" or "I love you a bushel and a peck." Do not destroy the charm of these euphemisms by insisting on the metric translation "I love you 36.368 72 litres and an additional 9.09218 litres."

From Think Metric, a Workshop on the Metric System of Measurement, prepared by Sidney A. Lindstedt, Consultant, Alberta Department of Education.

CANADIAN SOCIETY FOR HISTORY AND PHILOSOPHY OF MATHEMATICS
Société Conadienne d'Histoire et de Philosophie des Mathématiques

Dear Colleague,
Each year more mathematics teachers are realizing the relevance of the history or philosophy of mathematics to their own professional development and to their teaching.

In June of 1974, a new society was formed to encourage teaching, study and research in the history and philosophy of mathematics throughout Canada. In the first six months we had grown to a membership of 100 and we soon hope to publish a list of members and their areas of interest.

If you have an interest in the history or philosophy of mathematics, we invite you to join us by filling out and returning the application form below along with a cheque for $\$ 4$ (the dues for 1975). A cheque for $\$ 10$ will pay for your 1975 dues as well as a subscription to Vol. II (4 issues) of the Society's regular official journal, Histomia Mathematica, an international journal, published and edited in Canada, with over 1,000 subscribers.

Join your colleagues and join now.
Yours very truly,
J. L. Berggren

Secretary-Treasurer

NAME \qquad
MAILING ADDRESS \qquad
(province) (post code)
SPECIAL AREAS OF INTEREST
AMOUNT ENCLOSED \$10 (—)
\$4 \square

On the Transformation of Rectangular Regions into Rectangular Regions of Equal Areas

by William J. Bruce

Consider two rectangles, $A B C D$ with sides of lengths a and c, and EFGH with sides of lengths b and d, as shown in Figure 1, and such that $b<a<2 b, a c=b d$.

The problem is either to cut up the rectangular region $A B C D$ so that the pieces will cover exactly the rectangular region EFGH, or to construct from ABDC a rectangle of area equal to that of EFGH and having the same shape.

Construct $M B=D R=E F, M N$ parallel to $B C$, and draw AR. Slide $\triangle A D R$ to the position NPQ. Then Area $\triangle R C Q=$ Area $A M N$ and we have Area Rectangle $A B C D=$ Area Rectangle MBQP = Area Rectangle EFGH. If cutting is done, the triangular pieces AMN and ADR combined with the polygonal piece MBCRN will cover exactly the rectangular region EFGH.

If $2 \mathrm{~b}<\mathrm{a}<3 \mathrm{~b}$, a modification of the procedure is necessary. In this case, it is essential first to reduce the problem to that of the first case. Division of the inequality by 2 gives $b<a / 2<3 b / 2$ from which $b<a / 2<2 b$ follows, so that the first case applies. Figure 2 indicates the procedure.

Divide the region $A B C D$ into two equal parts by drawing SW. Place region ASWD in the position WCVT. Then the region SBVT satisfies the conditions of the
first case and the construction proceeds as before, starting with this region, to obtain Area Rectangle ABCD = Area Rectangle SBVT = Area Rectangle MBQP = Area Rectangle EFGH.

In general, if $A B$ is of length L, we can divide the rectangular region into n equal parts such that we always have $b<L / n<2 b$ for $L>b$ and the procedure is similar to that shown in Figure 2.

Trivial cases exist when $L=n b$ and require at most the division of the region into n equal rectangular parts and side-by-side placement of these parts as in Figure 2.

Ideas and Manipulatives you can try

Games, Games, Games

GAME I: Multiplication Fun
Directions: To graph multiples on the circle, start with 0 and connect in order the points with line segments until 0 is reached again.

Example A

Example B

Try One

GAME II: Biggest Number
Materials: Make 3 of each of the 10 digits ($0,1,2 \ldots 9$) on transparency squares (for class demonstration), or on construction paper squares (for math center).

Directions: Pull one square out of container at a time. Place it (or its digit) in box of your choice. - Remember it can't be moved after it is placed!! When boxes are filled, decide biggest number (or sum or difference).

GAME |l|: Can-u-go

1	2	3	4	5	6	7	8	9

Directions: Player covers any number of places that total value of the thrown dice. He continues until no other numbers can be used and totals those uncovered. Each player does this in turn. Winner has smallest sum.

Contributed by Shirley Frye

Hollywood Squares

. This game is one that I have found to be effective at the junior high level. It can be used to help students achieve a variety of curricular objectives, it is interesting to play, it can be learned quickly, and it adapts well to class size groups. I believe the game could be profitably used for students of other ages.

The Players:
Stars - Nine persons are chosen to be the stars. They sit in desks arranged in a 3 by 3 array facing the class.

Record Keeper - One student is chosen to record results on a tic-tac-toe grid on the board.

Moderator - One student acts as the moderator.
Teams - The rest of the students are divided into two groups; team X and team 0 .
Team Captains - Each team selects a Captain.

> Record
> keeper

Moderator

Team Captain
Members of Team X

Team Captain
Members of
Team 0

Suggestions

- Provide the moderator with sample questions that are not too easy.
- Encourage the stars to try to deceive the teams by dramatizing responses.
- Questions answered incorrectly can be reused until the correct answer is given, thus all stars and team members should be prepared to respond to all questions.

Formulae Chart and Summary of Main Points

Text: Modern Intermediate Algebra - Nichols et al
Designed for the Mathematics Department
Dr. E.P. Scarlett Senior High School, Calgary
by D.L. Treslan

MATHEMATICS 20 (January 1975)

Cuppris 6: Reletione and Punctione

Delotion: any set of ordored paires.
Donoln: the est of all firet eleacote of the ordered paire of e relation.
mag: the eot of all second elenente of che ordered palit of a reletion.

herroch of atatios relatione:

a) Liet or roater netbod: $R=\{1,4,9, \ldots\}$
b) Rule nethod: $\mathbb{R}=$ \{the equaree of the netural numbera \}

Inveres of - Roletion (1) obtelined by interchanglag the elenente in each of the ordered paire of the original rolation.
(ii) obteined by intorchanging the variebles in the open sentance dofining the raletion.

