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Introduction 

Mathematics and science have inter-
acted through the ages. Mathematics, 
as a means of articulation and theori-
zation in science, now spans the uni-
verse all the way from the largest 
galaxy to the smallest elementary par-
ticle. The present-day relationship 
between mathematics and science is by 
no means static. It has evolved from 
the past and will continue to evolve 
in the years ahead. Out of past asso-
ciations new ones emerge, then with a 
further change in the intellectual and 
cultural climate, new interactions 
develop. 

Today's mathematical involvement in 
the physical and social sciences can 
be traced to its historical routes. By 
doing so, one gains an overview of the 
various roles of mathematics in the de-
velopment of science. From such a per-
spective one can understand the ways 
in which mathematics interacts with 
science today; but more, one can bring 
greater clarity into speculations of 
future relationships. 
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Mathematics itself is not a part of 
the realm of science. Both have dif-
ferent subject matters, differences 
which cannot be bridged by anything 
but superficial similarities. Basi-
cally, natural science deals with ob-
jects and events in the "external" 
world while mathematics concerns it-
self with the objects in its own 
"aesthetic" perception. These objects 
are internally conceived and inwardly 
structured. 

Through the ages and, indeed, to-
day, people have had diverse ideas re-
garding the relationship between math-
ematics and science. Some would have 
us believe that mathematics is the 
"queen of the sciences," while others 
insist that it is simply a servant to 
science: 

Pythagoreans (ca.530 B.C.) main-
tained that in nature "all is number." 

Aristotle (ca.350 B.C.) defined math-
ematics as an abstraction from nature. 



Kepler (ca.1600 A.D.) thought that 
just as ears are made for sound and 
eyes for color, the mind of man is 
meant "to consider quantity." 

Galileo (ca.1600 A.D.) said that 
the book of the universe was written 
in mathematical language and its alpha-
bet consisted of geometrical figures. 

Bacon (ca.1600 A.D.) regarded math-
ematics merely as a servant to physics, 
and actually complained of the domin-
ion which it was beginning to exercise 
in science. 

Feynman (1965) writes, "mathematics 
can help physics, but they are two 
quite different activities - mathemat-
ics deals with the abstract world, and 
physics deals with the real world." 

Eric Rogers (1960) suggests that we 
might describe mathematics as a "master 
architect designing the building in 
which science can grow at its best." 

Just as there is a danger to science 
in over-glorifying mathematics and at-
tempting to subordinate all of science 
to it, so is there a danger in calling 
mathematics the"handmaiden of science." 
Accelerations and retardations in the 
development of science can be traced, 
in large measure, to such attitudes. 

This paper, in investigating the 
role of mathematics in the rise of 
science, chronologically examines vari-
ous epochs of our past. 

Pre-Greek and Greek Era 

The mathematics of Egypt and Baby-
lon preponderantly served a practical 
function. Pre-Greek mathematics was 
integral to astronomy, taxation, and 
the construction of moats and temples. 

The most successful product of the 
Greek mind was the deductive quality 
of geometry. The first Greeks to grasp 

this possibility of abstraction in 
geometry were probably Thales (600-
550 B.C.) and Pythagorus. Then around 
300 B.C. one of the most famous masters 
of geometry, Euclid, set out to collect 
the theorems of his predecessors and 
to arrange them as a single self-
contained work entitled EZements. 

The next century produced two or 
more gifted mathematicians. Apollon-
ius (ca.200 B.C.) discovered the so-
called conic sections which later con-
tributed directly to astronomy. In ad-
dition there was Archimedes (ca.250 B.C.) 
whose brilliance at mathematics was 
matched by his genius for mechanics. 

In Greek astronomy, the first math-
ematically conceived system was that 
of Eudoxus (ca.370 B.C.). Spurred on 
by Plato's notion of reality, Eudoxus 
reduced the irregular movements of ce-
lestial bodies to uniform circular mo-
tion. His system consisted of 27 con-
centric spheres, one inside the other. 
The whole system was a purely geomet-
rical hypothesis, calculated to repre-
sent the apparent paths of the planets. 
Later, Ptolemy (90-168 A.D.)wrote his 
famous astronomical treatise De AZga-
mest in which he strove fora mathemat-
ical model of the universe, known to-
day as the Ptolemaic system. 

