1976 Alberta High School Prize Exams - Winners and Solutions

DISTRICT PRIZES

District	No.	Amt.	Nome	School
1			No prize awarded	
2		\$50	HERCHEN, Harald	Grand Trunk High School Evansburg
3		\$50	OSBORNE, Norman	Ardrossan Jr. Sr. High Ardrossan
4		\$50	YOUNG, Bryan	Wm. E. Hay Comp. High Stettler
5		\$50	HUANG, Lingling	Cochrane High School Cochrane
6		\$50	NEUFELDT, Kevin	K.ate Andrews High School Coaldale
7	(1)	\$50	DOMIER, Calvin	Harry Ainlay Comp. High Edmonton
7	(2)	\$25	GOON, Veiven	Harry Ainlay Comp. High Edmonton
		\$25	FUJINAGA, Masao	Harry Ainlay Comp. High Edmonton
8	(1)	\$50	Pattullo, Andrew	William Aberhart High Calgary
8	(2)	\$50	PATTERSON, Roger	Bishop Grandin High Calgary

CANADIAN MATHEMATICAL CONGRESS

1976 ALBERTA HIGH SCHOOL

PRIZE EXAMINATION IN MATHEMATICS

PART I ANSWER SHEET

To be filled in by the Candidate.

PRINT:

Last Name	First Name	Initial
Candidate's Address		

Name of School

Grade

ANSWERS :

To be completed by the Department of Mathematics, University of Alberta:

Points	Points Correct	Number Wrong
$1-20$	$5 \times$	
Totals	$C=$	
SCORE $=C-W=$		

Do all problems. Each problem is worth five points. TIME: 60 Minutes

1. What is the value of $5^{\log _{5} 6}$?
(A) 1
(B) 5
(C) 6
(D) $\log _{6} 5$
(E) none of these
2. Let S be the set of points, (x, y), in the plane satisfying both $x^{2}+y^{2} \leq 1$ and $x^{2}+y^{2} \geq r^{2}$. A value of r such that S is the empty set is:
(A) 1
(B) -1
(C) $\frac{1}{2}$.
(D) $-\frac{1}{2}$
(E) none of these
3. If S, T, and V are any sets, then $[(S \cap T) \cup(S \cap V)]$ is the same set as
(A) S ,
(B) $\mathrm{T} \cup \mathrm{V}$,
(C) $T \cap V$,
(D) $S \cap(T \cup V)$,
(E) none of these
4. A metal disc has one face marked " 1 " and the other face marked " 2 " A second metal dischas one face marked ' 2 " and the other marked "3" . Assume that, when tossed, the two faces of a disc are equally likely to turn up. If both discs are tossed, what is the probability that " 4 " is the sum of the numbers turning up?
(A) $\frac{1}{4}$
(B) $\frac{1}{2}$
(C) $\frac{3}{4}$
(D) $\frac{1}{3}$
(E) none of these
5. Which of the following statements about $\frac{1+\sqrt{2}}{1-\sqrt{2}}$ is true?
(A) It is irrational
(B) It is rational
(C) It is imaginary
(D) It is positive
(E) None of these are true
6. If $i=\sqrt{-1}$, then i^{6} is
(A) 1
(B) -1
(C) i
(D) -i
(E) none of these
7. The solution set of the inequality $x^{2}-x-2<0$ is the interval
(A) $-2 \leq x \leq 1$
(B) $-2<x<1$
(C) $-2 \leq x<1$
(D) $-2<x \leq 1$
(E) none of these
8. At the end of a party, everyone shakes hands with everyone else. Altogether there are 28 handshakes. How many people are there at the party?
(A) 8
(B) 14
(C) 20
(D) 56
(E) none of these
9. Let $[x]$ denote the largest integer not exceeding x. Thus, e.g. $[2]=2,[3.99]=3,[-.5]=-1$. Which of the following statements are always true?

$$
\begin{aligned}
\text { (i) } & {[x+y]=[x]+[y] } \\
\text { (ii) } & {[2 x]=2[x] } \\
\text { (iii) } & {[-x]=-[x] }
\end{aligned}
$$