Mote: The errepl of a rolation and ite invoree are "mirror reflectiona" through the 11 ne dafined by $y=x$

- If R ie the relation, the R^{\prime} le the inveree of that relation.
nemetion: - unique relation in wieh eooh domain olenent ic aspped onta ase and only one range oleant.
Vertical line teat: A relation ie a fometion if and only if no vertioal line intorsects
the greph of the relation in care than one poset.'

Dree of Punctionel Notation:

a) Set builder: $B=\{(x, y) \mid y=2 x+1, x, y \in \mathbb{R}\}$
b) Mapping : $E: x \longrightarrow 2 x+1, x \in R$
c) Imegr: $g(x)=2 x+1, x \in R$

In general, tbe function f poire (e) fron ite dasain and (f(c)) from ite range to fore ($c, f(c)$), an oiceent of f.

Speciel Mnaction:

-) Coastant function: of. $\mathrm{y}=3$.

- the rengo of f conteine exactly one olement.
- each olement of the function 10 of the form (x, x).
- (note that this ie a apeciel one - to - ore function)
c) Cose - to - one function: eg. $y=x+3$
- each eleaent in the doaein is paired with a unique rango oleaent.
d) Keny - to - one fumetion: $08 . \mathrm{Y}=\{\mathbf{x} \mid$
-oach range olement ie asoociated with two or more dosein oleaente.
-) Greatest Integer function: eg $(x,[x])$
- eech element of the function is of the fors $(x,[x])$, where $[x]$ ie the greateat integor not greater than x
- (Somotimes reforred to as the step-function)
f) Linear function: eg $y=2 x+1$
- sll Nunctions of this type auat be writton in the form $y=m x+b$
- note that $-\neq 0$

Couposition of Rmetions:

- - fonction aej be defined in toras of otber functione.
ef'n : Given a pair of functione f and g ac that the rage of f is the doanin of g, the function f to the function composed of g with f if and only if $g(x)=g(f(x))$ for aech x in the dosain of f.

Inveree Runctions: If f is e given function, then f^{-1} is the notation ueed for the inverae of that function.
MOTE that the nethode used to obtein inverse functione are the ecee es those used to form inverze relatione.

Direct Proportion:
Dof'n: For every real number $\mathrm{c} \neq 0,\{(x, y) \mid y=0 x$ and $x \in D\}$ is e direct proportion function, where D te the doain of the function. (c) is colled the coostent of proportionality or conatant of variation.

Inveree Propertign:
Dof'n: For every reel nubber $C \neq 0,\left\{(x, y) \left\lvert\, y=\frac{c}{x}\right.\right.$ and $\left.x \in D\right\}$ is an inverce proportion fanction, here D ie the doseln of the sumetion. (c) is called the constant of proportionality.

Def'n: a function Q ie is quadratic function iff $Q=\left\{\left(x, a x^{2}+b x+c\right)\right\}$ where a, b, and c are real numbers, a $\& 0$
The graph of a quadratic function te called a parabola.
Axis of Syeetry: the line about wich the curre opens and which divides the graph into two equal parta.
sole of (a) in $y=a x^{2}+b x+c$

1. The algn of (a) deterainee the direction of the curve (up of down)
2. The magnitude of (a) deternines the alze of the curre.

Role of (c) in $y=a x^{2}+b x+c$

1. The y-intercept of the curve 1 b (c)

Role of (b) in $y=a x^{2}+b x+c$
,. (b. invoives a horizontal ahift of the curve froe etendard position.

Types of Guadratic Functione:

A. Form $y=a x^{2}+p$

1) The graph forwed will alvaye be the graph of $y=a x^{2}$ shifted $|p|$ unite vertically.
2) If $p>0$, the parabola is ahifted upvard from atandard position. If $p<0$, the parabola is ehifted domvard from etandard poeition.
B. Form $y=a(x-k)^{2}$
3) The graph of $y=a(x-k)^{2}$ ie the graph of $y=a x^{2}$ ahifted $|k|$ units to the right if $k>0$, and to the left if $k<0$.
4) The vertex of the graph of $\mathrm{y}=\mathrm{a}(\mathrm{x}-\mathrm{k})^{2}$ hat coordinatee $(\mathrm{x}, 0$)
5) The equation of the axis of aymetry ia $x=k$.
c. Form $y=a(x-k)^{2}+p$ (The general caae)
6) The graph of $y=a(x-k)^{2}+p$ is the graph of $y=a(x-k)^{2}$ ahifted $|p|$ vertically; that $1 a$, if $\mathrm{p}>0$ or $\mathrm{p}<0$.
7) The graph ta a parabola.
8) The coordinates of the vertex are (k, p)
4). The equation of the axis of aymetry is $x=k$.

gechniques for deteruining the eraph of any quadratic function:

1) Cospleting the square.
2) Solving the general quadratic equations $y=a x^{2}, b x+c$ to obtain: Axie of Symetry: $x=\frac{-b}{2 a}$

$$
\text { Vertex: }\left(\frac{-b}{2 a}, \frac{4 a c-b^{2}}{4 a}\right)
$$

Note applications of quadratic theory in problea aolving.

