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The evolution of axiomatics was predicated upon the evolution of aeo-
metrical thouaht. Since the concepts of what constitutes a aeometry and what
constitutes axiomatic development change as a function of the time period under
consideration, it becomes essential that we examine the evolution of these ideas
from antiquity to the present. The profound contributions made by geometrical
thought to the genesis of axiomatics were principally derived through the cri-
tique of Euclid's fifth postulate, through the rise of non~Euclidean aeometry,
through the construction of abstract geometry, nay, through the development
of logic. Hence, an investigation of this evolution, which has shaped our pre-
sent perspective, would be most valuable.

The earliest extant records of geometrical activity are on baked-clay
tablets from Mesopotamia believed to date from Sumerian times (3000 B.C.). From
the first Babylonian dynasty of Kina Hammurabi's era, the new Babylonian empire
of Nebuchadnezzar II, and the following Persian and Seleucid eras, there exists
a superabundance of cuneiform tabiets which suggest that Babylonian geometry in-
volved practical mensuration. Between 2000 and 1600 B.C. the Babylonians had
derived rules for computing the area of a rectanale and the areas of right and
isosceles triangles. An example of the state of geometry in the Babylonian
period of the seventeenth century B.C. derives from a 1958 excavation of a
unique mathematical tablet containing the following right trianale problem:
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Given ABC is a right triangle at A.
AD perpendicular to the hypothenuse BC.

AC = 60 (1), AB = 45, BC = 75 (1,15).

BD = UAB/AC x 2 x area ABD

045/60 x 2 x 486
27.

(The area 486 was written as 8,6 in Babylonian
numeration, as shown on the diagram.)*

*Daniel B. Lloyd, "Recent tvidences of Primeval Mathematics,"
The Mathematics Teacher (Washington, D.C.: National Council of Teachers of
Mathematics, 1965), p. 721.
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Ancient Egyptian geometry is contained in the Moscow and Rhind papyri
and of the 110 problems in these texts, 26 are devoted to geometry. Problem
number 14 of the Moscow Mathematical Papyrus indicates that the Egyptian scribes
were familiar with the formula V = h/3 (a2 + ab + b2) for the volume of a trun-
cated pyramid, where h is the height and a and b are the edges of the square
base and the square top, respectively.

Both the Babylonians and the Egyptians displayed mathematical ini-
tiatives. They used intuition, experiment, induction, and plain auessing to
create some of their results, but irrespective of how well these rules agreed
with experiences and no matter how exact the measurement, the rule was not
deduced from explicit assumptions. The time when and the place where the
distinction between inductive inference and deductive proof from a set of
postulates became clear is not known, but it is known that the fireeks were
the first to transform geometry from a set of empirical conclusions of the
Egyptians and Babylonians to a deductively-based, systematic geometry. Per-
haps the paradoxes of Zeno and the problem of incommensurables structured
Greek thought to the direction of a Togical base which ultimately led to an
axiomatic treatment of geometry.

The Eudemian Summary of Proclus places the genesis of Greek geometry
with Thales of Miletus in the first half of the sixth century B.C. He was
the first among the Seven Wise Men of freece. He is also the first known
individual with whom the use of deductive methods in geometry is associated,
Thales brought geometry from Egypt on his commercial ventures and then applied
Greek procedures of deduction to his findings. He is credited with the
following propositions relating to plane figures:

Any circle is bisected by its diameter.

The angles at the base of an isosceles triangle are equal.
When two Tines intersect, the vertical angles are equal.
An angle in a semicircle is a right angle.

The sides of a similar trianale are proportional.

Two triangles are congruent if they have two angles and a
side respectively equal.
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As propositions in geometry, they may appear to be trivial since they are
intuitive but we must be reminded that prior to this time geometry was confined
almost exclusively to the measurement of surfaces and solids. The fundamental
contributions of Thales consisted of his geometry of lines, and he is also
credited with the idea of a logical proof to substantiate his geometrical
results.

