And this is the crux of the point I wish to make. Set "W" represents concrete THINGS while set "I" permits us to extend our thinking to whatever limits we are capable. If we teach youngsters that +4 and 4 are identical, just because it is too cumbersome to always identify the positive sign, we are setting the stage for confused thinking later on.

For example, let's take absolute values. The absolute value of -4 is 4 . Now if 4 is in set I, then of course $-4=+4$. Enough said.

Are We Shortchanging Our Students?

or Back to Basics? New Basics? or Old Basics?

Frank Ebos
Faculty of Education
University of Toronto

Reprinted from Ontario Mathematics Gazette, Volume 15, Number l, September 1976.

Probably each of us in our role as a teacher has been confronted by an anxious student inquiring about some of the math we teach. How many times have each of us heard:

Why are we taking this stuff?
What's it good for ... sir?
I would be the first to admit that we can't justify everything we do all the time. To explain how a specific topic in mathematics "fits" into the scheme of things is often difficult. The student must trust that what we are doing day by day in the math classroom is useful, is relevant, and is needed for today's activities as well as for tomorrow's. Unfortunately, for many students tomorrow never comes. The students then become parents, and the cycle of askinq "Why are we taking this stuff" is continued. Here are certainly many indications that there is concern about the curricula we teach. Many studies have been and are being completed in both the United States and Canada to ascertain "What should be the math curricula?" Unfortunately, to predict the content, the skills, or even the methods needed at some future date is difficult. If you listen to the experts and read the journals, you soon would develop a complex about what we are not doing in the math classroom, but thank goodness for the so-called new math. We have in it at least a scape-goat. We have seen the headlines "New Math has failed! Back to basics!", and now we have a replacement for the new math, the BTB (Back to Basics).

When the "New Math" was in vogue, each person you talked to had a different "understanding" of what the "New Math" was: There were the Set-new-math followers, the Base-new-math followers, the Structure-new-math followers, and so forth. (I apologize to those new-math groups not identified at this time). The parents iuentified new math from another point of view. They only saw what their children brought home; sets, and words, commutative, associative, distributive, inverse, base 2, base 8, third base - to name a few - soon the scene is set for the BTB to be formed, and the parents are willing to join.

These days, I am hearing more and more of the ETE, but I think that before we change we need to decide "what are the basica." Parents whose eyperience with math was almost coripletely computation, evaluate a new program or curriculum according to their backgrounds. We must ask: are the basics solely related to computation? I think not. No one would disagree that "the old basics" are essential, but there are "new basics" that parents as adults use in their everyday living, and which need to be dealt with. The computation content, sc familiar to many and part of the "Happy Days Syndrome" to return to basics, is not by itself suitable even for today's world, let alone tomorrov:'s. My main concern is not that the ETB wants change (improvement, or whatever), but that they appear to want the pendulum: to swing back to a "shut-up: do-this" curriculum, based on computation. ${ }^{1}$ We can't afford to have the pendulur swind back ton far. Everyone will basically agree that computational skills are important arid tasic to the students' mathematical development, but to stop there would short-change our students. Before the BTB make the same errors as the New llath groups, they (there are probably more than one) should decide what the basics are!

I wart to help the BTB by offering the folloving suggestions. (These suggestions could be added to the computational platform already advocated by the ETE. A little review is useful here:

$$
B T B=a \text { group of persons who want to return Back to Basics.) }
$$

1. Students want us to be accountabie. We should have some reasonatie explanation or justification for "Why are we taking this stuff?" If we were to provide examples of applications for the present curriculum, some students and parents would be partially satisfied. To tell a student he is taking a topic because he reeds it for next year's math is a weak argument. Many topics have applications, not only to satisfy the present questions asked by students, but also to provide a foundation for their future study of the topic in next year's math class. There are at present at least five studies that are looking at the curriculum from this point of view. Hopefully, the results of these studies will te expressed in practical terms and eventually made available to practising teachers. Applications shoula be basic to any surpicuizm.
2. In our everyday living, we are never given "neat problens" solved in a "neat way" that result in a "neat solution." A real-life problem requires

[^0]us to sort out the useful (needed) information from the extraneous information. Do we ever give students problems that contain more information than is really required to solve the problem? $\| i l l$ our students ever be given a protler to solve when they enter the "world of work" for which the "boss" provides only the information that is necessary? I doubt it. Yet how much of this practice in solving do we provide our students in our math classrcoms (if you do provide these types of problens, then consider this section a brief review)? To decide on what information is necessary or needed to solve a problem, to me, is a basic skitz. How many times have you given a protlem which has a missing piece of inforniation that the student is to provide in order to solve the problem? (Try assigning 5 problems, each having an essential piece of informatior missing. Provide a second sheet that cortains the 5 missing "pieces," as well as 25 other pieces of extraneous but closely related information). Tris skill will probably be used more often than the skills advocated by the BTB. Without this skill the BTB skills are often confusingly applied by students to solve problems. (I think a mathematician might say the BTB skills are sufficient, but not necessary, or is that. ... necessary but not sufficient ... ?)

