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The Editor's Page 

l~lelcome back to school: Are you in need of some inspiration 
and/or fresh ideas? Hear what Dr. Jesse Rudnick, NCTM director and 
professor at Temple University, Philadelphia, has to offer in this 
realm. He will speak on "Beyond the Skills and Concepts" in a key-
note address at our annual meeting, October 13/14, at the Capri Motor 
Hotel in Red Deer. Then, on Saturday, he will join Bob Robinson, 
NCTM Council of Affiliated Groups representative for Canada, and sev-
eral outstanding Albertans in 12 sessions and 12 workshops. 

Our luncheon speaker, Richard Guy, professor at the University 
of Calgary, is taking on "Numbers and Games." Can you include games 
to help develop skills, concepts and application? Let professor Guy 
assist you in adding games to your repertoire of techniques for im-
proving learning, no matter what level you are teaching from K to 12. 

At the business session, be prepared to make known your sugges-
tions for ways we can improve existing services, and your ideas for 
new activities and services that we may be overlooking at present. 

On Saturday morning we are having a buffet breakfast. In 
order to attend it will be necessary to get your ticket Friday night 
at the registration desk. The cost will be $4.95. 

Remember we are planning a joint "name-of-site" meeting with the 
National Council of Teachers of Mathematics for 1979. Details will 
be announced as plans progress through the coming year. 

1=d Cc~tv«.ge~c 
Editor 
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Junior High Mathematics Contests 

Edmonton 

The first annual Edmonton City Junior High 
Mathematics Contest was held May 9, 1978. 
Five hundred and forty-four Grade IX students 
from Edmonton Public and Edmonton Separate 
schools wrote the contest exams. The purpose 
of the contest was to challenge these mathe-
matically talented students and to recognize 
their achievements. An awards banquet was 
held May 31, 1978 at Barnett House, ATA head-
quarters. Awards were given to the top five 
teams and the top 58 students. (A team con-
sisted of the top three students from a 
school.) The winners were: 

Team Awandb 

DICKINSFIELD -
Katherine Chan 
Barry Laiss 
Doug van Uffelen 

BALDWIN -
Todd Duquette 
Jim Kenyon 
Loretta Lee 

AVALON -
Quinton Hackman 
Dean Roehl 
Ted Yoo 

McKfRNAN -
Don Driver 
Michael Markowski 
Donna Yurko 

ST. THOMAS MORE -
Andrea Goerres 
Michele Gunderson 
David Wyrstiuk 

Ind,Lv.i.dua2 Awartds 

Kathy Ayer 
Arthur Baragar 
Katherine Chan 
Todd Duquette 
David Durand 
Ron Ewoniak 
Susan Fenske 
Freddy Findling 
Duncan Foster 
Barton Frauenfeld 
Jim Gleeson 
Blaine Gregg 
Michele Gunderson 
Quinton Hackman 
Michael Hrynchyshyn 
Tommy Huh 
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Dennis Idler 
Donald Jessop 
Jim Kenyon 
Susan Kim 
Don Koziak 
Bill Krys 
Janis Krywiak 
Barry Laiss 
Darryl Lamoureux 
Michael Lee 
William Lee 
Jeremy Leung 
David Leibovitz 
Tina Lui 
Trevor MacLean 
Michael Markowski 
John Mellon 
Heidi Miehe 
Donald Murray 
Bruce Peterson 
Martin Ray 
Dean Roehl 
Walter Romaniuk 
David Salopek 
Brade Saville 
Monica Sawchyn 
Ursula Schmidt 
Irene Sharagovich 
Keith Shillington 
Danny Stephen 
Heather Strachan 
Martin Tanner 
Anthony Vader 
Doug van Uffelen 
Denis Vincent 
Stella Walsh 
Dave Warner 
Alphonse Weber 
Elizabeth Willekes 
David Wrystiuk 
Ted Yoo 
Donna Yurko 

Calgary 

In the Calgary Mathematics Association Ju-
nior High Mathematics Examination contest, 
the winners were: 

F.vc5.t: 
Second: 
7hi.nd: 

Fauhth: 
F~.6.th: 

William Graham (Queen Elizabeth) 
Sheila Stewart (Branton) 
Trevor Prior (Simon Fraser) 
John O'Leary (St. James) 
Irene Kim (Simon Fraser) 
Kyle Maschmeyer (Ernest Morrow) 
Debbie Douglas (St. Margaret) 

Other individual 
(not in order) were 

ST. FIARGARET -
Linda Chow 
Eric Leppert 
Darlene Iozzi 
Charles Roks 
Debbie Douglas 

JOHN WARE -
Cheryl Appelhof 
Steve Dietz 
Robert Geddes 

ROBERT WARREN -
Stephen Bell 

JOHN G. DIEFENBAKER 
Michael Chan 
William Chee 

ERNEST MORROW -
Robert Hornung 
Terry Martin 
Kyle Maschmeyer 

SIMON ERASER -
Meijer Drees 
Mike Flegel 
Diana Kim 
Irene Kim 
Trevor Prior 

BISHOP PINKHAM 
Bruce Wright 

SUNALTA -
Michael Lam 

ST. HELENA -
Denise Fleigham 
John Turk 

ST. STEPHEN -
Kathy Brocklebank 
Audrey Unfu9 

F.E. OSBORNE -
John Braun 

and team contest winners 
as follows: 

Judy Fairburn 
Kismet Fung 
Alison Li 

ST. JAMES -
Tom Kloepfer 
Mark McKenna 
John O'Leary 
Antony Tobias 

COLONEL IRVINE -
Alan Abraham 
Rob Winstanley 

SENATOR PATRICK BURNS 
Charlene Kolla 
Florence Mah 
Kevan Notter 

HAROLD PANABAKER 
Scott Craig 

BRANTON -
Sheila Stewart 
Robert Straker 

ST. MARTHA -
Antony Hoong 

ST. MARY'S -
Dale Tardiff 

CALGARY HEBREW SCHOOL -
Melaine Cohen 

NICKLE -
Brad Dick 
Stan Ebel 

MONTGOMERY -
Mariane Hertzsprung 

ST. JOSEPH -
Marrimo Seremia 

QUEEN ELIZABETH -
William Graham 
Derek Wooher 



Activities on the Absolute Value Table 

13vn~u.e H. Ltitw.f,Y2etc and 
T)ay.id R. ~uncav~ 
Professors of Mathematics 
University of Northern Iowa 
Cedar Falls, Iowa 

Teachers are constantly searching for activities which provide for 
the maintenance of computational skills. It is a serendipitous occurrence when 
activities can be found which lend themselves both to the maintenance of skills 
and the discovery of patterns. 

Consider a version of the subtraction table in which the absolute values 
of the differences are reported. Figure I displays this table. 

Figure I 
The Absolute Value Table 

~ J6~~ 

1 
~a - b~ 0 1 2 3 4 5 6 7 8 S 

/0 0 1 2 3 4 5 6 7 8 9 

1 1 0 1 2 3 4 5 6 7 8 

2 2 1 0 1 2 3 4 5 6 7 

r 
3 3 2 1 0 1 2 3 4 5 6 

/ 4 4 3 2 1 0 1 2 3 4 5 

5 5 4 3 2 1 0 1 2 3 4 

6 6 5 4 3 2 1 0 1 2 3 

7 7 6 5 4 3 2 1 0 1 2 

8 8 7 6 5 4 3 2 1 0 1 

`9 9 8 7 6 5 4 3 2 1 0 

For example, ~6 - 2~ _ ~4~ =4; consequently, the entry in the "6-row" 
and "2-column" is 4. Similarly, ~2 - 6~ _ ~-4~ = 4; the entry in the "2-row" 
and "6-column" is also 4. 
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The following are activities which 
will provide both computational prac-
tice and pattern discovery: 

I. The table (Figure I) is sym-
metric about each of its two diagon-
als. How many symmetries can be 
found in the addition and multiplica-
tion tables? 

II. Find the sums of the entries 
of each row (horizontal) of the table. 
For instance, the "0-row" sums to 45 
since 0+ I+ 2+ 3+ 4+ 5+ 6+ 7+ 
8 + 9 = 45. Table I displays the 
sums of the entries of the consecu-
tive rows. 

TABLE I 

Row Name Sum 

0-row 45 

1-row 37 

2-row 31 

3-row 27 

4-row 25 

5-row 25 

6-row 27 

7-row 31 

8-row 37 

9-row 45 

Difference 
(Absolute Value) 

8 

6 

4 

2 

0 

2 

4 

6 

8 

How can the difference pattern be 
described? Follow the same steps for 
the columns. Since every row is the 
same as a corresponding column, the 
results are the same. 