(A) (i)
(B) (ii)
(C) (iii)
(D) all
(E) none
10. If the sum of the first n positive integers is $n(n+1) / 2$, the sum of the first n positive odd integers is
(A) $n(n+1) / 4$
(B) $\frac{n(2 n+1)}{2}$
(C) n^{2}
(D) $n^{2}-4$
(E) none of these.
11. Suppose that $d=x^{2}-y^{2}$ where x and y are two odd integers. Which of the following statements are always true?

$$
\begin{aligned}
& \text { (i) } \mathrm{d} \text { is odd } \\
& \text { (ii) } \mathrm{d} \text { is divisible by } 4 \\
& \text { (iii) d is a perfect square. }
\end{aligned}
$$

(A) (i)
(B) (ii)
(C) (iii)
(D) (ii) and (iii)
(E) none of these
12. If each term of the sequence $a_{1}, a_{2}, \ldots, a_{n}$ is either +1 or -1 then $a_{1}+a_{2}+\ldots+a_{n}$ is always
(A) 0
(B) 1
(C) $\left\{\begin{array}{l}\text { odd if } n \text { is odd } \\ \text { even if } n \text { is even }\end{array}\right.$
(D) $\left\{\begin{array}{l}\text { odd if } n \text { is even } \\ \text { even if } n \text { is odd }\end{array}\right.$
(E) none of these
13. If x is a real number satisfying the equation

$$
x^{x^{x^{*}}}=2
$$

then \mathbf{x} is equal to
(A) ∞
(B) 2
(C) $\sqrt[4]{2}$
(D) $\sqrt{2}$
(E) none of these
14. The number of pipes of inside diameter 1 unit that will carry the same amount of water as one pipe of inside diameter 6 units of the same length is:
(A) 6π
(B) 6
(C) 12
(D) 36
(E) none of these
15.

$$
2^{-(2 k+1)}-2^{-(2 k-1)}+2^{-2 k} \text { is equal to. }
$$

(A) $2^{-2 k}$
(B) $2^{-(2 k-1)}$
(C) $-2^{-(2 k+1)}$
(D) 0
(E) none of these
16. Let P be the product of any 3 consecutive positive odd integers. The largest integer dividing all such P is:
(A) 15
(B) 6
(C) 5
(D) 3
(E) none of these
17. If $|x-\log y|=x+\log y$ where x and $\log y$ are real, then
(A) $\mathrm{x}=0$
(B) $\mathrm{y}=\mathrm{l}$
(C) $x=0$ and $y=1$
(D) $x(y-1)=0$
(E) none of these
18. Each of a group of 50 girls is blonde or brunette and is blue or brown eyed. If 14 are blue-eyed blondes, 31 are brunettes and 18 are brown eyed, the number of brown-eyed brunettes is
(A) 7
(B) 9
(C) 11
(D) 13
(E) none of these
19. After finding the average of 35 scores, a student carelessly included the average with the 35 scores and found the average of these 36 numbers. The ratio of the second average to the true average was
(A) $1: 1$
(B) $35: 36$
(C) $36: 35$
(D) $2: 1$
(E) none of these
20. If the line $y=m x+1$ intersects the ellipse $x^{2}+4 y^{2}=1$ exactly once, then m^{2} is equal to
(A) $1 / 2$
(B) $2 / 3$
(C) $3 / 4$
(D) $4 / 5$
(E) none of these

PART II TIME: 110 Minutes

1. Prove that it is impossible to find positive integers a, b satisfying

$$
\frac{21}{23}=\frac{1}{a}+\frac{1}{b} \text { and } 0<a<b
$$

2. A fly sitting in the upper corner A of a room measuring $6 \times 6 \times 2$ wishes to walk to the opposite lower corner B. What is the minimum distance the fly must walk and how many different paths achieve this distance?