CHPTEA 8: Suadratic Equationsand Inequalities

Dof'n: A quadratic equation is an equation of the for $a x^{2}+b x+c=0$ where a, b and c are real numbera and a $\ddagger 0$.
Three casee are considered:

1) $b=0 \ldots \ldots \ldots \ldots a x^{2}+c=0$
2) $c=0 \ldots \ldots \ldots \ldots \ldots a x^{2}+b x=0$
3) $b \neq 0, c \neq 0 \ldots \ldots a x^{2}+b x+c=0$ (Oeneral caco)

Theorem 1: $x^{2} \geqslant$ any real number multiplied by itelf yielda a product which is a non-negative real number.
Theorem 2: $x^{2}=k$ iff $x=\sqrt{k}$ or $x=-\sqrt{k}$. for each $k \geqslant 0$

The Quadratic Fornula:

$x=\frac{-b=\sqrt{b^{2}-4 a c}}{2 a}$
Characteriatics:

1. Roote are $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
$\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$
2. Axie of Symmetry: $x=\frac{-b}{2 a}$
3. Sum of the roote: $=$
4. Product of the roote: c/a
5. Diacriainant teat (D) : note that $D=b^{2}-4 a c=\Delta$
e) If $D>0$, then there are two distenct roote.
b) If $D=0$, then there are two coincident roote.
c) If $D<O$, then there are no real roote.

NOTE that the roots are to the quadratic equation ae the x-intercepte are to the quadratic function.
Equationa with the Quadratic Pattern:

1. Frectional equatione
2. Radical equatione - note technique for solving equatione containing one or more radicals.

Quadratic Inequalities:

Def'n: A quadratic inequality is an inequality of the fore $a x^{2}+b x+c>0$ or $a x^{2}+b x+c<0$ where $a \neq 0$.

Theoren 1: $a b>0 \Longleftrightarrow[a>0$ and $b>0]$ or $[a<0$ and $b<0]$
Theoren 2: $a b<0 \Longleftrightarrow[a>0$ and $b<0]$ or $[a<0$ and $b>0]$
NOTE exeaples on pages $284-286$ in the text.

Chaftik 9: Complex Nuaber systen

Noed for Couplex Numbers

1. Studies in electricity - alternating current theory.
2. Studies in magretim - Oersted.
3. Probles in heat conduction and electrostatice.
4. Probleas in physics; hydrodynamics; etc.

Dof'n: Each ordered pair of real numbers (a,b) is e coplex number, (2). Note the geometric derivation there of.

mppertios of caplex Number

$\left\lceil\right.$ NOTE thet $z_{1}=(a, b)$ and $z_{n}=(c, d)$ and $\left.z_{z}=(e, f)\right]$

1. Property of Equality: $z_{1}=z_{2}$ iff $a=c$ and $b=d$.
2. Addition of coaplex nuabers: $z_{1} \odot z_{2}=(a+c, b+d)$
a) Closure Property: $z_{1} \odot z_{2}$ is a unique coaplex number, for all complex nuabers z.
b) Contative Property: $\mathbf{z}_{1} \odot z_{2}=\mathbf{z}_{2} \odot z_{1}$
c) Aseociative Property: $z_{1} \odot\left(z_{2} \odot z_{3}\right)=\left(z_{1} \odot z_{2}\right) \oplus z_{3}$
d) Additive Identity Elenent: $(0,0)$
e) Additive Inverse Element (-a, -b)
3. Subtrection of Complex numbers: $z_{1} \varrho \mathfrak{r}_{2}=(a-c, b-d)$
4. Multiplication of coaplex numbers: $z_{1} \odot z_{2}=(o c-b d, a d+b e)$
a) Closure Property: $z \mathcal{P} z_{2}$ is a unique coplex number, for sll conplox nubbers z.
b) Comutative Property: $z_{\rho} \odot z_{2}=z_{2} O z_{1}$
c) Associative Property: $z_{1} \odot\left(z_{2} \odot z_{3}\right)=\left(z_{1} \odot z_{2}\right) \odot z_{3}$
d) Multipiicetive Identity menent: (1,0)
e) Multiplicative Inveree Inaent: $\frac{1}{2}=\left(\frac{a^{2}}{a^{2}+b^{2}} \cdot \frac{-b}{a^{2}+b^{2}}\right)$
f) Distributive Property: $z_{1} \odot\left(z_{2} \odot z_{3}\right)=\left(z_{1} \odot z_{2}\right) \circlearrowleft\left(z_{1} \odot z_{3}\right.$
5. Division of Complex Numbers: $z_{1} \Theta z_{2}=z_{1} \odot \frac{1}{z_{2}}$

NOTE that $z_{2} \neq(0,0)$

Any nubber syste compoeed of a set (T) of olements and two operations (+) and (X) for these elesente is called efield. The coaplex number syoten con be coneidored a field, and it containe all the number proportioa of a field.

Soan complex numbers behave like reol numbers. For exple, $(2,0) \leftrightarrow 2$. In general, the

Standerd Fone : an alternate fornat for writing and working with coaplox nuabers.

Note that all previous statenents concorning propertios of coaplex numbers can now be converted to standard forsat.

Abeolute Value of a Cosplex Nuaber

$$
|z|=\sqrt{a^{2}+0^{2}}
$$

NOTE the geometric derivation thereof.

The Conjurgte of a Couplex Mumber:

For each complex number z, if $z=(x, y)$ or $x+y i$, then the conjugate of z, denoted by \bar{z} is (x, y) or $\mathrm{x}-\mathrm{yi}$.
The product of a complex number and its conjugate is a real number.
NOTE the geometric interpretation of addition, subtraction and absolute value re: complex numbere, Pagse 316-318 in the text.