Greek physics did in no way bequeath 
a book comparable to the mathematical 
works of Euclid, Archimedes or Apollon-
ius• Yet, Greek physics culminated in 
the system of Aristotle and held the 
stage of physics for almost 2000 years. 

The Greeks created a general concept 
of mathematics and a general concept of 
physics. Yet, if one assesses the 
pragmatic outcomes of Greek mathematics 
and physics, and if one confronts the 
mathematics and physics of Greek antiq-
uity with 20th century knowledge, then 
one may find that Greek physics as a 
whole never developed into a mathemat-
ical system. The system of Greek math-
ematics had severe limitations and 
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shortcomings. For example, they were 
incapable of "founding" functions. 
Their symbolization did not advance be-
yond an elementary stage, the stage of 
abstraction from "direct actuality." 
(Full scale symbolization involves ab-
straction from abstraction.) These in-
adequacies made Greek mathematics un-
suited for promoting the rise of theo-
retical physics as we know it today. 
In other words, these shortcomings pre-
vented a type of scientific thinking 
from developing. Perhaps the Greeks 
did not introduce mathematics as a 
technique for mastering problems that 
arose in man's mind. Although Greek 
astronomy was mathematical and its 
mathematization made it successful, 
the Greeks never had the insight (nec-
essary in pursuing mechanics, physics 
and other sciences) to articulate qual-
itative attributes by quantitative mag-
nitudes. They never realized that 
writing physical laws as mathematical 
formulae and applying mathematical pro-
cedures to the formulae can sometimes 
lead to further explications and devel-
opments. The Greeks never arrived at 
such an insight in spite of the dram-
atic first steps taken by Archimedes. 
There was no determination to solve 
"scientific puzzles" through mathemat-
ical manipulation and empirical verifi-
cation. This was so fateful that even-
tually even Greek mathematics tended 
to wither away. 

Nevertheless, the Greeks did have 
areas of knowledge in which science 
and mathematics overlapped. Their as-
tronomy was clearly mathematical in 
Eudoxus and Ptolemy. Pythagoreans en-
visioned some sort of mathematization 
of physics, although the extent and 
depth of their insights is not easy to 
appraise. Again, the laws of Archi-
medes on balancing the lever and on 
floating bodies clearly pertain to 
mathematical physics and were the first 
of their kind. And yet they did not 
have the effect of initiating a mathe-
matical physics at that time. Even 
atomists like Epicurus and Democritus 
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did not show any tendency to initiate 
a mechanics of the stature of the 17th 
or 18th century. 

The Renaissance 

The Greeks wrote hundreds of books 
on mathematics, treating it for the 
first time as worthy of study for its 
own sake. In the centuries of darkness 
that followed, much of this mathemati-
cal treasury was lost. But enough re-
mained so that the scholars of the late 
Middle Ages once again launched a 
search for knowledge, giving the study 
of mathematics an impetus that kept on 
accelerating. 

Men in the 16th and 17th centuries 
were already looking beyond arithmetic 
into the vistas of algebra. It was the 
French mathematician, Rene Descartes 
(1596-1650 A.D.) who first started 
writing algebraic equations. In his 
ambition to "remake the world" he de-
veloped a new branch of mathematics, 
analytic geometry, a technique for vis-
ualizing numbers as points on a graph, 
equations as geometric shapes, and 
shapes as equations. Trigonometry and 
logarithms also emerged from the Carte-
sian system of Descartes,. 

Then in 1665, England's Isaac Newton 
produced calculus, which for the first 
time permitted the mathematical an-
alysis of all movement and change. 
Meanwhile, a German mathematician, 
Leibnitz (1646-1716), independently in-
vented his version of calculus and in 
1684 published his account of it. (To-
day the symbols derived by Leibnitz: 
d, d, d, are more generally used than 
dx dy dz 
those derived by Newton: 

x, y, 

z ) 

In Rene Descartes' work, we meet 
a system of thought much more intens-
ive, concentrated and intricately in-
terlocked than the Greek system. In 



his system everything was to be ac-
counted for mathematically - by config-
uration or by number. He regarded 
physics as reducible to mechanism, and 
even considered the human body as being 
analogous to a machine. The mechaniza-
tion of his highly concentrated deduc-
tive system became the template for the 
structure of physical science. 