Pythagoras of Samos (572 B.C.) continued the systematization of geo-
metry. Particularly important in the deductive aspects of geometry was the
founding of the Pythagorean school. Members of the Pythagorean society de-
veloped the properties of parallel lines and used them to prove that the sum
of the angles of any triangle is equal to two right angles. In the Eudemian
Summary we are lead to believe that a Pythagorean, Hippocrates of Chios, was
the first to attempt a Togjcal presentation of geometry as a sequence of pro-
positions which were ultimately based on some initial definitions and assump-
tions. Leon, Theudius and others developed this concept further until approx-
imately 300 B.C. Euclid produced his treatise, the Elements, which consisted
of an elegant chain of some 465 propositions on nlane geometry (Books 1 to IV),
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the theory of proportions (Books V and VI), the theory of numbers (Books VII

to IX),)the theory of incommensurables (Book X) and solid geometry (Books XI
to XIII).

It is generally accepted, however, that Aristotle's work as a syste-
matizer of logic really prepared the way for Euclid's organization of the geo-
metry of his time. Sir Thomas Heath, in the introductory chapters of his de-
finitive English translation of the Elements, quotes a long passage from Aris-
totle's Posterior Analytics, containing a very careful analysis of the idea of
a demonstrative science:

Every demonstrative science, says Aristotle, must start from indemon-
strable principles: otherwise, the steps of demonstration would be end-
less. Of these indemonstrable principles some are (a) common to all
science, others are (b) particular, or peculiar to the particular
science; (a) the common principles are the axioms, most commonly illu-
strated by the axiom that, if equals be subtracted from equals, the
remainders are equal. Coming now to (b) the principles peculiar to the
particular science which must be assumed, we have first the genus or
subject-matter, the existence of which must be assumed, viz. magnitude
~in the case of geometry, the unit in the case of arithmetic. Under this
we must assume definitions of manifestations or attributes of the genus,
e.g. straight Tines, triangles, deflection etc. The definition in it-
self says nothing as to the existence of the thing defined: it only re-
quires to be understood. But in geometry, in addition to the genus
and the definitions, we have to assume the existence of a few primary
things which are defined, viz., points and lines only: the existence to
everything else, e.g. the various figures made up of these, as triangles,
squares, tangents, and their properties, e.g. incommensurability etc.,
has to be proved (as it is proved by construction and demonstration).
In arithmetic we assume the existence of the unit: but, as regards the
rest, only the definitions, e.g. those of odd, even, square, cube, are
assumed, and existence has to be proved. We have then clearly distin-
guished, among the indemonstrable principles, axioms and definitions.
A postulate is also distinguished from a hypothesis, the latter being
made with the assent of the learner, the former without such assent or
even in opposition to his opinion.

So the conception of a demonstrative science as a deductive seauence from an
accepted set of initial statements was developed during the first 3N0 years
B.C. by Greek mathematicians and philosophers. Certainly one of the greatest
achievements of the Greeks was the creation of the postulational form of think-
ing (now called "material axiomatics") and the geometry they structured accord-
ing to this posture.

Since changes and additions have been made in what now appears as
Euclid's Elements, it is not certain precisely what statements Euclid assumed
for his postulates and common notions nor what definitions he made, but the
available evidence suggested that there were five postulates:

1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight Tline.
3. To describe a circle with any centre and distance.
4

That all right angles are equal to one another.
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5. That, if a straight Tine falling on two straight lines makes
the interior anqgles on the same side less than two right angles, the
two straight Tines, if produced indefinitely, meet on that side on
which are the angles less than two right angles.

There were five common notions (axioms):

1. Things which are equal to the same thing are also equal to one
another,

If equals be added to equals, the wholes are equal.
If equals be subtracted from equals, the remainders are equal.

2
3.
4, Things which coincide with one another are equal to one another.
5

The whole is greater than the part.

There were twenty-three definitions, some of which appear below:

1. A point is that which has no part.

2. A Tine is breadthless length.

3. A straight line is a line which lies evenly with the points on itself.
4

A place angle is the inclination to one another of two lines in a
plane which meet one another and do not Tie in a straight line.

5. Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not
meet one another in either direction.