Square Roote which are Conplex Nuabers:

For esch real number e<0, i $\sqrt{-a}$ is a aquare root $o f(a)$, aleo $-i \sqrt{-a}$ is e aquare root of (a)

- Agreaent: For each $x>0, \sqrt{-x}=1 \sqrt{x}$ and $-\sqrt{-x}=-1 \sqrt{x}$

guadratic Equatione vith Complex Solutions:

Recall the Discriminant test and the quadrotic Formule previously studied. Dee these two facte in molving quadretic equations with coaplex roots.
NOTE thet in further atudies in eothentics you vill fiad that esch number (ral or conjox) haes n difforent $n{ }^{\text {th }}$ roote among the ooaplex numbers (for each natural number $n \geqslant 2$)

GNPIER 20: Solution sete of syatere

In thie chapter ve ore interestod, primarily, in the roperal linear equation $\mathrm{Ax}+\mathrm{Bx}+\mathrm{C}=0$
30:e of Equation Syoteas:

1) Indopendent Systen
-here there in exactly one ordered pair in the solution set
Dx. $\{x-y-1=0 \cap 2 x+y+4=0\}=\{(-1,-2)\}$
2) Inconoistant syaten:
-here the ampty set coespises the solution eet.
zx. $\{y=x-1 \cap y=x+2\}=\varnothing$
-note the identicol elopes. Hence parallel lines.
3) Dependent Syatene:

- here all resl number ordered pairs whioh eatiafy one equation will satisfy the socond
equation. The two equatione are equivalent. (i.e. the enee graph)
Ex. $\{x-y=-1 \cap 2 x-z=-2\}=\{x-y=-1\}$
Def'n: Two systas of open sentences are equivalent iff they have the sere solution sot.
(Equivalent Syateme)

- hothods of Solving Syatcas of Eovetione:

1) Graphic nothod
2) Comparison mothod.
3) Substitution aothod
4) Addition - Subtraction method.

NOTE exacoples of above techniques on pages $333-342$ in the text.

The Solution elet of a Gonerel Systa

Given: $\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$

Therefore

$$
x=\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{2} b_{1}-a_{1} b_{2}}
$$

$$
y=\frac{a_{2} c_{1}-a_{1} c_{2}}{a_{2} b_{1}-a_{1} b_{2}}
$$

Deterejnants:

Def'n: For all numbers a, b, c and d, the determinant $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-c b$
Determinante may be used to solve systems of equations as follows:

| $x=\left\|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right\|$ | $y=\left\|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right\|$ |
| ---: | :--- | ---: |
| $\left\|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right\|$ | $\left\|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right\|$ |

We have considered only systema comprised of two linear equations so far. In advanced courses you will study systema comprised of more than two linear equations.

Syatese of equations may also be comprised of:
a) One linear and one second- degree equation

$$
\text { - See pagea } 349-354 \text { in the text }
$$

b) Two second- degree equations

$$
\text { - See pages } 354-360 \text { in the text }
$$

Also note techniques for solving such systas.
Def'n: A conic is the intersection of a plane with a right circular conical surface or a right circular cylindrical surface.

System of Inequalitios:

The graphing technique is the most useful nethod for eolving such ayates.
Consider the following systa: $\left\{\begin{array}{l}x+2 y \leqslant 3 \\ 4 x+3 y \geqslant 2\end{array}\right.$

NOTE the importance of "dashod" base lines for <or > situatione.
Study oxemples on pages $362-365 \mathrm{in}$ the text.
Syatens involving Absolute value:
In graphing inegualities involving absolute value, the basic property used is:

$$
\left[\begin{array}{l}
\text { For every } \mathrm{a}>0, \text { if }|\mathrm{x}|<\mathrm{a}, \text { then }-\mathrm{a}<\mathrm{x}<\mathrm{a} \\
\text { For every } \mathrm{a}<0, \text { if } \mid \lambda>\mathrm{a}, \text { then } \mathrm{x}<-\mathrm{a} \text { or } \mathrm{x}\rangle
\end{array}\right.
$$

NOTE examplea on pages 366-368 in the text.

CBAPTRR 11: Loparithaic Function

Def'n: $\log _{40}(x)=y$ iff $10^{y}=x_{1}[x>0]$
The doasin of the logarithaic function is the oot of positive real numbers; the range
of the logarithmic function is the eet of all reel numbers.
NOTE: In order to underatand the association between logaritleic and exponertial format, mem-
orize the following:

$$
10^{?}=/ 100 \Longleftrightarrow 108_{10} 100=2
$$

exponenti.al format logarithmic format
A logarithm is merely an exponent for a power with bese ten. Therefore, logaritha obey the laws of exponinte.

A logarithen nonsiste of two parte: charactericuic and mantiesa.
Σ_{5}. $26=10^{164472}$

$$
\text { or } \quad \log _{10} 28=\frac{1 \cdot \frac{4472}{2}}{c h a r a c t e r i a t i c}
$$

Recall that one may uae scientific notation to obtain the charateristic of a logarithm.

-Theoreas about Logeritime:

1. Logaritha of a Product: $\quad \log _{a} M N=\log _{a} M+\log _{a} N$
2. Logarithof of quotient: $\quad \log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$
3. Logarithe of a Pover: $\quad \log _{a} n^{n}=n \log _{a} M$
4. Logerithm of a Root: $\log \sqrt[n]{\mu}=\frac{1}{n} \log _{8} \mu$
The above theorese are used in solutione to questions inv, is conbinations of producte, quotiente and powers.

Antilogrithe:

The procedure of calculating an antilogerithm is the reverse of the procedure uaed for Pinding logrithme.

Eg. Suppose $\log _{10} 28=1.4472$
Then Antilogarithm $1.4472=28$
The antilogaritin gives ue the number whose logaritha ve have juat calculated.

Other loparithaic functions:

Any positive real number (except the number one) way be used as the base of a logarithric function. In general, for each positive real number (a) [except 1], the base (a) logerithic
function 1s $\left\{(x, y) \quad x=y^{y}\right\}$ The previous theorea for logarithas atill apply.