III. Figure II displays the abso-
lute value table with diagonals drawn. 
Find the sums of the entries on the 
diagonals. Observe that on any diag-
onal, the entries are all equal. 
Table II summarizes the results. 

6 

a 

la - b 

Figure II 

b 

~ ~ 
0 1 2 3 4 5 6 7 8 9 

~o 

1 

z 

3 

a 

5 

6 

7 

s 

9 

0 \ 1\  2 \ 3 \ 4 \ 5 \ 6 \ 7\ 8~~y 

1\ 0 \ 1 \ 2 \ 3 \ 4 5 \ 6 7 

2 l 0 1 2 3 4, 5 6 7 

3\ 2 \ 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 y6 

4\ 3\ 2\ 1 \ 0\ 1 \ 2\ 3\ 45 

5 \ 4 \ 3 \ 2\  1 \ 0\  1 \ 2 \  3 ~4 

6 5 4 3 2 1 0 1 2 

7 \ 6 \ 5 4 \ 3 \ 2 \ 1 \ 0\  1~2 

8\ 7\\ 6 \ 5 \ 4 \ 3 \ 2 \ 1
\
\

1
0 y l 

~9j~8 y 7 ~6~~4 ~'3~2 ~l ~0 

TABLE II 

Diagonal Sums Differences 

9 
7 

16 
5 

21 
3 

24 
1 

25 
1 

24 
3 

21 
5 

16 
7 

9 
9 

0 
9 

9 
7 

16 
5 

zl 
3 

2a 
1 

2s 
1 

za 
3 

21 
5 

16 
7 
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Describe the patterns found in 
these sums and differences. 

IV. Follow the directions of Ac-
tivity III using the diagonals as in-
dicated in Figure III. Compare the 
results with those found in 
Activity III. 