Men of the 17th century were ex-
tremely conscious of the importance of 
mathematics to scientific development. 
Therefore, it is not surprising that 
the development of science after 1600 
A.D. began with the establishment of 
this so-called "rational mechanics" 
which held the stage of science during 
the 17th, 18th and 19th centuries. 
Mechanics was a problem which only be-
came manageable when, in a certain 
sense, it had been "geometrized." Mo-
tion became envisaged as occurring in 
the emptiness of Euclidean space. (The 
Aristotelian system had discouraged 
the idea of the composition of motion, 
and was uncongenial to any mathemati-
cal treatment of it.) Although Gali-
leo was one of the first persons to 
treat motion quantitatively, he failed 
to achieve the perfect formulation of 
the modern law of inertia because he 
could not imagine a purely geometri-
cal body sailing off into an utterly 
empty and directionless Euclidean 
space. The law of inertia had to wait 
for Descartes. 

The 17th century produced the great-
est single statement on the relation 
between mathematics and physics. It 
was Galileo's dictum that mathematics 
is a language of science. He went so 
far as to say that the mind was to be 
constantly directed only to those 
things, and to apply itself to only 
those problems which were amenable to 
measurement and calculation. Des-
cartes, Torricelli, Kepler, Huygens, 
Newton, and others who succeeded Gali-
leo, clarified this scientific value 
by their geometrizing problems concern-
ing natural phenomena. 

The mechanized study of motion may 
well have been the high point of 17th 
century science. The century wit-
nessed one attempt after another not 
only to explain motion and other nat-
ural phenomena, but to interpret all 
changes of the physical universe in 
terms of a purely mechanistic universe. 
Kepler inaugurated the scientist's 
quest for a mechanistic universe. 
To generations of astronomers, the ba-
sic celestial figure was a circle. 
Kepler broke away from this supposi-
tion by introducing ellipses. He did 
not find his ellipses in the tables of 
Tycho Brahe or the writings of Coperni-
cus. He found them by searching untir-
ingly in the work of Apollonius. 
Guided by astronomical observations, 
he was the first to grasp the true 
meaning of foci of conics. Conics and 
their theory were in no way Kepler's 
private mathematical invention. They 
had existed for nearly 2,000 years for 
anybody to find and use. 

The determination to formulate all 
explanations in mechanistic terms had 
important effects upon the biological 
sciences. Harvey (1567-1650), in his 
enquiries into the circulation of the 
blood, had a purely mechanical ap-
proach. G.A. Borelli (1608-1679), in 
his book The Motion of Animals, wrote 
a chapter on the "Mechanical Proposi-
tions Useful for the More Exact Deter-
mination of the Motive Power of 
Muscles." This tendency to glorify 
mere mechanization led to the ubiqui-
tous view that the animal body was 
nothing more than a piece of clockwork. 

The effects of the new mechanistic 
outlook are vividly illustrated in 
the works of Robert Boyle (1627-1691). 
He is quoted to have said that he did 
not expect to "see any principles pro-
posed more comprehensible and intelli-
gible than the corpuscularian." This 
philosophical position is often called 
"mechanical philosophy," since it 
tends to give a mechanical explanation 
of the physical universe. One of 
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Boyle's works includes a discourse on 
the mechanical origin of heat and mag-
netism. According to him, chemistry 
itself could be reduced to micro-
mechanics. 

Later in the 17th century, a cul-
minating event took place when Newton 
and Leibnitz introduced "derivatives" 
and laid the foundation for calculus 
and mechanics. The ultimate triumph 
came in publishing the Principia, in 
1686. The Principia is important not 
so much because of its laws, defini-
tions, concepts of time, space, and 
gravitational force, but because New-
ton constructed and deduced, by math-
ematical reasoning, what Kepler had 
only divined and postulated. 