Charge of Bace

sote carefully the exaplee on page 394 in the text.

MATHEMATICS 30 (March 1974)

 (Clockwise movement: Negative direction Counter-clockulse moverent: Positive directior
2) The unit circle and a co - ordinate system:

- note the geometric figuras within this circle in order to memorize the co - ordin of pointe in the circuaference

3) Wrapping function: $w(\theta)=(x, y)$
4) Periodic functiona: $f(x)=f(x+p), p \neq 0$. This definition must hold fo: every x in the dominin. The number (p) ie called the period of f.
5) Coilne Punction: $\{(\theta, x)\}$ for which $W(B)=(x, y)$.
) S1ae Function: $\{(\theta, y)\}$ for which $W(\theta)=(x, y)$.
Tangent Function: $\{(\theta, y / x)\}$ for which $W(\theta)=(x, y)$. [$x, 0]$
Bealc formula: $\operatorname{Cos}\left(\theta_{1}-\theta_{2}\right)=\operatorname{Cos} \theta_{1} \times \operatorname{Cos} \theta_{2}+\operatorname{An} \theta_{1} \times \operatorname{An} \theta_{2}$
6) Related formulae: $\operatorname{Cos}\left(\theta_{1}+\theta_{2}\right)=\operatorname{Cos} \theta_{1} \times \operatorname{Cos} \theta_{2}-\operatorname{Sin} \theta_{1} \times \operatorname{Sin} \theta_{2}$
$\operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta-1$
$\tan \theta-\frac{\sin \theta_{1}}{\cos \theta_{1}},\left[\cos \theta_{1} \nless 0\right]$
sin $\left(\theta_{1}-\theta_{2}\right)=\sin \theta_{1} \times \cos \theta_{2}-\sin \theta_{2} \times \cos \theta_{1}$,
$\ln \left(\theta_{1}+\theta_{2}\right)=\sin \theta_{1} \times \cos \theta_{2}+\sin \theta_{2} \times \cos \theta_{1}$
$\cos \left(-\theta_{1}\right)=\cos \left(\theta_{1}\right)$
$\cos \left(\pi / 2-\theta_{1}\right)=\sin \left(\theta_{1}\right)$
$\operatorname{ann}\left(-\theta_{1}\right)=-\sin \left(\theta_{1}\right)$
$\sin \left(\pi / 2-\theta_{1}\right)=\cos \left(\theta_{1}\right.$
Characteriatica of the alne function:
7) Periodicity 182^{π}
8) Domain: $(x / x \in R)$
9) Range: $(y /-1 \leq y \leq 1, y \in R\}$
10) Characteristice of the cosine function
11) Periodicity 182π
12) Donain: $\left(\begin{array}{l}\text { ค } / A ~ \\ \varepsilon\end{array} \mathrm{R}\right.$)
13) Range: $(x /-1 \leq x \leq 1, x \in R)$
14) Characteristica of the tangent function:
15) Periodicity is π.
16) Dowain: $\{x / x \in R, x \neq 0\}$
17) Range: $\{y / y \in R\}$

Chapter 13: Applicatione of trizonometric functions

1) For each path (A, θ) with teminal point P, a degree - measure of (AOP is $\frac{180}{\pi} \times 0$
2) For all real numbera c and θ, if $c=\frac{180}{\pi} \times \theta$, then:
$\cos \left(c^{\circ}\right)=\cos (\theta)$
$1 \mathrm{n}\left(\mathrm{c}^{\circ}\right)=\mathrm{sin}(\theta)$
$\left.\tan \left(c^{\circ}\right)=\tan (\theta)[\operatorname{ct} 90 \pm 180 n)\right]$
Note that the basic and related formulae, previously stated, can now be converted from adisn to degree measurement.
3) Similar triangles: - correaponding angles are congruent - correaponding aldes are proportional.

4) Charactertatice of the $30^{\circ}-60^{\circ}-90^{\circ}$ triatigle:
5) the ehorter leg is one - half the length of the hypotenuse
6) the length of the longor leg is $\sqrt{3}$ times the length of the shorter leg.
7) Charactertatics of the $45^{\circ}-45^{\circ}-90^{\circ}$ triantie.
8) both legs have the asme length.
9) the leagth of the hypotenuse $1 a \sqrt{2}$ times the length of a leg.
10) Lav of cosines:
$a^{2}-b^{2}+c^{2}-2 b c \cos a \quad$-note applicability to trianglea whereals acute, obtuse, or right.
11) Lav of sines:
$\frac{d}{\operatorname{An}(a)}=\frac{b}{\sin (B)}=\frac{c}{\operatorname{An}(\gamma)} \quad$-note applicability to trianglé uherea, B, γ are acute, obtuae, or right.

Chaptor 14: Sequeaces, Series and iluite.

1) Sequence -any arrangement of numbera in order. $\begin{aligned} & - \text { finite }:\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\} \\ & -1 n f 1 n i t e:\left\{a_{1}, a_{2}, \ldots, a_{1}, \ldots,\right\}\end{aligned}$
2) Terin - anch olement of the sequence
3) Seriea - the indicated auln of the terms of a

$$
\begin{aligned}
\text { sequence } & - \text { finite: }\left\{a_{1}+a_{2}+a_{3}+\ldots+a_{n}\right\} \\
& - \text { infinite: }\left\{a_{1}+a_{2}+\ldots+a_{n}+\ldots\right\}
\end{aligned}
$$

4) Arithmetic progression: a aequence exhibiting a conatant difference between aucceasive terms.
$a_{1}, a_{2}+d, a_{1}+2 d, \ldots, a_{1}+(n-1) d$.
General tera: $a_{n}=a_{1}+(n-1) d$.
5) Aritheetic series: $S_{n}=a_{1}+\left(a_{1}+{ }^{n}\right)+\left(a_{1}+2 d\right)+\ldots+a_{n}$
$S_{n}=\frac{n\left(a_{1}+a_{n}\right)}{2} \quad$ Aleo $S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$

8) Sunation Netation: (stop) ${\underset{i}{n}}_{n}^{a_{k}}$ (substituce) $-a_{1}+a_{2}+a_{3}+\ldots+a_{n}$. $k=1 k$ (geart)
9) Inf1aite Sequences and Limite

- convergent-eqquanco: tonda tovarde a limit.
- divergent sequence: does not tend tovards a limit.