It appears then that Euclid adopted Aristotle's distinction between postulates
and common notions. He could also have adopted Plato's assumptions for clas-
sical constructions in the first three postulates. However, the remarkable
insights of Euclid are contained in his ideal to establish geometrv on any un-
impeachably-logical foundation. Though his attempt failed, he nevertheless
conceived it.

What Euclid did not seem to realize is that in a sense his postulates
impose constraints on points and lines which therefore are defined. Hence any
further attempt to define these terms is redundant mathematically. The ques-
tion now arises as to why Euclid insisted on defining what should have remained
undefined. The reason, in historical perspective, appears to be that Euclid
thought his geometry constituted a description of the physical universe. It
follows that his geometry should refer to external realities and therefore be
definable.

Another remarkable insight of Euclid was his recognition of the impor-
tance of the parallel postulate and the necessity of assuming it. Riven that
he avoided the use of the fifth postulate until Proposition 29 of Book I, we
may infer that Euclid himself may even have questioned its inclusion. From the
beginning this postulate was criticized. It lacked the brevity of the other
four postulates; and its converse, viz. - "The sum of two angles of a triangle
is less than two right angles" - was proved as a theorem. Consequently, it was
thought to be capable of proof. Posisonius, in the first century B.C., who de-
fined parallel lines as lines that are coplanar and equidistant, attempted to
prove the equivalent of Euclid's parallel postulate. In the second century,
Claudius Ptolemy of Alexandria also worked on a proof of this postulate. Even
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Proclus in the fifth century considered it alien to the special character of
postulates. He was successful in reducing the proof to one that depended on
the establishment of the following: Given any two parallel lines and a third
distinct Tine which intersects one of the given lines, then it also intersects
the remaining given line. Proclus' argument was based on the assumption that
parallel lines everywhere are equidistant and this is tantamount to the fifth
postulate. The logical anathema was that Proclus assumed what he was trying
to prove.

Apollonius of Perga (225 B.C.) studied under the successors of Euclid.
Their influence was manifest in his eight books on the Conics. Only seven
books have survived, four in Greek and three in Arabic which contain 387 pro-
positions. While Apollonius used a systematic and deductive process of con-
struction and demonstration in his treatise, the form of the propositions
was horrendous by virtue of the subject he was treating - a distinct contrast
to the elementary conceptions of the line and circle of Euclid. Though
Apollonius marks the termination of the golden age of Greek geometry, such
geometers as Heron of Alexandria (A.D. 75), Menelaus (1nN), Ptolemy (85 - 165)
and Pappus (320) did make some contributions to geometry. Of these, perhaps
the greatest work was that of Pappus. His "Collection" contained original
propositions and improvements,

A gradual decline in original thinking typified the period of the
Roman Empire which devoured Greece in 146 B.C. Then, from the fall of the
Roman Empire in the middle of the fifth century, the Dark Ages gave rise to
little new mathematical thinking in Western Europe. It was during this time
that mathematics was influenced by the Hindu and Arabian people. But the idea
of deductive proof was alien to the thinking of the Hindus as exemplified in
Aryabhata's book called Aryabhatiya which was written in 499, The Hindus'
chief interest was in numbers and there was little influence of Greek geometry.
However, the Arabian scholars of geometry were attracted to the proof of Euclid's
fifth postulate. Alhazen (ibn-al-Haitham) (965-1039) "proved" that the fourth
angle in a trirectangular quadrilateral must also be a right anale. (Actually,
the fifth postulate follows from the assumption that Alhazen made.)

Omar Khayyam (1044-1123) also attempted the proof of Euclid's fifth.
Khayyam's second book, Commentaries on the Difficulties in the Postulates of
Euclid's Elements, was in part an attempt to connect the fifth and fourth pos-
tulates by means of five Aristotelian principles. For instance, Khayyam used
the principle that quantities can be divided without end, Zd est, there are no
indivisibles. He used the principle that a straight line can be indefinitely
produced; two principles of intersecting lines and the axiom of Archimedes.

