1977 Alberta High School Prize Exam Resulits

Prize	Amt.	Student	School
Canadian Math, Congress Scholarship	$\$ 400$	FENSKE, Keith W,	Harry Ainlay High School Edmonton, Alberta
Nickel Foundation Scholarship	$\$ 400$	BERTRAND, Daniel	Camille Lerouge Collegiate Red Deer, Alberta
Third Highest	$\$ 150$	PEZZANI, Glenn	Harry Aislay High School Edmonton, Alberta
Fourth Highest	$\$ 150$	WONG, David	Lethbridge Collegiate Inst. Lethbridge, Alberta

SPECIAL PROVINCIAL PRIZES
Highest Grade 12 student (below first 4):
\$ 75 TOTMAN, Ian W. Fort Saskatchewan Sr. High Fort Saskatchewan

Highest Grade 10/ll student (below first 4):
\$ 75 McINTOSH, Lawrence P. Bishop Carroll High School Calgary, Alberta

DISTRICT PRIZES

District No. Amt.	Name	School		
1	$\$ 50$	MORRILL, Cameron		Edwin Parr Composite
:---				
2				

PART I ANSWER SHEET

To be filled in by the Candidate.

PRINT:
Last Name First Name Initial

Candidate's Address Town/City

```
Name of School
```

Grade
ANSNERS:

To be completed by the Department of Mathenatics, University of Alberta:

Points	Points Correct	Number Wrong
$1-20$	$5 \times=$	$1 \times=$
Totals	$\mathrm{C}=$	
SCORE $=\mathrm{C}-\mathrm{W}=$		

Do all problems. Each problem is worth five points. TIME: 60 Minutes

1. If $a>b>0$, then
(A) $\frac{a+1}{a}>\frac{b+1}{b}$
(B) $\frac{a+1}{a} \geq \frac{b+1}{b}$
(C) $\frac{a+1}{a} \leq \frac{b+1}{b}$
(D) $\frac{a+1}{a}<\frac{b+1}{b}$
(E) none of the preceding are true.
2. Let $A B$ be a diameter of a circle of radius l and let C be a point on the circumference such that $\overline{\mathrm{AC}}=\overline{\mathrm{BC}}$. Then the length $\overline{\mathrm{AC}}$ is equal to
(A) 2
(B) $1 / 2$
(C) $\sqrt{2}$
(D) $1 / \sqrt{2}$
(E) none of these.
3. Out of 100 people, 60 report that they receive the daily news by watching television, whereas 70 read the newspaper. Of those that read the newspaper, 70% also watch television. The number not receiving any news by television or newspaper is
(A) 15
(B) 19
(C) 23
(D) 27
(E) none of these.
4. $\left(64^{.9}\right)(32)^{-.08}$ equals
(A) 64
(B) 32
(C) $\quad 24$
(D) 8
(E) none of these.
5. Let $f(x)$ be a non-constant polynomial with real coefficients. If $f(x)=f(x-1)$ for all x then $f(x)$
(A) has exactly one root
(B) cannot exist
(C) has exactly two roots
(D) has either no roots or an
infinite number of roots
(E) satisfies none of the preceding.
6. If k is a real number such that $0<k<1$, then the roots of the quadratic equation $k x^{2}-3 x+k=0$ satisfy
(A) both are positive
(B) both are negative
(C) both are zero
(D) one is positive and one is negative
(E) none of the preceding
7. Let $\&$ be a line in the real plane passing through the points $(1,1)$ and $(3,5)$. Then ℓ passes through the point $(2, y)$ where
(A) $y=4$
(B) $\mathrm{y}=2$
(C) $y=3$
(D) $\mathrm{y}=5$
(E) y is none of the preceding.
8. $\triangle A B C$ is an equilateral triangle with sides of length 1 , and $D E \| C B$. If the area of $\triangle A D E$ is equal to the area of the trapezoid DEBC , then the length $\overline{\mathrm{DE}}$ equals