However, "let me make it perfectly clear" that we need the ETB basic skills once the information is properly interpreted and the essential computational operations decided upon. Unfortunately, "good old" Euclidean geometry provided an opportunity for a student to "sort out" the needed information, but an EGID niovement (Euclidean Geometry Is Dying) seems to have sprung up. (E GAD.)
3. Every day, as adults, we read about the Gallup Poll, the latest statistics on "why we are paid more and more but are eating less and less" and this poll and that poll. However, do we provide any basics for students to tackle the world of statistics? We give a brief look at the topic in Grade VIII (if at all in some classrooms), completely ignore it in Grades IX and X, but give some hope to those who stay on and finish high school and study the topic again. (The key question here is - how many will finish high school?) Could these students not find the skill of working with statistics useful just for everyday living, and thus be given the opportunity to study the topic in Grades IX and X? Working with, interpreting anc reading statistics is a basic skiz.z. Statistics permeate too much of our everyday living to be ignored as they have been in our mathematics curriculum. We are shortchanging our students by not teachirg this skill. Continuously through Grades IX and X we are especially shortchanging those students who do not reach Grade XI.
4. How many students have asked you "Is this right?". How many are completely lost if they cannot find the answer at the back of the book? Students should be taught (and taught and taught ...) t.o know how to check that their answers are reasonable. To know the answer is reasonable is a basic skizl. A student must by Grade XII "feel" whether the answer is reasonable. The "boss" does not assign problems with the answer at the back of the book. Teaching this skill partially can be accomplished by providing students with skills of approximating, estimating, as well as decision-making. Ton often students are given problems that have "neat" answers. The following problem about a corn roast seems trivial at first, but when it was assigned
to Grade VIII students, it introduced the need to make decisions.
"How much would it cost our class to go on a corn roast?"
The students list the assumptions, and make decisions to arrive at the cost of going on the corn roast. I have assigned this probleri to teacher groups and have had to referee arguments, as well as to impose a maximur time lin!it of 15 minutes because the problem, although simple in appearance, can be complex in finding a "reasonable" solution. The solution will eventually irvolve answers to these questions:

Where are we going? How do we get there? Co we take dinink? Do we need salt, butter, napkins, pepper, and so on, and so on?
These are but a few of the problems hidden in arrivincs at a "reascnable" price for a "reasonable" corn roast. What's your answer?

Froblems suitable for different grade levels should be assigned to develop and strengthen this basic skill "Is ry answer reasonatle?"
5. I an: sure many teachers already provide students with a variety of strategies for "starting" to solve a problen. I will never forget when I posed a problem to a class and got the immediate reply, "We haven't taken that yet ... sir!" We all remember too well the conplete blanks left for some protiems tackled by students writing exams. Some students freeze as soon as we say "word problem," and will sit and look, but really do nothing to "start" the problem. Teaching stukients to "sketch" the problem on make a diagran to Thelp them solve the problem is a basic skiti that needs to be emprasized continualiy. Many problens have been solved by "doodlers." often a problem is solved by "doing" something rather than "waiting" for an inspiration. A blank page provides very little inspiration (but there are exceptions, of course).

My list of recommendations to the BTF is not exhaustive or complete. Each of us has probably many other recommendatiors to add, tut we do have to make recommendations.

There is much going on in curriculum development as well as studyinc how stucents learn. The process is painstakingly slow. Studies are being conducted on developing the problem-solving abilities of our students. All you need to do is name a problem in education today, and there is probably a study going on sonewhere investigating the problem and formulating a solution.

Curriculum development is progressing, but to a new teacher the educational scene must appear confusing. I once heard a description of curriculum development that seems to describe the present scene. The scene opens in the cockpit of a 747 (big bird). One filot remarks to the other "We seem to be in a fog." The other pilot remarked, "Yes, but we are making headway." The evidence, as valid or invalid as we wish to make it, seems to indicate that there are problems in cur curriculum, and different pressure groups are making it known that our present curriculum is not making headway. Students do not want to be shortchanged, nor do we want to shortchange them. They want to be able to understand "why we are taking this stuff;" and perhaps their reoccurring question might indicate a weakness in our curriculum. We are so over-preparing for the future that we are neglecting the present. We do have to have informed consumers. We do want then to use Math in their everyday living (accurately too!). We do want our students to be mathematically literate

[^0]: ${ }^{1}$ A description of the "shut-up: do this" curriculum was in a speech delivered by Eric MacPherson of the Faculty of Education, University of Manitoba at the Annual Meeting of the Mational Council of Teachers of Mathematics in Denver, Colorado, April, 1975.