In order to prove one of his propositions it was necessary for him to
conceive of three situations which in later history became known as (a) the
acute angle case, (b) the obtuse angle case, and (c) the right angle case.
This trichotomy which ultimately became known as non-Euclidean Bolyai-
Lobachevskii geometry, non-Euclidean Riemann geometry, and Euclidean geometry,
was also quoted by the Persian mathematician Nasir ed-din (1201-1274) who
tried to prove the parallel postulate from the hypothesis:

If a Tine u is perpendicular to a line w at A, and if Tine v is oblique
to w at B, then the perpendiculars drawn from u upon v are less than AB
on the side on which v makes an acute anale with w and greater on the
side on which v makes an obtuse angle with w.
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The history of the development of axiomatics is replete with attempts
to prove the fifth postulate. These so-called proofs may be catalogistically
trichotomized according to the following types: direct proof from the other
four postulates; substitution for the fifth postulate some other ostensibly
simpler one, of which Alhazen, Omar Khayyam and Nasir ed-din are typical ex-
amples, and indirect proof. While we know now that these approaches were il-
logical, they were instrumental in the evolution of synthetic methods.

The Tatter half of the eleventh century saw the infiltration of Greek
learning into Europe. Significant though in terms of the history of mathe-
matics was the twelfth century. The Elements appeared in Latin from the
Arabic and were translated in 1142 by Adelard of Bath (1075-1160). It also
appeared as a revised Latin translation from the Arabic work of Thabit ibn
Qurra.

The rise of the universities in the thirteenth century at Paris, Dxford,
Cambridge, Padua, and Naples contributed to the development of mathematics. It
was during this century in approximately 1260 that Johannes Campanus of Novara
made a commanding Latin translation of Euclid's Elements, which Tater, in 1482,
became the first printed version. The hundred-year hiatus of the fourteenth
century abounded in unproductiveness by virtue of the Black Death and the Hun-
dred Years' War but was followed by the invention of the printing press in the
fifteenth century which revolutionized the dissemination of knowledge.

The mathematical achievements of the sixteenth century were more al-
gebraic than geometric, although the symbolization of algebra was to have a per-
vasive effect on the development of geometry. More importantly though were the
1533 translation of Procius' Commentary on Euclid, Book I, the 1566 Latin trans-
lation of Books I-IV of Apollonius' Conic Sections, and the 1572 Commandino
translation of the Elements of Euclid. With an increasina number of the
great Greek works in geometry readily accessible it would only be a question
of time before the attention of scholars would again be focused on the develop-
ment of geometry.

From the Greek era until the seventeenth century there was an enormous
gap in the axiomatization of geometry. But it appears that the impetus of sym-
bolized algebra and the general climate in the arts and sciences affected the
formation of different conceptual patterns in geometry. One such development
was that of non-Euclidean geometry.

Non-Euclidean geometry was created as a direct conseauence of a critique
of Euclid's parallel postulate. It became a compulsive challenge to prove this
postulate from the others. It was hereditary stress. It appeared that there
was a cultural "intuition" not unlike that of the Pythagoreans who, when pre-
sented by Theodorus of Cyrene with the proof of the irrationality of UZ, refus-
ing to scrap their philosophy, and, unable to ferret out the "faulty" step in
the proof, arrived at a solution by labelling the discovery "alagon" (unutter-
able) and swore never to tell of this new number. This cultural bias then was
probably responsible for the prevailing opinion in the Middle Ages that the
fifth postulate could not conceivably be "independent" of the other postulates.

So it became almost a lifetime pursuit of Girolamo Giovanni Saccheri
(1667-1733) to demonstrate once and for all that Euclid's system of geometry
with its postulate of parallels was the only one possible. The first work,
Logica demonstrativa, appeared in 1697 but was published under the name of
Count Gravere, one of Saccheri's students. In this text, Saccheri makes a

13




clear distinction between definitiones quid nominis and definitiones quid

rei (nominal and real definitions). The nominal definition refers to a specific
term while the real definition refers to the existence of a thing or its con-
structibility. Hence the nominal becomes real with a postulate.