10) Limit Properties:
1. $\lim _{n \rightarrow-}\left(\mathrm{FA}_{\mathrm{n}}\right)=\mathrm{K} \times \underset{\mathrm{n} \rightarrow-\mathrm{n}}{1 \min _{n}}$

2. $\left.\lim _{n \rightarrow\left(g_{n}\right.}-b_{n}\right)=\lim _{n \rightarrow A_{n}}-\lim _{n \rightarrow n_{n}}$
3. $\lim _{n \rightarrow-}\left(A_{n} \times b_{n}\right)=\operatorname{lin}_{n \rightarrow-}^{110} A_{n} \times \lim _{n \rightarrow n} b_{n}$

4. $\quad 11 \mathrm{~m} c=c$
5. $2101 / \mathrm{m}=0 \quad$ Note: Nos. 6 and 7 are very 1 mportant.
6. Sum of an infinite geoastric abriae

- defined to be the limit of the aequance of ite partial eomes

$$
s=\frac{a_{1}}{1-r} \quad \text { Note: } \begin{aligned}
& \text { lim } r^{n} \text { exiate only for }-l^{<} r \leq 1 \\
& n+r^{n}=0 \text { only for }|r|<1
\end{aligned}
$$

Chaptor 15: Pornutationa, Coubinationa and the Binoaial Theores.

1) Permacation: en arrangesent, or ordering, of the elementa of aet Tppen: 21 near and circular.
2) Pundemantal Counting Principle: If an operation can be porforaed ic z_{1}, vaya, and after it it parforned, a eacond operation can be parformed in x_{2} waye, etc., then collectivaly the n operationa can be perforned in ($X_{1} \equiv X_{2} \equiv K_{3} \equiv \ldots \ldots X_{n}$) vaya.
3) Fectorial: n ! $=n(n-1)(n-2) \ldots \ldots 3 \times 2 \times 1$
4) Permatation formule:

$$
{ }_{n}{ }^{p} k \quad-\frac{n!}{(n-k)!} \quad \text { Note: } 0!-1 ; 1!=1
$$

-Dletingulehable linear pernutationa with "like" eleaente: $p=\frac{n!}{k_{1} L_{z} k_{2}} / \ldots k_{r}$!

- Distingulahable circular perautations: $P=(n-1)$!

Note: Por "keychasa" eltuationa, $P=\frac{(n-1)}{2}$!
5) Paccal'a Triangle: - diaplaya the coofficiente of torat in a binoalal expanaion - diaplaye the aymetry present in a bincolal expanaion.
here $\binom{n}{k}=\left(\begin{array}{cc}n \\ n & -k\end{array}\right)$

6) Conbination formula: $\binom{n}{k}=\frac{n!}{k!x(a-k)!}$
-"order" is not 1 aportent here.
7) The Binoalal Theorm:
$(x+y)^{n}-\binom{n}{n, 0} a^{n}+\binom{n}{n^{n}-1,1} a^{n-1} b+\ldots+\left(\begin{array}{c}n-r, r\end{array}\right) a^{n-r} b^{r}+\ldots+\binom{n}{0, n} b^{n}$
or $(x+y)^{n}-\binom{0}{0} a^{n}+\binom{n}{1} a^{n-1} b+\ldots+\binom{n}{r} a^{n-r_{b}}+\ldots+\binom{n}{0} b^{n}$
Note: $c+1=\binom{n}{r} a^{n-r_{b}}$

Chapter 16: The Probability Punction:

1) Sanple space: the set of all posaible outcoses of an experiment
2) Event: any aubseat of a sample apace of an expariment.
3) Definition of clasaical probability: $P(E)=\frac{n(E)}{n(S)}=\frac{\text { casee favorable }}{c \operatorname{sen} \text { poselble }}$

Note: $P(E)=01 f f E=--1$ 1mposible event.

$$
P(E)=1 \text { 1ff } E \text { is the ovent cortain. }
$$

4) The Addition Theorem

Cese 1: $P\left(E V_{P}\right)=P(\mathbb{E})+P(P)$ iff $\mathrm{E} \cap \mathrm{P}=\mathrm{f}$ (hetyally exclualve evento) Cese 2: $P(E \cup P)=P(E)+P(P)-P(R \cap P)$ 1ff $B \cap P W$.
5) The Multiplication Theorem:

Case 1: $P(E \cap P)=P(E) \times P(P / E) \ldots$ here E and P ore dopendent evente. Cese 2: $P(E / \backslash P)=P(E) \times P(P) \ldots$ here I and P are independent events. Case 3: $P(E \cap P)=0 \ldots$ here E and P ore diefolat oventa.

Chapter 17: The Polgonalal Punctioa. $f(x)=a_{n} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n}$
2) Divialbility: The polynotal $P(x)$ is divielble by the palymoalal $D(x)$ o 1ff $P(x) \div D(x)$ is a polynoalal.
3) The Divisice Algotitb: $P(x)=Q(x) \times D(x)+R(x)$.
a) If $P(x)$ 1s divisible by $D(x)$, Then $R(x)=0$
b) $P(x)$ if not divisible by $D(x)$ if $R(x)$ \& 0 .