a 

a - b~ 

Figure III 

b 
~~~ ~ 

0 1 ? ? 4 5 6 7 8 9 

i0 

1 

2 

3 

a 

5 

6 

7 

1

8 

\ 9

~0' 1 2 4 5 7 8 9 
% ~~ ~ ~~ 

1 0 1 2 3 S 5 6 7 8 

2~1~ / 1/ 2/ 3/ 4/ 5/ 6/ 7 

4`
/

3 / 2/ 10/ 0 1 / 3/ 4 / 5 

5`~ 4 / 3 / 2/ 1/ 0 / 1 / 2 / 3 / 4 

6L/ 5 / 4 / 3 / 2 / 1/ 0/ 1 ~ / 3 

7~6 ,5 / 4 / 3/ 2 / 1 / 0/ 1 j2 

8~7 // 6L/ 5~4~3 `/ 2~1`/ p f l 

9 8 7 6 5 4 3 2 1 

V. Consider squares drawn as 
shown on Figure IV. (These squares 
are called 2 by 2 squares since they 
contain two numbers per side.) Find 
the products of the opposite pairs of 
vertices. Did you notice that the 
products of the opposite pairs of 

I vertices in each square differ by 1? 

~a - b~ 

~0 

1 

2 

3 

4 
a 

l 5 

6 

7 

`

B 

\9

Figure IV 

b 
~J\ ~ 

0 1 2 3 4 5 E 7 8 9 

0 1 2 3 4 5 6 7 -~-8 9 
I I 

1 0 1 2 3 4 5 6-7 8 

2 1 0 1 2 
I
3~4 5 6 7 

3 2 1 0 7 2-3I 4 5 6 

4 3 2~1 0 1 2 3-~ 4 5 
I I I I 

5 4 3-2 1 0 1 2-3 4 

6 5 ~--4 3 2 1 G 0 1 2 3 
I I I i 

7 6-5 4 3 2-1 0 1 2 

81 7 6 5 4 3 2~ 1 0 1 
I I I I 
9-8 7 6 5 4 3-2 1 0 

VI. Figure V is an absolute value 
table containing rectangles A, B, C, 
D, and E. 

a 

~a - bl 

Figure V 

b 
~~ 

0 1 2 3 4 5 6 7 8 9 

~0 

1 

2 

3 

a 

5 

6 

7 

8 

9 

0 1 i-3-4A i 
I
6-7-8-9 

1 0 1 2 3 4 5 6 7~ R 
I I I I 

2 1 0-1 —2-3 4 5 6 7 
I I 

3 2-1-0 1 2 3 4 5 6 
I C I I I 

4 3 2 1 0 1 2-3-4-5 
I I 

5 4 3 2 1 0 1 2-3-4 
i I I I 

6 - 5 - 4-3-2 1 0 1 2 3 
ID I ~ I 
7 6 5 4 3 2 1 0 1 2 
I I I I 
8 7 6 5 4 3 2 1 0 1 
I I I I 
9- 8-7-6--5 —4 3 2-1-0 



For each of the rectangles A,B,C, and D, compute: 

1. V, the sum of the 4 vertices. 

2. I, the sum of the interior entries. 

3. P, the sum of the entries on the perimeter, 

4. V/I 

5. P/I 

In rectangle A: V = 2 + 5 + 3 + 0 = 10 

I=2+3=5 

P=2+3+4+5+4+3+2+1+0+1=25 

V/I = 10/5 = 2/1 = 4/2 

P/I = 25/5 = 5/1 = 10/2 

In this example there are 4 vertices, 2 interior entries and 10 entries 
which lie on the perimeter. The ratio, V/I, is the ratio of the number of 
vertices to the number of interior entries while P/I is the ratio of the number 
of entries on the perimeter to the number of interior entries. Table III 
summarizes the results of these computations. 

TABLE III 

Rectangle V I P V/I P/I 

A 10 5 25 10/5 = 4/2 25/5 = 10/2 

B 22 33 77 22/33 = 4/6 77/33 = 14/6 

C 10 5 25 10/5 = 4/2 25/5 = 10/2 

D 20 40 80 20/40 = 4/8 80/40 = 16/8 

In each of these cases, V/I is the ratio of the number of vertices to 
the number of interior entries and P/I is the ratio of the number of entries 
on the perimeter to the number of interior entries. These ratios do not hold 
for rectangle E. Why not? 

Draw other rectangles on the absolute value table and compute the 
ratios. For which of the rectangles will the ratio properties hold? Where 
are they located on the table? 

These are just a few activities and patterns using the absolute value 
table. Ask your students to find others. 
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Report on NCTM Conference in San Diego, 
April 12-16, 1978 

A.U. Jangen~ en 

Participation in the Delegate As-
sembly proved to be an interesting 
experience. I found, as did several 
of the delegates, that many of the 
resolutions were poorly worded, narrow 
in scope or very local, and, as a re-
sult, failed to pass. 

An interesting resolution that did 
pass was one asking NCTM to encourage 
more students at the college level 
to choose a concentration in mathe-
matics courses because of a shortage 
of mathematics teachers in various 
parts of the U.S.A. Another resolu-
tion approved was one asking the 
NCTM to inform the public of the 
value of converting to the metric 
system. Apparently, there is con-
siderable hostility toward the con-
version. The Assembly was opposed 
to any resolution asking for stan-
dardized competency exams. There 
was a request for more articles 
in NCTM publications and at confer-
ences related to teaching the mathe-
matically gifted student. 

Something which surprised me was 
that the Delegate Assembly of the 
NCTM functioned primarily in an 
advisory role rather than in a policy-
making capacity. This is in contrast 
to other Delegate Assemblies in 
which I have participated. 

Concerns which were expressed at 
the Council of Affiliated Groups 
(CAG) sessions were: 

1. how better to provide services 
to the large affiliates, 

2. the role of the NCTM 
representative, 

3. regional boundaries, 

4. membership, 

5. leadership training. 

At the Canadian Caucus a discussion 
took place with regard to the relative 
merits of B.C. and possibly Alberta 
joining a Northwest area involving 
Wyoming, Idaho, Washington, Oregon, 
and Alaska. The B.C. members felt 
that they would benefit from such an 
organization. They wished to also 
remain part of the Canadian group. 

I attended a number of sessions 
which, in quality, ranged from medio-
cre to excellent. As a result of 
listening to the sessions and discuss-
ing the general state of mathematics 
education with various people, my con-
viction that we still have a long way 
to go was further confirmed. The need 
for improved programs at the teacher 
training level seemed to be repeatedly 
voiced. 

As usual, the displays were exten-
sive and varied in quality. 

I would like to take this opportu-
nity to express my sincere apprecia-
tion to the Mathematics Council of 
The Alberta Teachers' Association for 
honoring me with this trip. 

Mini CaZeulator - another name for a 
midget mathematician. 
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Philosophy of Education 
and The Mathematics Curriculum 

Mat~aw Ed%gcvc 
Northeast Missouri State University 
:irksville, Missouri 

Reprinted from Mathematics in Michigan, Vol. XVII, No. 4, March 1978. 

Teachers and supervisors need to 
study, appraise, and ultimately 
implement what is deemed worthwhile 
of ideas from diverse educational 
philosophies. These strands of 
thought provide for individual dif-
ferences, but in diverse ways. How 
do each of these philosophies provide 
for pupils of diverse achievement 
levels as well as of different styles 
of learning? 

Experimentalism in the Mathematics 
Curriculum 

Experimentalists emphasize the im-
portance of learners perceiving a 
need for learning selected content. 
In addition, the following generaliza-
tions also apply to experimentalism: 

1. pupils identifying and solving 
real problems; 

2. interest in learning provides 
for effort on the part of pupils in 
ongoing learning activities; 

3. experiences are the heart or 
core of the mathematics curriculum; 

4. pupils are actively involved 
in learning and not passive individ-
uals; 

5. the whole pupil is involved in 
learning. Thus, the social, intel-
lectual, and emotional facets of a 
learner's development are important: 

10 

Experimentalism would not 
emphasize - 

1, pupils, for example, working 
page 55 in sequence from a basal 
mathematics textbook because the 
previous pages have been completed 
in logical order. 

2. the teacher largely selecting 
objectives, learning experiences, 
and appraisal techniques in the 
mathematics curriculum. 

3. learners engaging in rote 
learning and drill to achieve new 
objectives in the area of 
mathematics. 

4. the teacher emphasizing ex-
planations and lectures as methods 
of teaching to passive pupils in the 
class setting. 

5. pupils attaining measurable 
objectives sequentially in the 
mathematics curriculum. 

A felt need for pupils to solve 
realistic, lifelike problems is im-
portant to experimentalists: 

The Basics in the Curriculum 

Educators in the school setting 
emphasizing the basics in the curric-
ulum place high values on reading, 
writing, and arithmetic (the three 



r's). Teachers and supervisors 
stressing the basics would generally - 

1. advocate exact standards of 
achievement for pupils in each lesson 
pertaining to mathematics, 

2. stress a no nonsense learning 
environment (a quiet learning en-
vironment, no doubt, would then be 
in evidence), 

3. de-emphasize social promotion 
of pupils (pupils would need to 
master definite content in mathematics 
before moving on to the next grade 
level), 

4. follow a basal textbook series 
sequentially in terms of learning 
activities for pupils, 

5. emphasize passive learners in 
gaining ideas from explanations, 
lectures, and textbooks. 

Reasons for advocating the basics 
the curriculum would include - 

1. the lay public feeling that 
pupils are not achieving well in 
arithmetic as well as other curricu-
lum areas, 

2, a lack of firmness being in evi-
dence in disciplining pupils in the 
class setting, 

3. a lack of achievement in pupils' 
test scores on standardized achieve-
ment tests. 

Existentialism and the Curriculum 

Extentialists emphasize the im-
portance of individuals choosing 
what to learn and the means of learn-
ing. Thus, learning centers in the 
school-class setting would harmonize 
well with the thinking of existential-
ists. There would need to be more 
tasks or learning activities than 
pupils can possibly complete so that 
decision-making is truly involved in 
terms of experiences selected. The 

following centers, as an example, 
could be inherent in the school-
class setting: 

1. Line, bar, circle, and picture 
graphs. 

2. The metric system of 
measurement. 

3. Using a pocket calculator. 

4. Working from a textbook. 

5. Working with fractions. 

6. Utilizing decimals. 

7. The mathematics laboratory. 

8. Geometry for everyday use. 

9. Addition, subtraction, multipli-
cation, and division. 

The teachers may write tasks (learn-
ing activities) on cards for each of 
these centers. Pupils may then 

in choose sequentially which tasks to 
complete. Creative endeavors are 
highly recommended by existentialists 
as learning experiences for pupils. 

The following are also emphasized 
thoroughly by existentialists: 

1. Pupils have ample opportunities 
to engage in sessions devoted to 
values clarification. 