His most definitive attempt to prove the parallel postulate was pub-
lished in 1733 under the title of Euclides ab ommi naevo vindicatus sive
conatus geometricus quo stabiliuntur prima ipsa geometriae principia. In this
masterpiece, Saccheri, using the method of reductio ad absurdum, tried to clear
Euclid of all blemishes, including the supposed error of assuming the fifth
postulate. His technique was to deny Euclid's parallel postulate, retain the
other postulates and consequently derive a self-contradictory geometry. To
arrive at a contradiction, he used a figure contained in the Clavius edition of
Euclid's Elements, the birectangular quadrilateral (the Saccheri quadrilateral)
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which consisted of two equal perpendiculars AC and BD to seament AB. Saccheri
called ACD and ¢£BDC the summit angles of the quadrilateral. He noted three

possibilities:

1. The summit angles are right (the right-angle hypothesis).
2. The summit angles are obtuse (the obtuse-angle hypothesis).
3. The summit angles are acute (the acute-angle hypothesis).

Saccheri showed that if any of these hypotheses is valid for one Saccheri
quadrilateral, it is valid for every quadrilateral of the same type. He also
showed that the parallel postulate is a logical consequence of the right-angle
hypothesis. He showed further that by assuming a straight line is infinitely
long, the obtuse-angle hypothesis is self-contradictory. To dispose of the
actue-angle hypothesis was another matter, however. He obtained many results
different from those that had been established by use of the fifth postulate,
but he never did find a contradiction. Consequently, he concluded on the basis
of intuition that the "hypothesis of the acute angle is absolutely false, be-
cause it is repugnant to the nature of a straight line." We now know that

it would have been impossible for Saccheri to ever deduce a contradiciton

from the acute-angle hypothesis.

In his attempt, though, he succeeded in creating a geometry independent
of the parallel postulate. Perhaps the title of his treatise suggests that he
expected to find no contradictions in Euclid, his idol. Certainly, the able
logician Saccheri was cognizant that the system of fundamental propositions in
every demonstrative science is precisely their indemonstrability. Perhaps
Saccheri just could not conceive of this because of the extremely strong tradi-
tion that the only conceivable mathematics of space was Euclidean. He did not
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recognize his creation, yet he proved several theorems in two new geometries
which were as sound logically as Euclid's.

The geometers of the eighteenth century were influenced by the work of
Saccheri, especially Johann Heinrich Lambert (1728-1855), a Swiss mathemati-
cian, who, in 1766, analyzed the work of Saccheri and concluded that the obtuse-
angle hypothesis is consistent with spherical geometry. Another geometer influ-
enced by Saccheri, Adrien Marie Legendre (1752-1853) wrote Eléments de geometrie
which clearly resembles Saccheri's work, except that Legendre proposed three
hypotheses in which the sum of the angles in a triangle is equal to, greater
than, and less than two right angles. He succeeded in producing a proof that
the angle sum of a triangle cannot be greater than two right angles but failed
to show that the sum cannot be less than two right angles. In any case, his
“proof" was based on assumptions equivalent to what he was trying to prove. In
1809, Bernhard Friedrich Thibaut tried to prove Leagendre's first hypothesis
basing his argument on the assumption that every riaid motion can be resolved
into a rotation and a translation, and assumption equivalent to that of the
fifth postulate. John Playfair in 1813 tried to tidy up the errors in Thibaut's
araqument but with no success.

It remained for Gauss to bring the expression of the concept of non-
Euclidean geometry to our attention. Carl Friedrich Gauss (1777-1855) also
attempted to prove the parallel postulate by assuming its falsity. It is not
known when Gauss recognized the existence of a logically-sound geometry with-
out Euclid's fifth postulate but it is certain that he spent some thirty vears
in pursuit of such an aim given the cultural prejudice associated with it. 1In
a letter to Franz Adolf Taurinus on November 8, 1824, he wrote:

The assumption that the angle sum (of a trianale) is less than 180°
leads to a curious geometry, quite different from ours but thoroughly
consistent, which I have developed to my entire satisfaction. The
theorems of this geometry appear to be paradoxical, and, to the unini-
tiated, absurd, but calm, steady reflection reveals that they contain
nothing at all impossible.