Note: the divialion procese is coapleted when the degree of $R(x)$ becones lase then the degree of $D(x)$ or when $R(x)=0$.
4) Reacinder Theoran: Given the poinocisile $P(x), Q(x)$, and $(x-0)$ if $P(x)=Q(x) \cdot(x-a)+R$ for ore number R, then $R=P(e)$.
5) Synthotic Divialion: note the proceas and charactariatice thereof.
pp. 568-550 of text
6) Zaro of a polyocilal: The numar r 1s called a zen of a polyoolal $\mathrm{P}(\mathrm{x})$ iff $\mathrm{P}(\mathrm{r})=0$.
7) Factor Theoren: The bincalal $x-r$ is a factor of $P(x)$ iff $P(r)=0$.
8) Zeroe of Integral Polynoalale: An integral polgnoadel maty have the following:
e) a complax number for esoro. eg. $x^{2}+1$
b) an 1 rrational number for a soro: eg. $x^{2}-2$
e) anon- integral rational numer for asero. os. $2 x-1$
9) Integral Zero theorem: If an integer r ia a zerp of an integral polgnoaial $P(x)$, then r 10 a factor of the constme term of $P(x)$.
10) Rational Zarg thaorea: If $a / b+[b \$ 0$, (a) and (b) relatively prime intagera $]$ is a sare of the integral polynomial. $P(x)$. Then (a) is a diele or of A_{0} and (b) 1a a $a_{\text {a }}$
11) Pundemantal Theoram of algebra: If $P(x)$ ie a polymonial of degree greater then of n_{0}. 0 over the complax nusbers, than there is a cooplex numar (r) for which $P(r)=0$.
12) Unigue Pactorization Thaorem: Evary polyoulia $P(x)$ of degree $n \geq 1$ over the couplex nobars can be factored uniquely into n firat - degree factore, not an of ohich are nacoesarily diatinct, and a constant factor which is the coefficient of the higheat degree torn of $P(x)$.

- note the phrase "Sue of multiplicitiea."

13) Graphing Polypooial Punctions:

- note this general review of graphs. Obeerve hov the theory of polpoaisl seros cmanater here.

14) Complex Zeros of Real Polynoalsls: (Conjugate Zero Thaorea) If a + bl is a zero of a real polyncalal $P(x)$, then a - bi is aleo a sero of $P(\mathrm{X})$.
15) Deacartes' Rule of Signs: The sum of multiplicitiee of poaitive real zeros of a r real polynomial $P(x)$ is at most equal to the number of changea 1 n algn $\mathrm{in} P(x)$. If thiz suris of multiplicities is leas than the number of changes in sign, then it differs from it by an even number.
The am of multiplicitica of negativa real zeros of $P(x)$ ia at most equal to tine number of changes 1 n aign $1 \mathrm{n} \mathrm{P}(-\mathrm{x})$. Again, if this oum of aultiplicitias 1 is less then the number of changes in sign, then it differs from it by an even number.

Qoafee and Matheactical Induction Vance booklet
1)
arcal Inductor Part (a) Verlfication
Part (b): Induction property: If the atatment is true
for $n=k$, then we wheh to prove it true for the next larger value of n, aay $k+1$.
2) The Circle: Standard Equation: $(x-h)^{2}+(y-k)^{2}-r^{2}$, where $(h . k)$ is the center,

3) The Parabola:

Equations: $\left\{\begin{array}{l}y^{2}-4 p x \text {, shere the focue }(p, 0) \text { in a point in the } x \text {-axis; diractrix } x=-p \\ x^{2}=4 p y, \text { where the focus (}(0, p) \text { 1s e. point on the } y \text {-axis; directrix } y=-p\end{array}\right.$ Note: The graphe of both equction: above have vertex at the origin,

Latus rectum - \mid ap \mid
Eccentricity ($\boldsymbol{\epsilon}$) -1
8) The Ellipge: Baaic Equation 1s:
$\frac{x^{2}}{(\text { length of seed }-n \times 15 \text { on } x \cdot A \times 10)^{2}}$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\cdot 1
$$

$$
\begin{aligned}
& +\quad \text { (1ength of sean } \frac{\left.y^{2}-\operatorname{axc} 1 \mathrm{~s} \text { on } y-\operatorname{axc}\right)^{2}-1}{b^{2}} \\
& \text { or } \quad \frac{x^{2}}{b^{2}}+\frac{v^{2}}{a^{2}}-1
\end{aligned}
$$

(a) - length of the sen 1 - mefor exis
(b) - leneth of the seni - minot axia Latus rectura: $\frac{2 b^{2}}{a}$
a $>b$ - by defintition

3 -hy defintrion
(c) - distance cif each focus erom the origin

Yote that: $a^{2}=b^{2}+c^{2}$
Bccentricity (0) = c/a, ($(\mathbb{O} \times 1)$
5) The fiverbola: Bastc equation; $\overline{(\text { length of sem1 }-a \times 1 s \text { on } x-a \times 1 s)^{2}}$ \qquad

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad \text { or } \quad \frac{x^{2}}{b^{2}}-\frac{z^{2}}{a^{2}}=-1
$$

(a) : length of seal - tranaverse axis.
(b) : length of eani - conjugate axis.
(c) : distance of each focus from the origin. Latus rectum: $\frac{\mathrm{bb}^{2}}{\mathrm{a}}$

Note that: $c^{2}=a^{2}+b^{2}$
Eccentricity (e) $=\frac{c}{a},(e>1)$
Asymptote equation: $y= \pm(\underline{b}) x$

Chapter 18: Introduction to Vactore

1) Magaitude: The aagnitude of $\overrightarrow{X Y}-|\overrightarrow{X Y}|$ Por any vector $\overrightarrow{A B} r$ Tarrinal point

Cinitial point
2) Equivalent vectors: $\vec{A} \triangleq \vec{B}$ 1ff $|\vec{A}|$ - $|\vec{B}|$ end \vec{A} and \vec{B} have the sase direction.
3) Stendard pooition: vector whose initial point is the origin.

