
Estimating Roots of Quadratic Equations 
by Templet and Grid 

Wiluam J. 8'1.uc.e. 

Consider any quadratic function defined by the equation 
2 

y = x + ax +  b, 

and assume that it is known that the graph of this equation is a parabola. In 

order that our proposed device be operable, it is essential that the given 

quadratic equation be uniquely determined by knowing the axis of symmetry of 

the parabola and one point on the Y-axis. This is shown easily. 

Let (O,y1) be the coordinates of a point on the Y-axis and let x = h 

be the equation of the axis of symmetry of the parabola. Because of this 

symmetry, (2h,y
1

) are the coordinates of another point on the parabola? 

Substitute the coordinates 

obtain b = y 1 so that 

into the equation 

The coordinates (2h,y1) are substituted next to give 

or 

4h2 + 2ah = 0 

4 

2 y = x + ax+ b and 



from which we find, since h � 0, that a = -2h. Finally the quadratic 

equation becomes uniquely 

2 
y = x - 2hx + y

1
• 

For any quadratic equation 
2 

y = x + ax +  b, it is obvious that the 

point with coordinates (0,b) lies on the graph. Complete the square and 

obtain 

2 2 y = (x+a/2) + b - a /4 

from which we have that 

X = -a/2 

is the equation of the axis of symmetry of the parabola. For example, if 

2 
y = x - Sx + 6, we find that (0,6) are the coordinates of the point on 

the Y-axis and x = 5/2 is the equation of the axis of symmetry. 

Since neither horizontal nor vertical translation change the shape of a 

2 
parabola, all parabolas represented by the equation y = x + ax+ b have the 

same shape. Because 2 y = X is the simplest form of this equation, it 

suffices to cut a templet by using a truncated portion of the graph of this 

equation. All other parabolas referred to can be drawn by shifting such a 

templet, without rotation, on a Cartesian grid and tracing along the parabolic 

boundary. Figure 1 illustrates how to obtain a pattern from which this 

templet can be cut. Note that equal scale units are used but are not essential. 

The smaller graph shown is that of 
2 

y = x drawn with considerable accuracy. 

Included is a larger graph of 
2 y = x made possible by simply shifting the 

origin downward on the grid to allow for the plotting of more points. If a 

higher degree of accuracy is needed, the parabolic plots can be done by 

computer. 
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A templet can be prepared in the following manner. Place a piece of 

fairly rigid cardboard behind the graph chosen, and with a long sharp pin with 

a beaded head carefully punch along the parabola at frequent intervals. One 

extra punch will be needed to locate the axis of synnnetry if this is desired. 

In using the templet it will be found that it is not absolutely necessary to 

have the axis of symmetry as long as the vertex is accurately punched and 

the p0rabolic region is truncated on a line perpendicular to the axis of 

symmetry. Carefully cutting along the pin-pricked path, one can produce a 

reasonably accurate templet. 

In order to use a templet to solve quadratic equations of the form 

2 
x + ax+ b = 0, we shall need a square grid ruled on a durable sheet of 

cardboard, plastic or wood. This grid must be prepared so as to match the 

parabolic templet. Coordinate axes might be pre-marked or could be omitted 

for greater flexibility and chosen where needed. Some device for marking the 

axes in the latter case would be necessary. The size of the templet and the 

grid can be chosen as needed. Standard page size for the grid likely would 

be adequate for most purposes. Figure 2 shows a grid that might be used. 

The following examples illustrate how to use the templet with a grid to 

estimate the roots of a quadratic equation. At first we shall restrict these 

examples to equations that have real roots. Figure 2 is used in each case. 

(1) Solve x
2 

- 4x + 4 = 0. 

Let y = x
2 

- 4x + 4. This is of the form y = x
2 

+ ax+ b so 

that b = 4 is the y-intercept while x = -a/2 = 2 is the 

equation of the axis of symmetry. Place the templet on the grid 

so that its edge cuts the Y-axis at 4 and so that its axis of 

symmetry lies on the line represented by x = 2. In this case the 
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(2) 

vertex of the parabola touches the X-axis at 2. If and 

are the roots of the quadratic equation, we have that r
1 

= r
2 

= 2. 

Solve 
2 6x + 5 = O. 

Let y = x
2 

- 6x + S. Here b = S is the y-intercept and x = 3 

is the equation of the axis of sy,nmetry. Place the templet on the 

grid carefully and note that its edge crosses the X-axis at 1 and 

s. Hence r = 1 1 and are the roots. 

(3) Solve x
2 

+ 3x - 10 = 0. 

Let 
2 

y = X + 3x 10. Here b = -10 is the y-intercept and x = -3/2 

(4) 

is the equation of the axis of symmetry. Place the templet on the 

grid so that its edge cuts the Y-axis at -10 and so that its axis 

of symmetry lies on the graph of x = -3/2. The parabola cuts the 

X-axis at -5 and 2. Hence r1 = -5 and r
2 

= 2 are the roots. 

Solve 
2 

X + 7x + 4 = 0. 

Let y = x
2 

+ 7x + 4. Here b = 4 is the y-intercept and x = -7/2 

is the equation of the axis of symmetry. In this case the templet 

doesn't cut the X-axis at integral values so we have to estimate 

the roots more carefully than in the previous examples. These appear 

to be approximately r
1 

= -6. 4 and r
2 

= -0. 6. 

For equations with leading coefficients that are not unity, it is sufficient 

to divide by this coefficient at the outset to get an equivalent equation 

and then solve the latter as before. If the templet doesn't cut the X-axis, 

this will indicate that the roots are not real, in which case they cannot be 

found by the method described above. For such nonreal roots, the method of 

completing the square can be used to form the well-known quadratic formula. 

9 



The presence of a negative discriminant in the latter also indicates that the 

roots are nonreal. 

There are two ways by which one might prepare a broader templet. One of 

these is to shorten the vertical scale units. For example, the ratio of 

vertical to horizontal scale units might be taken as 1 to 2. Of course, 

both the templet and the grid must conform to the same units in all cases. 

Another way to accomplish this is to retain equal scale units on both scales, 

but to use a fractional multiplier for the quadratic function. For example, 

one might produce the templet from the graph of 
1 2 

y = -x 
2 

and always write 

1 2 
the equation in the form 2 (x +ax+b) = 0 so that the graph would be that of 

1 2 
y = 2 (x +ax+b) when the templet is shifted about on the grid. The roots 

of the quadratic equation will not change if variations such as these are 

used. 

50 PUZZLES IN ALGEBRA 

What a collection! Here are 59 cross-number puzzles that cover practi
cally everything you'll want to do in first-year algebra! 

The puzzles can be used along with your present textbook, assigned as 
homework, used for extra credit, as tests, or as recreation for your more ven
turesome students. The students can check their own answers easily, since, in 
each puzzle, the numbers going down must check with the numbers going across. 

■ 

Each puzzle is all set up for you on a quality 8 1/2" x 11" spirit master 
which you can use on your school duplicating machine. Introduction on how to 
use the puzzles and a complete set of solutions are in a separate booklet. 

All on spirit masters, with a teacher booklet. 

$18. 95 per set 

Publisher: J. Weston Walch 

Canadian Distributor: Western Educational Activities Ltd. 
10234 - 103 Avenue, Edmonton, Alberta 
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