2. Clearcut answers to questions 
and problems are not of major im-
portance. Relevant questions and 
problems require creative solutions. 

Behaviorism and the Curriculum 

Behaviorists have made strong in-
roads in the curriculum during the 
past decade in particular. Behaviorism 
in the mathematics curriculum would 
stress the following: 

1. It is definitely possible to 
determine what pupils are to learn 
(objectives) as well as measure the 
amount of learning after instruction. 

11 



2. Learning activities for pupils 
are to guide in achieving these 
measurable objectives. If objectives 
are attained by learners without 
harmful side effects, the learning 
activities are then considered 
suitable. 

3. The objectives, learning activi-
ties and their sequence, as well as 
measurement procedures are basically 
teacher determined. 

4. It is good teaching procedure 
to pretest pupils before initiating a 
new unit in the mathematics curriculum. 

Thus, each pupil may be placed in 
instruction within the new unit in 
terms of his or her present achievement 
level. 

The following objectives may well 
represent teacher determined ends 
which are measurable: 

1. The pupil will multiply correctly 
in nine out of ten problems. 

2. The learner will solve 95 percent 
of the division problems on page fifty 
involving a five place dividend and a 
two place divisor. 

Related to the use of behaviorally 
stated objectives in the mathematics 
curriculum, numerous states in the 
United States have implemented account-
ability plans. Accountability laws, 
among other generalizations, stress 
the following: 

1. specific objectives for pupils to 
achieve, 
2. teachers showing evidence to in-

terested persons what children have 
learned, 

3. responsibility for what pupils 
have learned being rather completely in 
the teacher's domain. 

In Closing 

Teachers and supervisors need to 
study and analyze diverse philoso-
phies of education pertaining to 
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the teaching of mathematics. Ulti-
mately, a recommended philosophy 
needs to be implemented. It may 
well be an eclectic philosophy in 
which selected strands are chosen 
from diverse schools of thought. 
Whichever philosophy or philosophies 
are chosen, the following principles 
of learning need emphasizing: 

1. Objectives should be adjusted 
to the present achievement levels of 
each learner. 

2. Learning activities to achieve 
desired ends should be meaningful. 

3. Pupil interests must be ob-
tained in ongoing units of study. 

4. Learnings obtained need to be 
sequential from the point of view 
of each pupil's own unique perception. 

5. Pupils need to experience 
ample success in each unit of study 
in the mathematics curriculum. 

6. Teacher-pupil planning 
should receive adequate emphasis. 

7. Positive attitudes should be 
acquired by each pupil. 

8. Balance in objectives (under-
standings, skills, and attitudes) 
need to be stressed in the area of 
mathematics. 

9. Problem-solving needs to be 
stressed adequately in each unit of 
study. 

Selected References 
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Theoretical Properties of the 
Fourth Dimension 

P~cad2ey Gah.z.ctza 
Grade XI, 1977-78 
Winston Churchill High School 
Lethbridge 

Although the existence of universes 
with either fewer (1 or 2) or more 
(4+) dimensions than our own 3-d 
universe can't at present be proven, 
(and, indeed, possibly never will be) 
neither can their existence be dis-
proven. Therefore, I will hypothe-
size that they exist, and, further-
more, assume that the latter (4+) are 
governed by physical laws similar to 
those of our own universe. If these 
two hypotheses are true, then the 
following may also be taken as true. 

I will start off with three bor-
rowed concepts. First of all, we 
know that the first dimension goes in 
one direction, say the horizontal 
line passing through point X in dia-
gram A (see page 16). The second 
dimension would be represented by the 
vertical line passing through point 
X at right angles to the first. The 
third dimension, while represented 
by the dotted line, would actually 
be a line sticking straight up and 
down out of the paper, also passing 
through point X, and at right angles 
to both the first and second dimen-
sions. A fourth dimension would also 
pass through point X and be perpendic-
ular to all of the first three. 

Secondly, there is the theory that 
an object transferred from its native 
universe into one that is one dimen-
sion higher, given a half rotation, 

and then returned to its original 
world, would be an exact reversal, a 
mirror image, of what it once was. 
In diagram B, a line segment in a 1-d 
world, which is dotted on top and 
solid on the bottom, can only move up 
and down. There is no way for the 
dots to get on the other side of the 
solid line. But take it into a 2-d 
world, give it a half turn, and stick 
it back into its 1-d world, and it is 
completely reversed, down to its basic 
subatomic particles. 

The same with 2-d object in diagram 
C. Left in its planer universe (C-1) 
it can only rotate in a clockwise or 
counter-clockwise direction, (as well 
as being able to move forward, back-
ward, left and right, of course). 
But take it out into a 3-d universe 
(C-2), turn it half way around and 
then put it back, and it too becomes 
its own reflection (C-3). Again the 
reversal would be complete, down to 
the smallest detail. Similarly, a 
3-d object, taken into a 4-d world and 
given a four dimensional half twist 
and then returned to its original 
world, would be completely reversed. 

Thirdly, there is the differing of 

distances among the worlds. For 
instance, the 1-d world represented 
by the curved line AD in diagram D is 
straight, from the point of view of 

any 1-d creatures living in it. In 
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this 1-d world, point B is closest to 
A, point C is next, and point D is 
farthest. Furthermore, point D 
appears twice as far from point A as 
B is. But from a 2-d point of view, 
C is closest to A with points B and 
D equi-distant from A. The same 
type of relationship exists when a 
2-d world is folded over three 
dimensionally (diagram E). B is 
closer than C to A, two dimensionally, 
but the reverse is true three 
dimensionally. 

Now for my own work. The simplest 
1-d structure possible is a line. 
The simplest 2-d structure possible 
is a triangle. The simplest 3-d 
structure possible is a pyramid with 
a triangular base, diagram F. The 
line needs two points (at least), the 
triangle needs three (joined by lines), 
and the pyramid needs four. The 
simplest 4-d structure possible then, 
must consist of 5 points joined by 
lines. The 2-d triangle is made up 
of three 1-d lines. The 3-d pyramid 
is made up of four 2-d triangles. 
The 4-d structure, therefore, should 
be composed of five 3-d triangular 
based pyramids. 

A line has two sides 
sional ends, diagram G) 
sides, and a cube six. 
therefore, should have 

(its no dimen- 
a square four 
A 4-d "cube," 
eight sides. 

1-d objects have length. 2-d ob-
jects have length (and width), and 
area. 3-d objects have length 
(width and height), area (surface) 
and volume. 4-d objects should 
then have length, area, volume, and 
something more again. 

Another concept is "unlimited 
vision." This means that everything 
in a world of X-dimensions is visible 
to beings in a universe one or more 
dimension (s) greater. For instance, 
the middle point in diagram H is in-
visible to the two line beings X and 
Y because the two endpoints block 
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their vision. But the mid point is 
perfectly visible to the two square 
beings A and B in their 2-d world, 
as are all parts of X and Y. In 
turn, creatures A and B can't see the 
dot inside circle L because from their 
2-d viewpoint it is completely 
surrounded. But we can see it, as 
well as all parts of A and B. In 
turn, something totally enclosed by a 
box in the 3-d world would be per-
fectly visible to a 4-d world. Note 
that 2-d creatures can look inside 
only a 1-d world, while we 3-d 
creatures can see inside both 1- and 
2-d worlds. A 4-d creature should, 
therefore, be able to see into 1-, l-
and our 3-d world. 

Then we come to the intersection 
of lines and planes. In a 1-d world, 

the intersection of either lines or 
planes is impossible. In a 2-d 
world (diagram I), two lines extend-

ing out to infinity in both direc-

tions, can be either parallel or 
intersecting. Two planes cannot. 
In a 3-d world, two planes, extending 
out to infinity along two dimensions, 
can be either intersecting or parallel 
(diagram J) as 
infinite cubes 
to infinity in 
cannot. 

can two lines; two 
(cubes extending out 
all three dimensions) 

In a 4-d world therefore, two in-
finite cubes should be able to be 
either parallel or intersecting. 
When two lines intersect, their in-
tersection is no dimensional (a 
point). When two planes intersect, 
their intersection is 1-dimensional 
(a line). Therefore, when two in-
finite cubes intersect in a 4-d 
world, their intersection should 

be 2-dimensional, a plane. 

Also, in the 3-d world 1-d lines 
can intersect, be parallel or skew 

(one goes over the other) (diagram 
K). Therefore, in a 4-d world, two 
planes should be able to "skew." 



This brings us to the next con-
cept - the intersection of an X-
dimensioned object by an X-minus-one 
dimensioned world. For example, if 
a 2-d circle passes through a 1-d 
world, (diagram L) it would first 
start out as a point (line 1) appear-
ing out of nowhere from a 1-d point 
of view, expand into a line (line 2) 
which would get longer until its 
length matched that of the circle's 
diameter (line 3). Then it would 
get shorter again (line 4) until it 
was once more a point, which would 
then "vanish," again from a 1-d view-
point. A 3-d object passing through 
a 2-d world would follow a similar 