Outwardly, in the Principia there 
is hardly any mathematics invoked or 
presupposed which should not have 
been quickly accessible to Archimedes 
and Apollonius. No attempt had been 
made in the Principia to introduce 
Descartes' innovation of analytically 
using symbols and functions. Newton 
was quite skilled in the use of sym-
bols and functions as he was very fa-
miliar with Descartes' work. In fact, 
Newton mastered the method of Des-
cartes much better than Descartes him-
self. However, in the Principia, New-
ton's definitions of limit and deriva-
tive ("ultimate ratio") seem to be 
such that a personal disciple of Arch-
imedes should have been able to com-
pose them in principle. Why did this 
not occur? Greek thinking, in general, 
did not formulate such logical abstrac-
tions as: a relation of a relation, a 
property of properties, an aggregate 
of aggregates (for example, a rate of 
change of a rate of change - accelera-
tion). Second derivatives were at the 
center of Newton's mechanics. It was 
this kind of limitation to Greek ra-
tionality that separated Archimedes 
from Newton; a hiatus which Archimedes 
could never succeed in crossing. 

Inwardly, there is a difference be-
tween the Euclidean space that under-
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lies the Principia and the Euclidean 
space that underlies Greek mathematics 
and physics. The Euclidean space of 
the Principia continues to emphasize 
Greek congruencies and similarities be-
tween figures. However, it does some-
thing new. Several significant physi-
cal entities found in the Principia, 
velocities, momenta and forces, are 
vectors. Vectorial composition and 
decomposition of these entities consti-
tutes an innermost scheme of the entire 
theory. In the course of the 18th cen-
tury, the vectorial statements of New-
ton and others were gradually transfer-
red and reinterpreted into analytical 
statements. The 20th century widened 
the concept of a vector into the 
broader concept of a tensor. 

To summarize the events in the 17th 
century, one could say that there was 
considerable scientific development 
where geometrical and mathematical 
methods could be easily and directly 
applied. Therefore, not only did the 
sciences make a remarkable development 
in the 17th century, but mathematics 
also progressed to a great extent. 
This is because the sciences, espe-
cially physics and dynamics, were 
pressing upon the frontiers of mathe-
matics all the time. The sciences 
created a need for mathematics, and 
therefore mathematics flourished. The 
relationship between science and math-
ematics has never quite been the same 
since then. Today, both tend to go 
their separate ways and draw upon one 
another when the need arises. But it 
was not so in the 17th century. 
Science depended on mathematics and 
mathematics depended on science. With-
out the achievements of mathematics 
the scientific revolution, as we know 
it, would have been impossible. 

18th-19th Centuries 

Let us first look at the achieve-
ments of some of the great mathemati-
cians and scientists in the 18th and 



19th centuries. Then we shall analyze 
the role mathematics played in the 
rise of science at this point in 
history. 

Because of Newton's success, math-
ematical theorists of the 18th and 
19th centuries held fast to a philos-
ophy of "mechanistic determination." 
The French mathematician, Pierre Simon 
de Laplace (1749-1827), perfected New-
tonian analysis of the solar system in 
a great work entitled Mechanique 
Celeste. He also used calculus to ex-
plore and advance probability theory. 
The most celebrated partial differen-
tial equation was devised by Laplace. 
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(This equation has been used to des-
cribe the stability of the solar sys-
tem, the electric field around a 
charge, a steady distribution of heat, 
and many other phenomena.) 

Euler (1707-1783), of Swiss fame, 
created a host of new uses for calcu-
lus as it applies to curves and sur-
faces. He has been called the father 
of modern topology. 

Lagrange's (1716-1813) hallmarks 
were his famous works Mechanique Ana-
Zytique and Theorie des Functions Ana-
Zytiques - master textbooks in its 
subject. But by far his greatest 
achievement was the space of "general-
ized coordinates" of our mechanics of 
today. 

The genius who dominated 19th cen-
tury mathematics and physics was Carl 
Friedrick Gauss (1776-1855). He gave 
direction to the new movement toward 
generality in mathematics by imposing 
on it his own stern standard - ademand 
for absolute rigorous thinking. As a 
17-year-old, he audaciously questioned 
certain rules of Euclid's geometry 
that generations of mathematicians had 

taken for granted, pointing out that 
many of them did not hold true on 
curved surfaces. 