3. Find all real values of k so that the equation $x^{3}+x^{2}-4 k x-4 k=0$ has two of its three roots equal.
4. In a round-robin tournament, each of n players $P_{1}, P_{2}, \ldots, P_{n}$ plays one game with each of the other players. The rules are such that no ties can occur. If w_{i} and ℓ_{i} denote respectively, the number of games won and lost by player P_{i}, show that

$$
w_{1}^{2}+\ldots+w_{n}^{2}=\ell_{1}^{2}+\ldots+\ell_{n}^{2}
$$

5. Find the side x of the triangle shown in the diagram

6. Given real numbers a, b, c which satisfy $a^{2}+b^{2}+c^{2}=1$, find the smallest value of r so that $-\frac{r}{2} \leq a b+b c+c a \leq r$ is always true.
7. Find all possible integers a, b, c such that

$$
a \log _{10} 2+b \log _{10} 5+c \log _{10} 7=1
$$

8. Given that

$$
\cos 3 \theta=A \cos ^{3} \theta+B \cos \theta
$$

holds for every real number θ, find A, B.
9. Nine lines are drawn parallel to the base of a triangle so that the other two sides are divided into 10 equal segments and the area into 10 portions, the largest of which is 38 square units. Find the area of the triangle.
10. Let a and b be odd integers and let n be a positive integer. If $a-b$ is dfvisible by 2^{n} prove that $a^{3}-b^{3}$ is divisible by 2^{n}. Moreover, if $a^{3}-b^{3}$ is divisible by 2^{n} prove that $a-b$ is divisible by 2^{n}.

SOLUTIONS

1976 Alberta High School
PRIZE EXAMINATION IN MATHEMATICS

PART I - KEY

B	C	D	D	C	D	D	D	A	C
11	12	13	14	15	16	17	18	19	20

PART II - ANSWERS

1. If a and b are positive integers such that $0<a<b$, then if $a=1, \frac{1}{a}+\frac{1}{b}>1$, and if $a \geq 2$, then $\frac{1}{a}+\frac{1}{b} \leq \frac{1}{2}+\frac{1}{3}=\frac{5}{6}<\frac{21}{23}$.
2. Unfold the room to get:

The closest distance is the straight dotted line which is the hypotenuse of a right triangle with sides 6 and 8 . Thus $d=\sqrt{6^{2}+8^{2}}=10$. Using the floor and ceiling, there are 4 distinct paths achieving this distance.
3. Factoring, one gets $x^{3}+x^{2}-4 k x-4 k=x^{2}(x+1)-4 k(x+1)=$ $=(x+1)\left(x^{2}-4 k\right)$. Hence the roots are given by $x=-1$ and $x= \pm 2 \sqrt{k}$. Clearly then two of the roots are 0 if $k=0$, and two of the roots are -1 if $k=1 / 4$.
4. Taking the difference of the two sides:

$$
\begin{aligned}
\left(w_{1}^{2}+\ldots+w_{n}^{2}\right) & -\left(l_{1}^{2}+\ldots+\ell_{n}^{2}\right)=\left(w_{1}^{2}-l_{1}^{2}\right)+\ldots+\left(w_{n}^{2}-\ell_{n}^{2}\right) \\
& =\left(w_{1}-\ell_{1}\right)\left(w_{1}+\ell_{1}\right)+\ldots+\left(w_{n}-\ell_{n}\right)\left(w_{n}+\ell_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(w_{1}-\ell_{1}\right)(n-1)+\ldots+\left(w_{n}-\ell_{n}\right)(n-1) \\
& =\left[\left(w_{1}-\ell_{1}\right)+\ldots+\left(w_{n}-\ell_{n}\right)\right](n-1) \\
& =\left[\left(w_{1}+\ldots+w_{n}\right)-\left(\ell_{1}+\ldots+\ell_{n}\right)\right](n-1) \\
& =0 .
\end{aligned}
$$

Since every game is either won or lost, the total of the wins is equal to the total of all the losses. We also used the fact that for each player, the total of his wins and losses is the number of games ($n-1$) that he played.
5.