However, the discovery of non-Euclidean geometry was not made by one
person but by three almost simultaneously and independently. Gauss did not com-
plete his discoveries but Janos Bolyai did. Bolyai (1775-1856) replaced the
parallel postulate with: "In a plane two lines can be drawn throuah a point
parallel to a given line and through this point an infinite number of lines may
be drawn lying in the angle between the first two and havina the property that
they will not intersect the given Tine." Bolyai's work was published in 1832.
Nikolai Ivanovich Lobachevskii (1793-1856) also invented a new geometry, pub-
lished in 1829. Lobachevskii's replacement of Euclid's parallel postulate was:
"Through a point P not on a line there is more than one Tine which is parallel
to the qiven line." Consider the apocalyptical though logical conseauences of
this postulate: (1) No quadrilateral is a rectangle; if a quadrilateral has
three right angles, the fourth angle is acute, (2) The sum of the measures of
the angles of a triangle is always less than 180°, and (3) If two triangles are
similar, they are congruent. '

The obtuse-anale hypothesis was not a consideration of Bolyai or
Lobachevskii but of Georg Friedrich Bernhard Riemann (1826-1866), a student of
Gauss. Replacing the parallel postulate of Euclid with: "Through a point in a
plane there can be drawn in the plane no line which does not intersect a given
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line not passing through the given point," Riemannian geometry was born. It
gave rise to other curious results:

1. Two perpendiculars to the same line intersect.
2. Two lines enclose an area.

3. The sum of the measures of the angles of a triangle is greater than
180°.

4. If two sides of a quadrilateral are congruent and perpendicular to

a third side, the figure is not a rectangle, since two of the angles
are obtuse.

But, we may add, it was Eugenio Beltrami in 1868 who finally established the
relative consistency of the new geometries by interpreting plane non-Euclidean
geometry as the ceometry of geodesics on a certain class of surfaces in
Euclidean space.

The solution of the parallel postulate was finally found. It is rather
curious that its initial solution should occur almost simultaneously and inde-
pendently through the work of Gauss, Bolyai and Lobachevskii unless we invoke
a cultural explanation referred to at an earlier time in this paper. The
equipment needed, the ideas prerequisite to appropriate analogies are additive
within the mathematical community, being ubiquitous and yet accumulative until
sufficient stress is created that the problem commences to be solved by several
investigators in the same temporal domain. (There are many such examples of
this phenomenon in the history of mathematics. Witness, for example, the de-
velopment of calculus.) The solution of the parallel postulate problem was
long in coming and yet its discovery occurred because the concepts and ideas
that were prevalent just prior to its solution, such as the advent of axiomatic
systems in algebra, initiated new insights unique to a solution.

The enigma of the fifth postulate was also slow in coming not only be-
cause of the inherited tradition that surrounded it but also because of the
prevailing philosophy of Kant (1724-18n4) who treated space not as empirical
but as something existing in the mind and hence non-experiential. The obstacle
to overcome then was to view geometry as an experimental science complete with
postulates as a function of convenience but correlated with the data in the
physical world. Certainly Kantian philosophy was responsible for the lack of
true regard for the discoveries of Gauss, Bolyai and Lobachevskii. But there
is no question that the role of the non-Euclidean ceometries did have a per-
vasive effect on mathematical and philosophical thought especially in the nine-
teenth century. It lent credence to the idea that mathematics ought not to be
bound to specific patterns @ la Kant or even patterns displayed in the physical
universe, but rather that mathematics ought to create its own patterns predi-
cated on contemporary thought.

The stage was set for the abstract conception that geometric theories
are true only in the sense that they are Togical consequences of the axioms
that constitute their bases. Mathematicians were almost ready to accept the
notion that Euclidean geometry is no more true than non-Euclidean geometry.

Euclid defined point and Tine as an approximation of the physical uni-
verse because he thought that they represented something extant. For centuries,
this conception of the universe was not questioned. Even today the mathemati-
cian hesitates to define which geometry is more representative of his world.