pattern. It would also apparently 
come out of nowhere, starting as a 
point (diagram M), grow into a 
circle as the sphere progressed and 
get larger and larger until the circle 
matched the sphere's diameter (as 
the line matched the circle's dia-
meter before). The circle then would 
get smaller until it was back to a 
point, which would then "vanish." 

A similar pattern should be fol-
lowed if a 4-d sphere passes through 
a 3-d world. It would start out 
as a point appearing out of "nowhere," 
grown into a 3-d sphere which would 
become larger and larger until it 
matched the 4-d sphere in diameter. 
It would then shrink until it was 
once again a point which would go 
as the 4-d sphere passed out of the 
3-d world. 

If an X-dimensioned object were 
to leave its respective X-dimensioned 
world and move into an X-1 dimensioned 
world, how would it go? All at once? 
Or would it leave a little at a time 
as though going through a doorway? 
To answer this question two things 

must be taken into account. Was the 
X-dimensioned object moving or sta-
tionary in its respective world, and 
was its world straight, or bent from 
an X+1 dimensional point of view? 

As an example let's take a 1-d object 

in a 1-d world which is bent at one 
point two dimensionally (diagram N) 
although it appears straight from a 
1-d point of view. If it is moving 
in the direction indicated, it would 
be possible for it to leave its 
world a little at a time, but only 
if it was moving and only if its 
world is "bent." The same is true 
of the circle in its 2-d world 
(diagram 0). 

On the other hand, if one or both 
of these conditions is not met, then 
the object could only go all at once; 
there one instant, gone the next. 
For example, the line in diagram P 
has no width whatsoever so it can't 
be depicted in the circle, half in and 
half out of its world. It's there 
or it isn't. The same with the 
circle in diagram Q. So a 3-d ob-
ject leaving this world should also 
follow this pattern and vanish either 
all at once or into a crook in the 
universe. 

However, one could say that the 
object would curve with its respec-
tive universe (diagram R) since it 
is straight from the object's point 
of view. However, while this is un-
doubtedly true for most cases (and 
probably true for all), there might 
be exceptions. For instance, if the 
object were travelling fast enough, 
it might "break out," much like a car 
rounding a corner too quickly. Of 
course, the car has mass and thus 
inertia, but, while it is impossible 
for 1- and 2-d objects to have mass, 
3-d objects do. Perhaps that is why, 
supposedly, nothing can travel faster 
than light in our universe; going any 
faster might cause us to "run off the 
road." 

Also an object might leave its 
respective universe if it were pushed 
from outside. For example, a 1-d 
object could be pushed out into the 
2-d world by a 2-d object (diagram 
S) or the 2-d object could be pushed 
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into the 3-d world by a 3-d object 
(diagram T). Thus a 3-d object might 
leave this universe if given a boost 
from the fourth dimension. 

Conclusion 

In conclusion, I will list the prop-
erties of the 4th dimension. It is 
at right angles to the first three. 
A 3-d object taken into a 4-d world 
and given a half rotation would be 
completely reversed. Distances in 
the 4-d world differ from distances 
in the 3-d world. The simplest 4-d 
structure consists of five points 
joined by lines and has in it five 
3-d triangular pyramids. A 4-d 

Diagram A 

-X 

cube should have eight sides. 4-d 
objects have length, area, volume, 
and something else. Everything in a 
3-d world is visible from a 4-d point 
of view. Two planes may skew in a 4-d 
world. Two infinite cubes may inter-
sect. If a 4-d sphere is intersected 
by a 3-d world, it would start as a 
point, grow into a 3-d sphere and 
back again. A 3-d object going into 
a 4-d world could leave either 
all at once or into a corner in the 
universe. Our universe might be curved 
from a 4-d point of view, and travel-
ling faster than light might cause us 
to break out. A 3-d object might be 
pushed out of this universe from out-
side. There are, undoubtedly, more 
things that could be concluded if one 
took the time to think about it. 

Diagram C 
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Diagram D 

Diagram G 
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Diagram K 
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Diagram 0 

Diagram R 
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Diagram P 

Diagram T 
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Graph of the Month 

C yn.thi.a Uf cv~ o 
Grade 4 
Mayberry Street School 
Los Angeles, California 

Reprinted from The Calculator, Volume 18, 

1. (22, 8) 
2. ( 8, 8) 
3. ( 8, 7) 
4. ( 7, 6) 
5. ( 6, 6) 
6. ( 5, 7) 
7. ( 5, 8) 
8. ( 4, 8) 
9. ( 3, 9) 

10. ( 3,11) 
11. ( 4,12) 
12. ( 6,12) 
13. ( 8,15) 
14. (21,15) 
15. (24,12) 
16. (27,12) 
17. (28,11) 

19. (28, 8) 
20. (25, 8) 
21. (25, 7) 
22. (24, 6) 
23. (23, 6) 
24. (22, 7) 
25. (22, 8) 
Lift pencil ---
and begin with: 
26. (22, 8) 
27. (23, 9) 
28. (24, 9) 
29. (25, 8) 
Lift pencil ---
and begin with: 
30. ( 5, 8) 
31. ( 6, 9) 
32. ( 7, 9) 
33. ( 8, 8) 
Lift pencil ---
and begin with: 

34. ( 4,10) 
35. ( 8,10) 
36. (10,13) 
37. ( 8,15) 
Lift pencil ---
and begin with: 
38. (11, 8) 
39. (11,11) 
40. (12,13) 
41. (21,13) 
42. (22,11) 
43. (17,11) 
44. (17, 8) 
Lift pencil ---
and begin with: 
45. (11,11) 
46. (17,11) 
47. (17,13) 
Lift pencil ---
and connect: 
48. (15,10) to (16,10) 

Stop 
49. (4,12) to ( 4, 8) 

Stop 
50. ( 6,12) to ( 8,10) 

Stop 
51. ( 8,12) to (10,13) 

Stop 
52. (27, 8) to (27,12) 

The End 

Number 8, May 1978. 
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Design Graphitti 

by L~.nda S,%evey 
Van Nuys Junior High School 
Van Nuys, California 

Reprinted from The Calculator, Volume 18, Number 8, May 1978. 

Connect, in order, the following coordinate points. Use 1/4 inch graph 
paper, vertically. Use a ruler for a neat design. Color the design to form a 
pattern. 

1. (102,16 ) 21. (14 ,18 ) 
2. (14 ,26 ) 22. (242,20 ) 
3. (172,16 ) 23. (172,12 ) 
4. . (242, 8 ) 24. (14 2 ) 
5. (14 ,10 ) 25. (102,12 ) 
6. ( 32, 8 ) 26. ( 32,20 ) 
7. (102,16 ) 27. (14 ,,18 ) 
8. (172,16 ) 28. (1712,12 ) 
9. (14 ,10 ) 29. (102,12 ) 
10. (102,16 ) 30. (14 ,18 ) 
Start again at: Start again at: 
11. (12 ,172 ) 31. (16 ,172 ) 
12. (20 ,242 ) 32. (26 ,14 ) 
13. (18 ,14 ) 33. (16 ,102 ) 
14. (20 32 ) 34. ( 8 , 32) 
15. (12 ,102 ) 35. (10 ,14 ) 
16. ( 2 ,14 ) 36. ( 8 ,242 ) 
17. (12 ,172 ) 37. (16 ,172 ) 
18. (18 ,14 ) 38. (16 ,102 ) 
19. (12 ,102 ) 39. (10 ,14 ) 
20. (12 ,172 ) 40. (16 ,172 ) 
Start again at: 
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The end 



Facts In A Flash 

by Beery I 
eh.0 

Reprinted from The Calculator, Volume 18, Number 8, May 1978. 

MAKE YOUR OWN FLASH CARDS --- A BIT DIFFERENTLY' 

Use 3" x 5" cards or word cards 
(3" x 9"). 

Front Side 

1. Indicate the operation of the 
upper left-hand corner. 

2. Cut out squares and glue down 
on card to represent the problem. 

3. Label sides of squares. 

Back Side 

4. Write the problem. 

5. 4Jork with a friend: 

Front 

Back 

X 

2 

2 

2x 2= 
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Some Ideas 
Ideas contributed 
by Fve2yn M%non 

What is the percent savings when you compare 
the sale price to the regular price of each 
item? 
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Golden ripples on silvered squares 
Creme an elegant :: ail wnn 
Ih~s Cisbngu~shed annoue 
golf vem minor bye f.:a'~es 
a small room loob larepr 
and auger Easy to appry 
t 2" x 12" Golden vein or 
Smoked Gold Vem 
MIAAOR TILES 
Reg 99c 

68c 
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Cork is a show stopper 
No one can ignore the dramatic effect of rich, 
dark cork walls. More than just looking good, 
they also help to absorb noise and insulate. 
In a pack of 3. 12" x 12" x 10mm panels. 
CORK PANELS, 3-PACK, 
Reg. 1.19 

88c 
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Paneling at its peak 
from Ina highest Alps Game the inspiration for 
Permaneer's Alpine Elm Danel. Bring the leering 
of a far-oll mountainstle imo your home with 
this beautilul panel. Particle board with a tough 
vinyl overlay. 4' x 8' x 3sr". 
PERMANEER PASSPORT ALPINE ELM, 
Reg. 3 99 

2.98 , ,. ..I it 

Panel of experts 
Be an expert at installing SDringf~eld Walnut 
paneling. II's that easy. Antl these rich, warm 
panels have luan-back and printed finish to lure 
rooms into showplaces, at big savings. 
4'xB'x5/32". 
SPRINGFIELD WALNUT PANEL. 
Reg. 5.49 

4.28 

I'i 

Translation: 

"walls might be 
nice to have." 

Good enough to eat 
This panel is simply scrumptious—creamy white 
with Carmel-tone wood grain. Gives an expan-
sive feeling to a small room, an elegant reeling to 
any room. Printed luan panel from U.S. Plywood. 
4'x8'x5/32". 
CANDYLAND BUTTERSCOTCH PANEL, 
Reg. 7.49 . 

5.88 

Waterproo} your walls 
Gwe your Dalh a hash, new watefpr001 look 
with baN panels Great for Ilia kitchen too 
because they wipe clean easily. Marble e1feCl 
panels in decorator colors. 
Mouldings and adhesive available. 4' x 9'. 
BATH PANELS. 
Reg. 13.99 ~ 

~ 0.88 



Bad, Bad One Hundred 

fin. Cano.E' f. Nay.i.e,~is, University of Arizona 

Reprinted from AATM Newsletter, Volume XIV, Winter 1978 

This card game, based on the game Twenty-One, was designed by Anthony 
Johnson while he was an undergraduate elementary education major at Florida 
International University in Miami, Florida. It provides practice with adding 
upper decade facts. 

Rules and Play: 

1. Fer two to four players and using one or two regular decks of cards with 
the tens and face cards removed from the deck. 

2. The dealer shuffles the deck and any player cuts the deck. Two cards are 
dealt (1 down and 1 up) to each player. The cards have the numerical 