(A) $1 / 2$
(B) $1 / 3$
(C) $1 / \sqrt{2}$
(D) $\frac{\sqrt{2}-1}{\sqrt{2}}$
(E) $\frac{\sqrt{3}-1}{\sqrt{3}}$
9. The inequality $(x+1)(x-1) \geq x^{2}$ is valid
(A) for all real x
(B) fur no real x
(C) for all $x: 1$
(D) for all $\mathrm{x}<0$
(E) for none of the preceding.
10. Suppose a bowl contains 3 red balls and 3 yellow balls. The probability that two balls drawn out at random without replacement will both be red is
(A) $1 / 2$
(B) $1 / 4$
(C) $1 / 3$
(D) $1 / 6$
(E) none of these.
11. $\frac{1}{1+\frac{1}{1+\frac{1}{1+1}}}$ equals
(A) 1
(B) $1 / 2$
(C) $2 / 3$
(D) $3 / 5$
(E) $5 / 8$
12. $\frac{x y-x^{2}}{x y-y^{2}}-\frac{x y}{x^{2}-y^{2}}$ can be simplified to
(A) $\frac{x^{3}}{y^{3}-y x^{2}}$
(B) $\frac{x^{2}}{y^{2}-x^{2}}$
(C) $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$
(D) $\frac{x^{4}+x y^{3}}{\left(x^{2}-y^{2}\right)\left(x y-y^{2}\right)}$
(E) none of these.
13. If the radius of a sphere is increased 100%, the volume is increased by
(A) 100%
(B) 200%
(C) 300%
(D) 400%
(E) none of these.
14. $x^{4}+16$ equals
(A) $\left(x^{2}+4\right)\left(x^{2}+4\right)$
(B) $\left(x^{2}+4\right)\left(x^{2}-4\right)$
(C) $\left(x^{2}-4 x+4\right)\left(x^{2}+4 x+4\right)$
(D) $\left(x^{2}-2 x \sqrt{2}+4\right)\left(x^{2}+2 x \sqrt{2}+4\right)$
(E) nome of these.
15. The price of a book has been reduced by 20%. To restore it to its former value, the last price must be increased by
(A) 25%
(B) 10%
(C) 15%
(D) 20%
(E) none of these.
16. $O A B C$ is a rectangle inscribed in a quadrant of a circle of radius 10 . If $\overline{O A}=5$, then $\overline{A C}$ equals
(A) $5 \sqrt{2}$
(B) $\sqrt{75}$
(C) 8
(D) 12
(E) none of these.

17. The lengths of the medians of a right triangle which are drawn from the vertices of the acute angles are $\sqrt{73}$ and $2 \sqrt{13}$. The length of the third median is
(A) $\sqrt{73+52}$
(B) $\sqrt{73}+2 \sqrt{13}$
(C) 5
(D) 10
(E) none of these.
18. A car travels 240 miles from one town to another at an average speed of 30 miles per hour. On the return trip the average speed is 60 miles per hour. The average speed for the round trip is
(A) 35 mph
(B) 40 mph
(C) 45 mph
(D) 50 mph
(E) 55 mph
19. $\log _{3} 6+\log _{3}(3 / 2)$ equals
(A) $5 / 2$
(B) 3
(C) 2
(D) 1
(E) 0
20. The slope of the line passing through the points $(3,4)$ and $(1,9)$ is
(A) $-5 / 2$
(B) $5 / 2$
(C) 5
(D) -2
(E) 6
21. Prove that $3^{n}+1$ is not divisible by 8 for any positive integer n.
22. Let k be any nonzero real number and let a, b, and c be the roots of the cubic equation $4 x^{3}-32 x^{2}-k^{2} x+8 k^{2}=0$. Show that the quadratic equation $x^{2}+2 k x-a b c=0$ cannot have real roots.
23. Sketch accurately the set of all points which satisfy $[|x|]+|y|=2$. Note that for a real number r, $[r]$ is defined to be the largest integer n such that $n \leq r$.
24. For any three consecutive natural numbers, prove that the cube of the largest cannot be the sum of the cubes of the other two.
25. Prove that $\sin \left(\frac{\pi}{24}\right)=(\sqrt{2+\sqrt{2}}-\sqrt{3} \sqrt{2-\sqrt{2}}) / 4$.
26. Prove that a triangle with sides of lengths 3,4 and 5 respectively, is a right triangle.
27. If a, b, and c denote the lengths of the sides of a triangle, prove that $\sqrt{a(b+c-a)}, \sqrt{b(c+a-b)}$ and $\sqrt{c(a+b-c)}$ are also lengths of the sides of a triangle.
28. Show that the maximum value of $x+y+z$ subject to $x \geq 0, y \geq 0$, $z \geq 0, x+y \leq 2$ and $3 x-y+z \leq 1$ is 5 .
29. Suppose four lines ℓ, ℓ_{1}, ℓ_{2}, and ℓ_{3} meet in a point.

Suppose ℓ_{1}, ℓ_{2}, and ℓ_{3} lie in the same plane, and ℓ makes equal angles with ℓ_{1}, ℓ_{2} and ℓ_{3}. Prove that ℓ is perpendicular to the plane containing ℓ_{1}, ℓ_{2} and ℓ_{3} (see diagram).

10. If the real numbers a, b, c, x, y, z satisfy $a z-2 b y+c x=0$ and $a c-b^{2}>0$, then prove that $x z-y^{2} \leq 0$.