The truth of the matter is that he may never know if he agrees with the Henri
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Poincaré model: If our universe were enclosed in a sphere of finite radius and
our planet were close to its centre; if, when entities approach the boundary

of the sphere they become increasingly but uniformly smaller, then they can
never reach the boundary and we would be unaware of this shrinking since our
measuring devices would also get smaller and smaller; consequently, our uni-
verse, from our conception of it, would appear to be unbounded but, in fact,

it is bounded. But physical space is locally Euclidean which means that-in the
neighborhood of a point, space is Euclidean. In contradistinction, universal
space may be Euclidean, elliptic or hyperbolic and notwithstanding Poincare€,
Einstein's general theory of relativity predicts hyperbolic space.

Non-Euclidean geometry transmogrified deductive reasoning. It was the
basis of viewing mathematics as a creation of postulates by mathematicians.
The advance of mathematics is gradual as Bell points out in “The Development
of Mathematics" so even by 1945 some still adhered to the Platonic doctrine of
mathematical truths. But the greatest iconoclasm of non-Euclidean geometry,
nevertheless, was its destruction of the myth of absolute truth in mathematics.
This, then, was an important precursor to the notion that a mathematical sys-
tem could have an intrinsic independence of any notion of physical reality.

The self-consistency concept of a mathematical system was consonant with
the prevailing scientific philosophy of the late nineteenth and early twentieth
centuries. The first step on the ladder of maturity is the view of mathematics
as a science independent of physical reality, a science whose entities are them-
selves abstract systems capable of self-consistency without being true of any
particular reality but necessarily of some other structure. So Frege's concep-
tion of a foundation for mathematics - because mathematics is independent of
physical reality, its truths must also be independent of this reality - was ul-
timately an outgrowth of the existing conception of the universe as suggested
by non-Euclidean geometry.

It was also during the late nineteenth and early twentieth centuries,
after the foundations of geometry had been examined extensively, that satis-
factory postulate sets emerged for Euclidean geometry. It is not the purpose
of this paper to ferret out all the inconsistencies in Euclid's Elements but
we shall mention a few that gave rise to the further advance of geometry.
Postulate two which was referred to earlier, that a straight 1ine may be pro-
duced indefinitely, does not mean necessarily that a straight line is infinite.
Riemann in 1854 pointed out that distinction. In Proposition I 21 Euclid made
an assumption that Moritz Pasch (1843-1930) recognized must be made explicit.
So he supplied what is sometimes called Pasch's Axiom: If a line 1 intersects
AB, one side of a triangle ABC, it intersects either BC or AC in a point be-
tween B and C or in a point between A and C.

J B
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Dedekind supplied a continuity postulate sometimes called Dedekind's
Axiom: If a line segment connects a point inside a circle to a point outside
a circle (in the same plane) then the line segment will intersect the circle.
This postulate was necessary to the logical analysis of Proposition II where
it is assumed that circles with centres at the ends of a line segment and hav-
ing the line segment as a common radius intersect. To tidy up some of these
and other criticisms of Euclid such men as Veblen, Hilbert, Pieri and Hunting-
ton suggested other postulates and other undefined terms. So it was the quest
for a Togically acceptable postulate set for Euclidean geometry coupled with
the apocalypse of consistent hyperbolic, parabolic and elliptic geometries
that advanced the development of axiomatics.

We now descend to a more profound level of Pasch's work where we ob-
serve antecedents of the postulational method in geometry. He effectively
obliterated both the Newtonian conception of space as the absolute ultimate
and the Leibnizian idea of space as a labyrinth of relations. Pasch, like
Peirce before him, thought of geometry as an hypothetico-deductive system
in which the elemental terms like points, lines, and planes remained undefined.
It is important for us to note that Pasch's lucid representation of geometry
was the first after Euclid's in the postulational tradition, though he went
beyond Euclid, as we have explained, in his ferreting out of covert assumptions.
That our present conception of geometry is close to that of Pasch is testimony
to support his profound influence on the subject.