5) Zero Vector: Any vector whose initial point in the same as its terainal point.
6) Polar form of a vector $\overrightarrow{A B}:\left[r, u^{\circ}\right]$
7) Addition of vectora: $\vec{x}+\vec{y}-[a+c, b+d], \vec{x}=[a, b]$ and $\vec{Y}=[c, d]$
8) Muletplication of a scalar by a vector: (a$)[\mathrm{a}, \mathrm{b}]-[\mathrm{a}(\mathrm{a}), \mathrm{a}(\mathrm{b})]$
g) Inner Product of vectors: $|\vec{x}| \times|\vec{y}| \times \cos \left(u^{\circ}\right)$. $-\vec{x} \cdot \vec{y}$
10) Peppendicularity of vectora: $\vec{x} \perp \vec{y} \quad 1 \mathrm{ff} \quad \vec{x} \quad \overrightarrow{\mathrm{y}}=0$

Mr. Treslan wishes teachers to use the Formulae Chart as they see fit and he would welcome any criticism concerning deletions and/or additions.

Mathematics Council Executive - 1974-75

President
Dr. w. George Cathcart
Dept. of Elementary Education
University of Alberta
Edmonton T6G 2G5
Vice-President
Francis Somerville
428-36 Street SW
Calgary T3C 1P7
Past President
Richard Daly
3716 - 107 Street
Edmonton T6J 2L4
Secretary
Dennis Treslan
2944 Lathom Crescent SW
Calgary T3E 5W7
Treasurer
Donald H. Hinde
Box 741
La combe
DIRECTORS
Brian Chapman
Box 1525
La combe
Or. Joan Kirkpatrick
Dept. of Elementary Education
University of Alberta
Edmonton T6G 2G5
Doug McIntyre
823 Cannell Road SW
Calgary T2W 1 T5
George Stepney
12414 - 125 Street
Edmonton T5L OT1

Res/Bus
435-1949
432-4153

249-8056
249-2449

435-1342
434-5472

242-0334
281-3366

782-6849
782-3812
Box 741
Lacombe

DIRECTORS

Brian Chapman
Box 1525

Or. Joan Kirkpatrick
Dept. of Elementary Education
University of Alberta
Edmonton T6G $2 G 5$
Doug McIntyre
281-3679
281-3366

453-1248
466-3161
Marvin Wiedrick
Box 825
Grimshaw

Res/Bus
332-4507
332-4066

REPRESENTATIVES
ATA
Dr. M.T. sillito
11010 - 142 Street
Edmonton T5N 2R1
459-4811
453-2411
Ext. 269
Department of Education
J.H. Jeforey

458-1511
427-2952
500, 11160 Jasper Avenue
Edmonton T5K OLl
Faculty of Education
Dr. Mary Beaton
657 Northmount Drive NW Calgary

282-6825
284-5643

Ma thematics
Or. H.I. Freedman
487-1238
Department of Mathematics
University of Alberta
Edmonton T6G 2G5

NCTM
To be appointed

EDITORS
Delta-K
Ed. Carriger
RR1, Site 2, Box 3
Bluffton

Monograph No. 3
Or. K. Allen Neufeld 436-0571
Dept. of Elementary Education 432-4188
University of Alberta
Edmonton T6G 2G5

843-6138
432-3530

Delta-K is a publication of the Mathematics Council, ATA. Editor: Ed Carriger, R.R.1, Site 2, Box 3, Bluffton. Publisher: The Alberta Teachers' Association, 11010 - 142 Street, Edmonton T5N 2R1. Editorial and Production Services:
Communications Department, ATA. Please address correspondence regarding this publication to the editor.

MCATA ANNUAL CONFERENCE

CALGARY INN, OCTOBER 3/4, 1975

Please complete fully. A cheque or money order, payable to the MCATA, must accompany this form.

NAME
(last name) (first name) initial)
MAILING ADDRESS \qquad
(city/town) (province) (post code)
Conference registration fee (includes luncheon) \$ 10
additional luncheon tickets (..... (\$5)
MCATA membership [] regular, \$6 6[] student, \$3
[] new
[] renewal
\qquad
\qquad
\qquad

NCTM membership (optional) [] new
-with Arithmetic Teacher \$11
-with Mathematics Teacher \$11
-with both journals \$16
[] renewal

Total \$ \qquad

Do you wish accommodation at the Calgary Inn (\$25 per room, single or double)?
[] yes
[] no

The conference will deal with different aspects of learning and teaching mathematics. The guest speakers are headed by Chuck Allen, a well-known author and public speaker. Others will include Sue Ditchburn, Dick Holmes, Fred Henning, Bev Donalev, Delores Shriner, and Dr. A. Gibb. Registration will start Friday evening, October 3, and will be followed by a presentation from Mr. Allen. A social evening will follow. You may preregister by completing the above form and mailing it, with your cheque, to Pat Beeler, John Ware Junior High School, 10020-19 Street, SW, Calgary, T2V 1R2.

[^0]: ${ }^{1}$ Canadian Mathematical Congress Scholarship
 ${ }^{2}$ The Nickle Foundation Scholarship
 ${ }^{3}$ Third place winner
 ${ }^{4}$ Fourth place winner
 5 Grade 12 student placing highest (below first 4)
 ${ }^{6}$ Grade $10 / 11$ student placing highest (below first 4)