value presented on the cards with the ace equaling one, except each player 
secretly chooses one card to represent its face value times 10. This is 
his tens card. 

3. The object of the game is to have two or more cards total 99 or as close 
to 99 as possible without exceeding 99. After the first two cards are 
dealt, each player may either pass or be dealt, face up, an additional 
card. A player may continue to receive additional cards as long as his 
total is less than 99 or he has not previously passed. If a player has 
a hand with a total of more than 99, he may be able to stay in the game 
by changing his tens cards so that his new total is less than 100. After 
everyone has passed, each player identifies his tens card and then his 
total so that the player with the largest total less than 100 can be de-
clared the winner. 

4. The winner of a round scores 10 points. In case of a tie, each person 
scores 5 points. 

5. At the conclusion of each round, the cards are reassembled in a pack and 
the deal passes clockwise around the table. The winner of the game is the 
first person to score 100. 

Sample Game: 

Original Deal 9 3 
9 is selected to be the 8 is 
tens card. Total is 93. tens 

Next Deal 8 
Total us 101. He's over, 
so he changes the tens card 
to 8. New total is 92. 

Player 1 Player 2 

8 7 
selected to be the 
card. Total is 87. 

Total is 93. 
6 

Next Deal 6 7 
Total is 98. Total is 100. He's over, 

so he changes his tens card 
to 7. New total is 91. 

Next Deal PASS 5 
Total is 96. 

Next Deal PASS 

Player 1 wins with a total of 98. 
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The Role of Mathematics in the 
Development of Science 

by Glen S. A.i.h.enhead 
Department of Curriculum Studies 
University of Saskatchewan, Saskatoon 

and 

Ran1ana K,ucan 
Teacher at St. Clements School, Toronto 

Reprinted raith permission from News/Journal, voZ. 14, No. 1 of Saskatche~an 
Mathematics Teachers' Society. 

Introduction 

Mathematics and science have inter-
acted through the ages. Mathematics, 
as a means of articulation and theori-
zation in science, now spans the uni-
verse all the way from the largest 
galaxy to the smallest elementary par-
ticle. The present-day relationship 
between mathematics and science is by 
no means static. It has evolved from 
the past and will continue to evolve 
in the years ahead. Out of past asso-
ciations new ones emerge, then with a 
further change in the intellectual and 
cultural climate, new interactions 
develop. 

Today's mathematical involvement in 
the physical and social sciences can 
be traced to its historical routes. By 
doing so, one gains an overview of the 
various roles of mathematics in the de-
velopment of science. From such a per-
spective one can understand the ways 
in which mathematics interacts with 
science today; but more, one can bring 
greater clarity into speculations of 
future relationships. 
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Mathematics itself is not a part of 
the realm of science. Both have dif-
ferent subject matters, differences 
which cannot be bridged by anything 
but superficial similarities. Basi-
cally, natural science deals with ob-
jects and events in the "external" 
world while mathematics concerns it-
self with the objects in its own 
"aesthetic" perception. These objects 
are internally conceived and inwardly 
structured. 

Through the ages and, indeed, to-
day, people have had diverse ideas re-
garding the relationship between math-
ematics and science. Some would have 
us believe that mathematics is the 
"queen of the sciences," while others 
insist that it is simply a servant to 
science: 

Pythagoreans (ca.530 B.C.) main-
tained that in nature "all is number." 

Aristotle (ca.350 B.C.) defined math-
ematics as an abstraction from nature. 



Kepler (ca.1600 A.D.) thought that 
just as ears are made for sound and 
eyes for color, the mind of man is 
meant "to consider quantity." 

Galileo (ca.1600 A.D.) said that 
the book of the universe was written 
in mathematical language and its alpha-
bet consisted of geometrical figures. 

Bacon (ca.1600 A.D.) regarded math-
ematics merely as a servant to physics, 
and actually complained of the domin-
ion which it was beginning to exercise 
in science. 

Feynman (1965) writes, "mathematics 
can help physics, but they are two 
quite different activities - mathemat-
ics deals with the abstract world, and 
physics deals with the real world." 

Eric Rogers (1960) suggests that we 
might describe mathematics as a "master 
architect designing the building in 
which science can grow at its best." 

Just as there is a danger to science 
in over-glorifying mathematics and at-
tempting to subordinate all of science 
to it, so is there a danger in calling 
mathematics the"handmaiden of science." 
Accelerations and retardations in the 
development of science can be traced, 
in large measure, to such attitudes. 

This paper, in investigating the 
role of mathematics in the rise of 
science, chronologically examines vari-
ous epochs of our past. 

Pre-Greek and Greek Era 

The mathematics of Egypt and Baby-
lon preponderantly served a practical 
function. Pre-Greek mathematics was 
integral to astronomy, taxation, and 
the construction of moats and temples. 

The most successful product of the 
Greek mind was the deductive quality 
of geometry. The first Greeks to grasp 

this possibility of abstraction in 
geometry were probably Thales (600-
550 B.C.) and Pythagorus. Then around 
300 B.C. one of the most famous masters 
of geometry, Euclid, set out to collect 
the theorems of his predecessors and 
to arrange them as a single self-
contained work entitled EZements. 

The next century produced two or 
more gifted mathematicians. Apollon-
ius (ca.200 B.C.) discovered the so-
called conic sections which later con-
tributed directly to astronomy. In ad-
dition there was Archimedes (ca.250 B.C.) 
whose brilliance at mathematics was 
matched by his genius for mechanics. 

In Greek astronomy, the first math-
ematically conceived system was that 
of Eudoxus (ca.370 B.C.). Spurred on 
by Plato's notion of reality, Eudoxus 
reduced the irregular movements of ce-
lestial bodies to uniform circular mo-
tion. His system consisted of 27 con-
centric spheres, one inside the other. 
The whole system was a purely geomet-
rical hypothesis, calculated to repre-
sent the apparent paths of the planets. 
Later, Ptolemy (90-168 A.D.)wrote his 
famous astronomical treatise De AZga-
mest in which he strove fora mathemat-
ical model of the universe, known to-
day as the Ptolemaic system. 

Greek physics did in no way bequeath 
a book comparable to the mathematical 
works of Euclid, Archimedes or Apollon-
ius• Yet, Greek physics culminated in 
the system of Aristotle and held the 
stage of physics for almost 2000 years. 

The Greeks created a general concept 
of mathematics and a general concept of 
physics. Yet, if one assesses the 
pragmatic outcomes of Greek mathematics 
and physics, and if one confronts the 
mathematics and physics of Greek antiq-
uity with 20th century knowledge, then 
one may find that Greek physics as a 
whole never developed into a mathemat-
ical system. The system of Greek math-
ematics had severe limitations and 

25 



shortcomings. For example, they were 
incapable of "founding" functions. 
Their symbolization did not advance be-
yond an elementary stage, the stage of 
abstraction from "direct actuality." 
(Full scale symbolization involves ab-
straction from abstraction.) These in-
adequacies made Greek mathematics un-
suited for promoting the rise of theo-
retical physics as we know it today. 
In other words, these shortcomings pre-
vented a type of scientific thinking 
from developing. Perhaps the Greeks 
did not introduce mathematics as a 
technique for mastering problems that 
arose in man's mind. Although Greek 
astronomy was mathematical and its 
mathematization made it successful, 
the Greeks never had the insight (nec-
essary in pursuing mechanics, physics 
and other sciences) to articulate qual-
itative attributes by quantitative mag-
nitudes. They never realized that 
writing physical laws as mathematical 
formulae and applying mathematical pro-
cedures to the formulae can sometimes 
lead to further explications and devel-
opments. The Greeks never arrived at 
such an insight in spite of the dram-
atic first steps taken by Archimedes. 
There was no determination to solve 
"scientific puzzles" through mathemat-
ical manipulation and empirical verifi-
cation. This was so fateful that even-
tually even Greek mathematics tended 
to wither away. 

Nevertheless, the Greeks did have 
areas of knowledge in which science 
and mathematics overlapped. Their as-
tronomy was clearly mathematical in 
Eudoxus and Ptolemy. Pythagoreans en-
visioned some sort of mathematization 
of physics, although the extent and 
depth of their insights is not easy to 
appraise. Again, the laws of Archi-
medes on balancing the lever and on 
floating bodies clearly pertain to 
mathematical physics and were the first 
of their kind. And yet they did not 
have the effect of initiating a mathe-
matical physics at that time. Even 
atomists like Epicurus and Democritus 
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did not show any tendency to initiate 
a mechanics of the stature of the 17th 
or 18th century. 

The Renaissance 

The Greeks wrote hundreds of books 
on mathematics, treating it for the 
first time as worthy of study for its 
own sake. In the centuries of darkness 
that followed, much of this mathemati-
cal treasury was lost. But enough re-
mained so that the scholars of the late 
Middle Ages once again launched a 
search for knowledge, giving the study 
of mathematics an impetus that kept on 
accelerating. 

Men in the 16th and 17th centuries 
were already looking beyond arithmetic 
into the vistas of algebra. It was the 
French mathematician, Rene Descartes 