SOLUTIONS

1971 Alberta High School
PRIZE EXAMINATION IN MATHEMATICS

PART I - KEY

D	A	E	D	A	E	C	B	C	A
11	12	13	14	15	16	17	18	19	20

PART II - ANSWERS

1. Clearly $3^{n}+1$ is not divisible by 8 for $n=1,2$. Let m be the smallest positive integer for which $3^{m}+1$ is divisible by 8 . Thus there is an integer k such that $3^{m}+1=8 k$. Adding 8 to both sides gives $3^{m}+9=8 k+8$, or $9\left(3^{m-2}+1\right)=8(k+1)$. This shows that $3^{m-2}+1$ is also divisible by 8 , so that either m was not the smallest such integer or m is 1 or 2 . This contradiction proves the original assertion.
2. The cubic $4 x^{3}-32 x^{2}-k^{2}+8 k^{2}=0$ factors into $\left(4 x^{2}-k^{2}\right)(x-8)=0$. The roots of this equation are $x=8, x=\frac{k}{2}$ and $x=\frac{-k}{2}$. The product of the roots is $a b c=-2 k^{2}$. This means that the quadratic equation become $x^{2}+2 k x+2 k^{2}=0$. The roots of this equation are $-k \pm k \sqrt{-1}$ which are not real for any nonzero real value of k.

3. Let n be a natural number such that $n^{3}+(n+1)^{3}=(n+2)^{3}$. Thus $n^{3}+n^{3}+3 n^{2}+3 n+1=n^{3}+6 n^{2}+12 n+8$ and n satisfies $n^{3}-3 n^{2}-9 n-7=0$. This shows that $\frac{7}{n}=n^{2}-3 n-9$ is an integer so that n, being a natural number must be 1 or 7 . However $1^{3}+2^{3}=9 \neq 3^{3}=27$ and $7^{3}+8^{3}=855 \neq 9^{3}=729$, proving the assertion.
4. $\quad \sin \left(\frac{\pi}{24}\right)=\sin \left(\frac{\pi}{6}-\frac{\pi}{8}\right)=\sin \left(\frac{\pi}{6}\right) \cos \left(\frac{\pi}{8}\right)-\cos \left(\frac{\pi}{6}\right) \sin \left(\frac{\pi}{8}\right)$
and so

$$
\sin \left(\frac{\pi}{24}\right)=\frac{1}{2} \cos \left(\frac{\pi}{8}\right)-\frac{\sqrt{3}}{2} \sin \left(\frac{\pi}{8}\right) .
$$

But

$$
\cos ^{2}\left(\frac{\pi}{8}\right)=\cos ^{2}\left(\frac{1}{2} \frac{\pi}{4}\right)=\frac{1+\cos \left(\frac{\pi}{4}\right)}{2}=\frac{1+\frac{\sqrt{2}}{2}}{2}=\frac{2+\sqrt{2}}{4}
$$

and so

$$
\sin ^{2}\left(\frac{\pi}{8}\right)=1-\cos ^{2}\left(\frac{\pi}{8}\right)=1-\frac{2+\sqrt{2}}{4}=\frac{2-\sqrt{2}}{4} .
$$

Since $\cos \left(\frac{\pi}{8}\right)$ and $\sin \left(\frac{\pi}{8}\right)$ are positive,

$$
\cos \left(\frac{\pi}{8}\right)=\frac{\sqrt{2+\sqrt{2}}}{2} \text { and } \sin \left(\frac{\pi}{8}\right)=\frac{\sqrt{2-\sqrt{2}}}{2}
$$

Therefore,

$$
\sin \left(\frac{\pi}{24}\right)=\frac{1}{2} \frac{\sqrt{2+\sqrt{2}}}{2}-\frac{\sqrt{3}}{2} \frac{\sqrt{2-\sqrt{2}}}{2}=\frac{\sqrt{2+\sqrt{2}}-\sqrt{3} \sqrt{2-\sqrt{2}}}{4}
$$

6. Let $\triangle A B C$ have sides $A B, B C$, and $C A$ of lengths 3,4 , and 5 respectively. By the law of cosines

$$
\begin{aligned}
\cos (\langle\mathrm{ABC}) & \left.\left.=\frac{1}{2 \overline{\mathrm{AB}} \overline{\mathrm{BC}}} \right\rvert\,(\overline{\mathrm{AC}})^{2}-(\overline{\mathrm{BC}})^{2}-(\overline{\mathrm{AB}})^{2}\right) \\
& =\frac{1}{2 \cdot 3 \cdot 4}\left(5^{2}-4^{2}-3^{2}\right)=0
\end{aligned}
$$

Since $0<\left\langle A B C<180^{\circ}\right.$, $A B C$ must be 90°.
7. Three positive real numbers x, y and z are lengths of the sides of a triangle if and only if $x+y>z, x+z>y$ and $y+z>x$. Suppose that x^{2}, y^{2} and z^{2} are lengths of the sides of a triangle.