Construct the altitude $A D$, thus bisecting EG at H. Then $\overline{\mathrm{HG}}=1 / 2$, $\overline{A G}=\sqrt{7}$ and by Pythagoras' Theorem applied to \triangle AHG we have

$$
\overline{\mathrm{AH}}=\sqrt{(\sqrt{7})^{2}-(1 / 2)^{2}}=3 \sqrt{3} / 2
$$

Now if the perpendicular $E F$ is dropped to $B C$, then $\overline{E F}=\overline{H D}=\overline{A D}-A \bar{H}$ and by Pythagoras' Theorem again, applied to $\triangle A B D$,

$$
\overline{A D}=\sqrt{x^{2}-(x / 2)^{2}}=x \sqrt{3} / 2
$$

and hence

$$
\overline{E F}=\sqrt{3} / 2(x-3)
$$

Finally, since $\overline{F J}=\overline{E G}=1$, we must have $B F=(x-1) / 2$ and applying Pythagoras' Theorem to \triangle BEF we obtain

$$
\left(\frac{x-1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}(x-3)\right)^{2}=2^{2}
$$

and upon simplifying,

$$
x^{2}-5 x+3=0
$$

so that $x=(5 \pm \sqrt{13}) / 2$. Now since $(5-\sqrt{13}) / 2<1$ and we clearly require $x>1$, we must have $x=(5+\sqrt{13}) / 2$.
6. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 a c$. Since $a^{2}+b^{2}+c^{2}=1$, $a b+b c+a c=\frac{1}{2}\left[(a+b+c)^{2}-1\right]$. The right side will be smallest if $a+b+c=0$, and largest if $a=b=c=1 / \sqrt{3}$. Hence $-\frac{1}{2} \leq a b+a c+b c \leq 1$ and $r=1$.
7. Note that

$$
\begin{aligned}
1 & =a \log _{10} 2+b \log _{10} 5+c \log _{10} 7 \\
& =\log _{10} 2^{a}+\log _{10} 5^{b}+\log _{10} 7^{c} \\
& =\log _{10}\left(2^{a} 5^{b} 7^{c}\right)
\end{aligned}
$$

Taking antilogs,

$$
10=2^{a_{5}} 7^{c}
$$

Since $10=2^{1} 7^{0}$ uniquely, the only solution in integers is $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=0$.
8. Since $\cos 0^{\circ}=1, \cos 60^{\circ}=1 / 2$, and $\cos 180^{\circ}=-1$,

1f

$$
\cos 3 \theta=A \cos ^{3} \theta+B \cos \theta
$$

we must have

$$
-1=A \cdot(1 / 2)^{3}+B \cdot(1 / 2)
$$

$$
\begin{aligned}
& 1=A \cdot 1^{3}+B \cdot 1 \\
& \frac{1}{8} A+\frac{1}{2} B=-1 \\
& A+B=1
\end{aligned}
$$

and solving we obtain $A=4, B=-3$. (There are other methods of solution.)
9.

In $\triangle A B C$, let $E D$ denote the first of the 9 lines inserted above and parallel to the base $B C$. If h denotes the altitude. of the quadrilateral $B C D E$, then the altitude of $\triangle A B C$ is 10 h (by construction) and since $\triangle A B C$ is similar to $\triangle A D E$,
we must have $\overline{\mathrm{DE}}=\frac{9}{10} \overline{\mathrm{BC}}$. Now

$$
\text { Area } \quad B C D E=\frac{1}{2}(\overline{B C}+\overline{D E}) \cdot h=\frac{1}{2}(1.9) \overline{B C} \cdot h
$$

is given to be 38 . Hence

$$
\text { Area } \quad \mathrm{ABC}=\frac{1}{2} \overline{\mathrm{BC}} \cdot 10 \mathrm{~h}=\frac{10}{1.9}\left[\frac{1}{2}(1.9) \overline{\mathrm{BC}} \cdot \mathrm{~h}\right]=\frac{10}{1.9} \cdot 38=200
$$

square units. (There are several other methods of solution.)
10. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$. Clearly, if 2^{n} divides $a-b$, it must divide $a^{3}-b^{3}$. Suppose 2^{n} divides $a^{3}-b^{3}$, then since $a^{3}+a b+b^{2}$ is odd, it must divide $a-b$.