(1596-1650 A.D.) who first started 
writing algebraic equations. In his 
ambition to "remake the world" he de-
veloped a new branch of mathematics, 
analytic geometry, a technique for vis-
ualizing numbers as points on a graph, 
equations as geometric shapes, and 
shapes as equations. Trigonometry and 
logarithms also emerged from the Carte-
sian system of Descartes,. 

Then in 1665, England's Isaac Newton 
produced calculus, which for the first 
time permitted the mathematical an-
alysis of all movement and change. 
Meanwhile, a German mathematician, 
Leibnitz (1646-1716), independently in-
vented his version of calculus and in 
1684 published his account of it. (To-
day the symbols derived by Leibnitz: 
d, d, d, are more generally used than 
dx dy dz 
those derived by Newton: 

x, y, 

z ) 

In Rene Descartes' work, we meet 
a system of thought much more intens-
ive, concentrated and intricately in-
terlocked than the Greek system. In 



his system everything was to be ac-
counted for mathematically - by config-
uration or by number. He regarded 
physics as reducible to mechanism, and 
even considered the human body as being 
analogous to a machine. The mechaniza-
tion of his highly concentrated deduc-
tive system became the template for the 
structure of physical science. 

Men of the 17th century were ex-
tremely conscious of the importance of 
mathematics to scientific development. 
Therefore, it is not surprising that 
the development of science after 1600 
A.D. began with the establishment of 
this so-called "rational mechanics" 
which held the stage of science during 
the 17th, 18th and 19th centuries. 
Mechanics was a problem which only be-
came manageable when, in a certain 
sense, it had been "geometrized." Mo-
tion became envisaged as occurring in 
the emptiness of Euclidean space. (The 
Aristotelian system had discouraged 
the idea of the composition of motion, 
and was uncongenial to any mathemati-
cal treatment of it.) Although Gali-
leo was one of the first persons to 
treat motion quantitatively, he failed 
to achieve the perfect formulation of 
the modern law of inertia because he 
could not imagine a purely geometri-
cal body sailing off into an utterly 
empty and directionless Euclidean 
space. The law of inertia had to wait 
for Descartes. 

The 17th century produced the great-
est single statement on the relation 
between mathematics and physics. It 
was Galileo's dictum that mathematics 
is a language of science. He went so 
far as to say that the mind was to be 
constantly directed only to those 
things, and to apply itself to only 
those problems which were amenable to 
measurement and calculation. Des-
cartes, Torricelli, Kepler, Huygens, 
Newton, and others who succeeded Gali-
leo, clarified this scientific value 
by their geometrizing problems concern-
ing natural phenomena. 

The mechanized study of motion may 
well have been the high point of 17th 
century science. The century wit-
nessed one attempt after another not 
only to explain motion and other nat-
ural phenomena, but to interpret all 
changes of the physical universe in 
terms of a purely mechanistic universe. 
Kepler inaugurated the scientist's 
quest for a mechanistic universe. 
To generations of astronomers, the ba-
sic celestial figure was a circle. 
Kepler broke away from this supposi-
tion by introducing ellipses. He did 
not find his ellipses in the tables of 
Tycho Brahe or the writings of Coperni-
cus. He found them by searching untir-
ingly in the work of Apollonius. 
Guided by astronomical observations, 
he was the first to grasp the true 
meaning of foci of conics. Conics and 
their theory were in no way Kepler's 
private mathematical invention. They 
had existed for nearly 2,000 years for 
anybody to find and use. 

The determination to formulate all 
explanations in mechanistic terms had 
important effects upon the biological 
sciences. Harvey (1567-1650), in his 
enquiries into the circulation of the 
blood, had a purely mechanical ap-
proach. G.A. Borelli (1608-1679), in 
his book The Motion of Animals, wrote 
a chapter on the "Mechanical Proposi-
tions Useful for the More Exact Deter-
mination of the Motive Power of 
Muscles." This tendency to glorify 
mere mechanization led to the ubiqui-
tous view that the animal body was 
nothing more than a piece of clockwork. 

The effects of the new mechanistic 
outlook are vividly illustrated in 
the works of Robert Boyle (1627-1691). 
He is quoted to have said that he did 
not expect to "see any principles pro-
posed more comprehensible and intelli-
gible than the corpuscularian." This 
philosophical position is often called 
"mechanical philosophy," since it 
tends to give a mechanical explanation 
of the physical universe. One of 
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Boyle's works includes a discourse on 
the mechanical origin of heat and mag-
netism. According to him, chemistry 
itself could be reduced to micro-
mechanics. 

Later in the 17th century, a cul-
minating event took place when Newton 
and Leibnitz introduced "derivatives" 
and laid the foundation for calculus 
and mechanics. The ultimate triumph 
came in publishing the Principia, in 
1686. The Principia is important not 
so much because of its laws, defini-
tions, concepts of time, space, and 
gravitational force, but because New-
ton constructed and deduced, by math-
ematical reasoning, what Kepler had 
only divined and postulated. 

Outwardly, in the Principia there 
is hardly any mathematics invoked or 
presupposed which should not have 
been quickly accessible to Archimedes 
and Apollonius. No attempt had been 
made in the Principia to introduce 
Descartes' innovation of analytically 
using symbols and functions. Newton 
was quite skilled in the use of sym-
bols and functions as he was very fa-
miliar with Descartes' work. In fact, 
Newton mastered the method of Des-
cartes much better than Descartes him-
self. However, in the Principia, New-
ton's definitions of limit and deriva-
tive ("ultimate ratio") seem to be 
such that a personal disciple of Arch-
imedes should have been able to com-
pose them in principle. Why did this 
not occur? Greek thinking, in general, 
did not formulate such logical abstrac-
tions as: a relation of a relation, a 
property of properties, an aggregate 
of aggregates (for example, a rate of 
change of a rate of change - accelera-
tion). Second derivatives were at the 
center of Newton's mechanics. It was 
this kind of limitation to Greek ra-
tionality that separated Archimedes 
from Newton; a hiatus which Archimedes 
could never succeed in crossing. 

Inwardly, there is a difference be-
tween the Euclidean space that under-
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lies the Principia and the Euclidean 
space that underlies Greek mathematics 
and physics. The Euclidean space of 
the Principia continues to emphasize 
Greek congruencies and similarities be-
tween figures. However, it does some-
thing new. Several significant physi-
cal entities found in the Principia, 
velocities, momenta and forces, are 
vectors. Vectorial composition and 
decomposition of these entities consti-
tutes an innermost scheme of the entire 
theory. In the course of the 18th cen-
tury, the vectorial statements of New-
ton and others were gradually transfer-
red and reinterpreted into analytical 
statements. The 20th century widened 
the concept of a vector into the 
broader concept of a tensor. 

To summarize the events in the 17th 
century, one could say that there was 
considerable scientific development 
where geometrical and mathematical 
methods could be easily and directly 
applied. Therefore, not only did the 
sciences make a remarkable development 
in the 17th century, but mathematics 
also progressed to a great extent. 
This is because the sciences, espe-
cially physics and dynamics, were 
pressing upon the frontiers of mathe-
matics all the time. The sciences 
created a need for mathematics, and 
therefore mathematics flourished. The 
relationship between science and math-
ematics has never quite been the same 
since then. Today, both tend to go 
their separate ways and draw upon one 
another when the need arises. But it 
was not so in the 17th century. 
Science depended on mathematics and 
mathematics depended on science. With-
out the achievements of mathematics 
the scientific revolution, as we know 
it, would have been impossible. 

18th-19th Centuries 

Let us first look at the achieve-
ments of some of the great mathemati-
cians and scientists in the 18th and 



19th centuries. Then we shall analyze 
the role mathematics played in the 
rise of science at this point in 
history. 

Because of Newton's success, math-
ematical theorists of the 18th and 
19th centuries held fast to a philos-
ophy of "mechanistic determination." 
The French mathematician, Pierre Simon 
de Laplace (1749-1827), perfected New-
tonian analysis of the solar system in 
a great work entitled Mechanique 
Celeste. He also used calculus to ex-
plore and advance probability theory. 
The most celebrated partial differen-
tial equation was devised by Laplace. 
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(This equation has been used to des-
cribe the stability of the solar sys-
tem, the electric field around a 
charge, a steady distribution of heat, 
and many other phenomena.) 

Euler (1707-1783), of Swiss fame, 
created a host of new uses for calcu-
lus as it applies to curves and sur-
faces. He has been called the father 
of modern topology. 

Lagrange's (1716-1813) hallmarks 
were his famous works Mechanique Ana-
Zytique and Theorie des Functions Ana-
Zytiques - master textbooks in its 
subject. But by far his greatest 
achievement was the space of "general-
ized coordinates" of our mechanics of 
today. 

The genius who dominated 19th cen-
tury mathematics and physics was Carl 
Friedrick Gauss (1776-1855). He gave 
direction to the new movement toward 
generality in mathematics by imposing 