But it remained for Gauss's pupil, 
Riemann (1827-1866), to shatter the 
boundaries of traditional geometry by 
postulating not only curved spaces of 
three dimensions, but spaces made up 
of four and more dimensions. Fifty 
years later, the physicist, Albert 
Einstein, brought the process to a 
stunning climax by borrowing these 
abstractions and using them in his 
theory of relativity to describe the 
real universe. 

Out of the 17th and into the 18th 
century, preference continued to be 
given to rational mechanics (mathemat-
ical analysis of everything possible). 
In this context several so-called 
'principles of mechanics' were pro-
duced. Meanwhile, the theories of 
light, heat, electricity, and magne-
tism were not forgotten but they ad-
vanced at a slower pace until their 
turn for full attention came in the 
19th century. 

The mechanics of the 18th century 
and the first decades of the 19th cen-
tury was virtually inseparable from 
the mathematics. Almost all the lead-
ing architects of the various parts of 
mechanics were eminent mathematicians: 
James Bernoulli (1667-1748), d'Alem-
bert (1717-1783), Euler (1707-1783), 
Cauchy (1789-1857), Lagrange (1716-
1813), Poisson (1791-1840), Laplace 
(1749-1827), Gauss (1776-1855), and 
Jacobi (1804-1851), to name a few. Cor-
respondingly, most of their theorizing 
emanated from "pure thinking" with 
very marginal entanglements in direct 
experimentation. 

The need for 17th century mathemat-
ics continued to grow. Scientific pro-
gress was now even more strongly depen-
dent on mathematics than it was before. 
In this period, the amount of mathemat-
ics which was created for, and because 
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of, mechanics (theoretical and applied) 
was enormous - especially in the area 
of analysis. The calculus of varia-
tion was instigated largely by mechan-
ics of particles (finite systems), 
while other mathematical theories were 
instigated largely by mechanics of con-
tinua (hydro-dynamics, acoustics, gen-
eral theory of elasticity). Virtually 
all of partial differential equations 
were created this way. Indeed, the 
mathematical theory of waves, which 
eventually became the hallmark of the-
oretical physics in all its parts, 
emerged from mechanics of continua. 
Fourier analysis was the result of the 
mechanics of continua and the theory 
of heat. The concept of potential en-
ergy originated in the Lagrangian the-
ory of finite particles. Finally, it 
appears that the mechanics of continua 
had a share in the emergence of tensor 
theory. 

Beginning with the 19th century, 
the relationship between mathematics 
and mechanics changed. Mathematics be-
came more or less independent of mech-
anics and physics. It assumed a phil-
osophical nature and began to develop 
for its own sake. Yet another kind of 
relationship between mathematics and 
theoretical physics developed. It was 
a rapport built more on parallelisms 
of pursuits rather than on identities 
of aims. Mathematical formulations 
were no longer created for a particu-
lar purpose. 

from time to time in this century, 
theoretical physics was able to seize 
upon an unfamiliar ready-made piece of 
mathematics and use it instantly. It 
would have appeared as if the mathe-
matics had been prefabricated espe-
cially for the theoretical physicist. 
For example, in the second half of the 
19th century, statistical mechanics of 
the kinetic theory of matter was able 
to draw upon the mathematical theory 
of probability (initiated in the Re-
naissance age and developed by Laplace). 
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Another example is the theory of rela-
tivity. It utilized the non-Euclidean 
geometry of the 19th century. 

For all of physics, and gradually 
for other sciences as well, mechanics 
became a model of mathematization in 
the 19th century. Most of the devel-
opment in electricity, magnetism, op-
tics, and heat conduction was mathemat-
ically modeled on paradigms from mech-
anics of continua. Therefore, in many 
parts of physics the mathematics was 
uniformly the same, not only in tech-
nique but in the manner in which math-
ematical and physical conceptions were 
correlated with each other. However, 
there was one part of physics which 
did not conform to this general pat-
tern - the theory of thermodynamics. 
It was mathematically linked to a 
novel kind of mechanics - statistical 
mechanics. 