In the early 1890s, Peano began the monumental task_of restructuring.
all of mathematics, including geometry, to a precise symbolism. Consonan@ W1th
this approach were postulate sets that were necessary and sufficient conditions
for proofs. The nineteenth century witnessed an unprecedented deve]opment of
mathematical shorthand, especially in the work of Boole. It was this movement,
spearheaded by Peano and culminated by David Hilbert (1862-1943), that probably
more than anything else laid the foundation to mathematical logic. Also conso-
nant with the Peanoian approach was the view. of geometry as an abstract, purely
formal system without any intrinsic content save that implied by the postulates.
In the penultimate year of the nineteenth century the ultimate advance was made
in Hilbert's classical Grundlagen der Geometrie. Once and for all the postula-
tional method was established not only for geometry but for most of mathematics
to come, if we are permitted the liberty of a hindsight. Here was the genesis
of the realization that axiomatics were not peculiar to geometry.

The adoption of the axiomatic method as a general foundational device
was slow in coming.. The method ipso facto was not fully accepted until the
nineteenth century. Then the beginnings of the power of the method not only
as a means of generalizing mathematical concepts but also as a research tool
were realized. The stage was set for the prominent role that logic was to
assume in the Edwardian period. While it is not the purpose of this paper
to consider the role of axiomatics in logic, it is, nevertheless, interesting
to note the parallel between the destruction of the unigueness of Euclidean
geometry by the invention of the non-Euclidean geometries and the destruction
of the uniqueness of mathematical logic by the axiomatic analysis of logic.

Having traveled the non-Euclidean highway so far we should now 1ike to
glance over the route and note some other geometric landmarks that contributed
to the development of axiomatics. Mathematicians were profoundly influenced
in the development of modern mathematical thought by projective geometry and
the attendant elements such as the law of duality. J.D. Gergonne (1771-1859)
noticed that if point and 1ine were interchanged in some plane geometry theo-

18



rems it would be possible to create independently provable but dual proposi-
tions. He suggested that the original theorem is a sufficient condition for

the dual. Further, Gergonne reasoned analogously in three-dimensional space
that point and plane were duals. J.V. Poncelet (1788-1867) published his

Traité des propridtés projectives des figures in 1822 which was a classic of

the synthetic method and a definitive precursor to the conception of geometry

as an hypothetico-deductive system. In observing that certain characteristics
of a plane configuration, for instance, collinearity (Pascal's theorem), re-
main invariant under projection, Poncelet defined the projective properties

of figures. But it was Julius Pliicker (1801-1868) who generalized the classic
duality for configurations of points and lines in plane geometry. While Ger-
gonne may have believed his duality an absolute attribute of "space" born of
intuition, the "space" of elementary projective geometry for PllUcker's geo-
metry was a trivial consequence of a narrow way of choosing systems of coordi-
nates. In fact, it was Pllicker's abandonment of visual intuition for an al-
gebraic and analytic treatment that finished something that the non-Euclidean
geometries only began. It was this kind of mathematical construction of "spaces"
and "geometries" that finally demolished Kant's conception of the nature of mathe-
matics. In any case, there is no question that the residue of the work of
Plicker was another testimony that geometry was fast becoming an abstract formal
discipline.

The development of axiomatics was profoundly influenced by a number of
geometric themes: abstract geometry in the laws of duality, Pllicker's coordi-
nates and hyperspace, non-Euclidean ageometry, and the criticism of the funda-
mental principles of geometry in reference to physical facts. It was all of
these and more that precipitated the so-called hypothetico-deductive system
of contemporary mathematical theory. These themes have retained their vitality
and interest although particular concepts may have lost their attractiveness
for those trained in newer habits of thought for which those very concepts
were partly responsible. But in seeking the things that have endured in mathe-
matics, we are led to processes and ways of thinking rather than to their pro-
ducts in any one epoch. However, the creation of a set of axioms that is
fecund in profound results, small in number, platitudinous in difficulty, self-
evident to reasonable people and demonstrably independent will enhance the
aesthetic appearance of the creation but the axiom system can never be proved
consistent by methods formalizable within the system itself. Consequently,
the closer we approach the foundations of mathematics the more illusory is our
grasp on the axiomatic method, until, in the final analysis, when we transcend
the threshold of mathematics, the heuristics of axiomatics disappear and the
focus ought to change to new methods of exploration.
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