on it his own stern standard - ademand 
for absolute rigorous thinking. As a 
17-year-old, he audaciously questioned 
certain rules of Euclid's geometry 
that generations of mathematicians had 

taken for granted, pointing out that 
many of them did not hold true on 
curved surfaces. 

But it remained for Gauss's pupil, 
Riemann (1827-1866), to shatter the 
boundaries of traditional geometry by 
postulating not only curved spaces of 
three dimensions, but spaces made up 
of four and more dimensions. Fifty 
years later, the physicist, Albert 
Einstein, brought the process to a 
stunning climax by borrowing these 
abstractions and using them in his 
theory of relativity to describe the 
real universe. 

Out of the 17th and into the 18th 
century, preference continued to be 
given to rational mechanics (mathemat-
ical analysis of everything possible). 
In this context several so-called 
'principles of mechanics' were pro-
duced. Meanwhile, the theories of 
light, heat, electricity, and magne-
tism were not forgotten but they ad-
vanced at a slower pace until their 
turn for full attention came in the 
19th century. 

The mechanics of the 18th century 
and the first decades of the 19th cen-
tury was virtually inseparable from 
the mathematics. Almost all the lead-
ing architects of the various parts of 
mechanics were eminent mathematicians: 
James Bernoulli (1667-1748), d'Alem-
bert (1717-1783), Euler (1707-1783), 
Cauchy (1789-1857), Lagrange (1716-
1813), Poisson (1791-1840), Laplace 
(1749-1827), Gauss (1776-1855), and 
Jacobi (1804-1851), to name a few. Cor-
respondingly, most of their theorizing 
emanated from "pure thinking" with 
very marginal entanglements in direct 
experimentation. 

The need for 17th century mathemat-
ics continued to grow. Scientific pro-
gress was now even more strongly depen-
dent on mathematics than it was before. 
In this period, the amount of mathemat-
ics which was created for, and because 
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of, mechanics (theoretical and applied) 
was enormous - especially in the area 
of analysis. The calculus of varia-
tion was instigated largely by mechan-
ics of particles (finite systems), 
while other mathematical theories were 
instigated largely by mechanics of con-
tinua (hydro-dynamics, acoustics, gen-
eral theory of elasticity). Virtually 
all of partial differential equations 
were created this way. Indeed, the 
mathematical theory of waves, which 
eventually became the hallmark of the-
oretical physics in all its parts, 
emerged from mechanics of continua. 
Fourier analysis was the result of the 
mechanics of continua and the theory 
of heat. The concept of potential en-
ergy originated in the Lagrangian the-
ory of finite particles. Finally, it 
appears that the mechanics of continua 
had a share in the emergence of tensor 
theory. 

Beginning with the 19th century, 
the relationship between mathematics 
and mechanics changed. Mathematics be-
came more or less independent of mech-
anics and physics. It assumed a phil-
osophical nature and began to develop 
for its own sake. Yet another kind of 
relationship between mathematics and 
theoretical physics developed. It was 
a rapport built more on parallelisms 
of pursuits rather than on identities 
of aims. Mathematical formulations 
were no longer created for a particu-
lar purpose. 

from time to time in this century, 
theoretical physics was able to seize 
upon an unfamiliar ready-made piece of 
mathematics and use it instantly. It 
would have appeared as if the mathe-
matics had been prefabricated espe-
cially for the theoretical physicist. 
For example, in the second half of the 
19th century, statistical mechanics of 
the kinetic theory of matter was able 
to draw upon the mathematical theory 
of probability (initiated in the Re-
naissance age and developed by Laplace). 
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Another example is the theory of rela-
tivity. It utilized the non-Euclidean 
geometry of the 19th century. 

For all of physics, and gradually 
for other sciences as well, mechanics 
became a model of mathematization in 
the 19th century. Most of the devel-
opment in electricity, magnetism, op-
tics, and heat conduction was mathemat-
ically modeled on paradigms from mech-
anics of continua. Therefore, in many 
parts of physics the mathematics was 
uniformly the same, not only in tech-
nique but in the manner in which math-
ematical and physical conceptions were 
correlated with each other. However, 
there was one part of physics which 
did not conform to this general pat-
tern - the theory of thermodynamics. 
It was mathematically linked to a 
novel kind of mechanics - statistical 
mechanics. 

It would seem that the relationship 
between mathematics and science from 
the Greek times to the 19th century 
took a full circle. Generally speak-
ing the Greeks regarded mathematics 
and science as two separate entities. 
Scientists in the Renaissance had a 
totally mechanistic outlook toward 
all knowledge. This resulted in a re-
markable development ofmathematics. 
In the 18th century, the scientific 
community's need for new mathematics 
continued to grow. The amount of math-
ematics that was created for and be-
cause of mechanics was enormous. Then, 
in the 19th century, the relationship 
between mathematics and science 
changed. Mathematics began to be in-
dependent of science. There developed 
a limited collaboration between phys-
icists and mathematicians that remains 
unbroken today. 

20th Century 

It is intriguing that every so 
often it is possible to apply an al-
most forgotten mathematical develop-
ment of yesterday to a scientific 



problem of today. The 20th century 
has some fine examples of this. 

The power of mathematics has rarely 
been proven more effective than in rel-
ativity theory - a brilliant applica-
tion of the geometry of curved sur-
faces to the treatment of space, time 
and motion. In his theory of general 
relativity, Einstein applied the 19th 
century ideas of Gauss and Reimann in 
suggesting the existence of a curved 
universe of four dimensions. 

Another example of science drawing 
upon prefabricated mathematics is 
Boolean Algebra. Contemporary studies 
in network and information theory, 
mechanical and human, had to fall back 
on the work of George Boole (1815-1864). 
Boole developed symbolic logic to clar-
ify difficult Aristotelian logic. To-
day, his sytem is widely used as a 
tool to augment sound reasoning and 
has practical uses in designing parts 
of telephone circuits and electronic 
computers. 

In quantum physics, it happened 
that a scientific setting was fash-
ioned out of a mathematics created 20 
years previously. The original dis-
parate quantum physics versions of 
Heisenberg and Schrodinger were merged 
into one by Schrodinger. The union of 
the two was mathematically brought 
about in the precincts of so-called 
Hilbert space. Since entering phys-
ics, this theory of operators has de-
veloped the concept of an operator 
from a tool in physics to a reality in 
nature, and it has raised the mathemat-
ization of physics to new levels. 
There is hardly a purely mathematical 
statement on operators in Hilbert 
space which some physicist would not 
interpret as an event, or as a prop-
erty of an event in nature. In fact, 
it has become a general belief that 
mathematics and science have correspon-
dence rules: if a purely unexpected 
mathematical formula arises, then a 

corresponding unknown occurrence in 
nature exists. Maxwell's prediction 
that light is an electromagnetic wave 
is a good example. 

Meanwhile, pure mathematicians are 
climbing to new levels of abstraction. 
How their work will relate to future 
scientific knowledge no one really 
knows. It may be decades before 
science gets a chance to draw upon the 
mathematics of today. 

Conclusion 

We have made a cursory historical 
review of the role of mathematics in 
the rise of science. Some general ob-
servations are suggested. 

(1) As seen from history, any area of 
inquiry capable of mathematization de-
veloped the earliest and fastest. This 
is why physics developed before chem-
istry, chemistry before biology, and 
biology before any of the social sci-
ences. The characteristics of physi-
cal science are such that a vast range 
of phenomena can be handled by linear 
algebra or differential equations. On 
the other hand, the inexact sciences 
are less amenable to mathematical 
treatment and, therefore, have not de-
veloped so fast. Apparently, the math-
ematization of a science affects the 
role and nature of revolutions that 
may and do occur in it. 

(2) Much of the newly created mathemat-
ics has, at the time of its creation, 
no overt bearing on applied science or 
even on theoretical science. There is 
today a warehouse of mathematical 
knowledge of which scientists have not 
yet taken advantage. 

(3) It has become a part of the cele-
brated scientific methodology that, if 
a purely unexpected mathematical con-
clusion arises, then a corresponding 
unknown occurrence in nature should be 
detectable. 
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(4) Mathematical formulation of sci-
entific statements bestows a peculiar 
kind of lucidity and precision upon 
them and establishes logical and cog-
nitive relations among them. It also 
introduces challenging analogies and 
unifications. For instance, we have 
seen that most wave propagation phe-
nomena, whether in acoustics, elec-
tricity or optics, are assumed to be 
governed by virtually the same set of 
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differential equations. 

Mathematics is not part of or sub-
ordinate to science. Mathematics is a 
unique realm of knowledge from which 
science borrows in order to develop a) 
a set of tools for inquiry into natu-
ral phenomena, and b) a language for 
the articulation of subsequent 
explanations. 
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