$$
(x+y)^{2}=x^{2}+y^{2}+x y>x^{2}+y^{2}>z^{2} .
$$

Since x, y and z are positive, $x+y>z$. Similarly $x+z>z$
and $y+z>x$. The conclusion is that if x, y, and z are positive, and if x^{2}, y^{2}, and z^{2} are the lengths of the sides of a triangle, then x, y and z are the length of the sides of a triangle. The problem will be complete if we now show that $a(b+c-a)=(\sqrt{a(b+c-a)})^{2}, \quad b(c+a-b)=(\sqrt{b(c+a-b)})^{2}$, and $c(a+b-c)=(\sqrt{c(a+b-c)})^{2}$ are lengths of the sides of a triangle whenever a, b and c are. However $a>0 \quad b+c>a$ implies $a(b+c-a)>0$. Similarly $b(c+a-b)>0$ and $c(a+b-c)>0$. Finally $a(b+c-a)+b(c+a-b)-c(a+b-c)=c^{2}-(a-b)^{2}$. Since $c>a-b$ then $c^{2}-(a-b)^{2}>0$, and
$a(b+c-a)+b(c+a-b)>c(a+b-c)$. Similarly
$a(b+c-a)+c(a+b-c)>b(c+a-b)$ and
$b(c+a-b)+c(a+b-c)>a(b+c-a)$, proving the problem.
8. Suppose x, y and z satisfy the constraints $x \geq 0, y \geq 0$, $z \geq 0, x+y \leq 2$ and $3 x-y+z \leq 1$. Adding the last two inequalities gives $4 x+z \leq 3$ so that $z \leq 3-4 x$. Since $x \geq 0$, this implies that $z \leq 3$. Since $x+y \leq 2, x+y+z \leq 5$. However the values $x=0, y=2$, and $z=3$ satisfy the given conditions and sum to 5 . Therefore the maximum value of $x+y+z$ subject to the given conditions is 5 .
9. Let π_{1} be the plane containing ℓ_{1}, ℓ_{2} and ℓ_{3}, and let 0 be the point of intersection of $\ell_{1}, \ell_{2}, \ell_{3}$ and ℓ. Let ℓ_{4} be a line in π_{1} bisecting the angle between ℓ_{1} and ℓ_{2}, and let π_{2} be the plane through ℓ_{4} perpendicular to π_{1}. We claim that Ω lies on π_{1}. Let $P \neq 0$ be a point on ℓ.

Drop perpendiculars from P to ℓ_{1} and ℓ_{2} respectively, and suppose these perpendiculars meet ℓ_{1} and ℓ_{2} at Q and R respectively. π_{2} must intersect one of the segments $P R$ and $P Q$ so suppose π_{2} intersects $P R$ at the point X

Since $\angle P O Q=\angle P O R, \quad \angle O Q P=\angle O R P=90^{\circ}$ and $\overline{O P}=\overline{O P}, \triangle O P Q$ is congruent to $\triangle O P R$. Thus $\overline{O Q}=\overline{O R}$, and $\overline{P Q}=\overline{P R}$. Let $R Q$ intersect ℓ_{4} at Y. Since $\triangle O Y Q$ is congruent to $\triangle O R Y$, $\overline{Y Q}=\overline{Y R}$. Since $\left\{X Y Q=\left\langle X Y R=90^{\circ}, \quad \overline{X Y}=\overline{X Y} \quad\right.\right.$ and $\overline{Y Q}=\overline{Y R}$, $\triangle X Y R$ is congruent to $\triangle X Y Q$ so $\overline{X R}=\overline{X Q}$. However $\overline{P R}=\overline{P X}+\overline{X R}=\overline{Q P}$, so $\overline{Q P}=\overline{P X}+\overline{Z Q}$. This can only occur if $X=P$, proving that ℓ is on π_{2}. If π_{3} is the plane meeting the bisector of the angle between the lines ℓ_{2} and ℓ_{3}, and perpendicular to π_{1}, then a similar argument shows that ℓ is on π_{3}. Since two distinct planes meet in a line, ℓ is thus the intersection of π_{2} and π_{3} which is perpendicular to π_{1}.
10. Given: $a z-2 b y+c x=0$

$$
\begin{equation*}
a c>b^{2} \tag{1}
\end{equation*}
$$

Suppose $\quad x z>y^{2}$
From (2) and (3) acxz $>b^{2} y^{2}$
From (1) $(a z+c x)^{2}=4 b^{2} y^{2}$ which by (4) $(a z+c x)^{2}<4 a c x z$. Thus $(a z+c x)^{2}-4 a c x z=(a z-c x)^{2}<0$. This is impossible since $a z-c x$ is a real number. Thus (3) does not hold and $x z-y^{2} \leq 0$.