It would seem that the relationship 
between mathematics and science from 
the Greek times to the 19th century 
took a full circle. Generally speak-
ing the Greeks regarded mathematics 
and science as two separate entities. 
Scientists in the Renaissance had a 
totally mechanistic outlook toward 
all knowledge. This resulted in a re-
markable development ofmathematics. 
In the 18th century, the scientific 
community's need for new mathematics 
continued to grow. The amount of math-
ematics that was created for and be-
cause of mechanics was enormous. Then, 
in the 19th century, the relationship 
between mathematics and science 
changed. Mathematics began to be in-
dependent of science. There developed 
a limited collaboration between phys-
icists and mathematicians that remains 
unbroken today. 

20th Century 

It is intriguing that every so 
often it is possible to apply an al-
most forgotten mathematical develop-
ment of yesterday to a scientific 



problem of today. The 20th century 
has some fine examples of this. 

The power of mathematics has rarely 
been proven more effective than in rel-
ativity theory - a brilliant applica-
tion of the geometry of curved sur-
faces to the treatment of space, time 
and motion. In his theory of general 
relativity, Einstein applied the 19th 
century ideas of Gauss and Reimann in 
suggesting the existence of a curved 
universe of four dimensions. 

Another example of science drawing 
upon prefabricated mathematics is 
Boolean Algebra. Contemporary studies 
in network and information theory, 
mechanical and human, had to fall back 
on the work of George Boole (1815-1864). 
Boole developed symbolic logic to clar-
ify difficult Aristotelian logic. To-
day, his sytem is widely used as a 
tool to augment sound reasoning and 
has practical uses in designing parts 
of telephone circuits and electronic 
computers. 

In quantum physics, it happened 
that a scientific setting was fash-
ioned out of a mathematics created 20 
years previously. The original dis-
parate quantum physics versions of 
Heisenberg and Schrodinger were merged 
into one by Schrodinger. The union of 
the two was mathematically brought 
about in the precincts of so-called 
Hilbert space. Since entering phys-
ics, this theory of operators has de-
veloped the concept of an operator 
from a tool in physics to a reality in 
nature, and it has raised the mathemat-
ization of physics to new levels. 
There is hardly a purely mathematical 
statement on operators in Hilbert 
space which some physicist would not 
interpret as an event, or as a prop-
erty of an event in nature. In fact, 
it has become a general belief that 
mathematics and science have correspon-
dence rules: if a purely unexpected 
mathematical formula arises, then a 

corresponding unknown occurrence in 
nature exists. Maxwell's prediction 
that light is an electromagnetic wave 
is a good example. 

Meanwhile, pure mathematicians are 
climbing to new levels of abstraction. 
How their work will relate to future 
scientific knowledge no one really 
knows. It may be decades before 
science gets a chance to draw upon the 
mathematics of today. 

Conclusion 

We have made a cursory historical 
review of the role of mathematics in 
the rise of science. Some general ob-
servations are suggested. 

(1) As seen from history, any area of 
inquiry capable of mathematization de-
veloped the earliest and fastest. This 
is why physics developed before chem-
istry, chemistry before biology, and 
biology before any of the social sci-
ences. The characteristics of physi-
cal science are such that a vast range 
of phenomena can be handled by linear 
algebra or differential equations. On 
the other hand, the inexact sciences 
are less amenable to mathematical 
treatment and, therefore, have not de-
veloped so fast. Apparently, the math-
ematization of a science affects the 
role and nature of revolutions that 
may and do occur in it. 

(2) Much of the newly created mathemat-
ics has, at the time of its creation, 
no overt bearing on applied science or 
even on theoretical science. There is 
today a warehouse of mathematical 
knowledge of which scientists have not 
yet taken advantage. 

(3) It has become a part of the cele-
brated scientific methodology that, if 
a purely unexpected mathematical con-
clusion arises, then a corresponding 
unknown occurrence in nature should be 
detectable. 
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(4) Mathematical formulation of sci-
entific statements bestows a peculiar 
kind of lucidity and precision upon 
them and establishes logical and cog-
nitive relations among them. It also 
introduces challenging analogies and 
unifications. For instance, we have 
seen that most wave propagation phe-
nomena, whether in acoustics, elec-
tricity or optics, are assumed to be 
governed by virtually the same set of 
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