?

$\overline{6789123456 / 89123456 / 8912366 / 89} 1 \overline{123456 / 89} 1 \overline{123456 / 89} 123456 / 89123456 / 89123456 / 89123456 / 89123456 / 89123456 / 89123456 / 89123456 / 89123456 / 89123456 / 89123456 / 8912345678$

Volume XVIII, Number 2

November 1978
6789123456729123456789123456729123456729123456729123456789123456729123456789123456729123456729123456729123456729123456729123245672912345672912345672912345672

Fermission to use any part of this publication in the classroom is hereby granted, including reproduction. This does not include articles that have been published with permission of author and noted as "not for reproduction."

Volume XVIII, Number 2
November 1978

Contents

Ed Carriger	3	The Editor's Page
Plus + + +	4	Notes from around Canada
Walter Szetela	6	Using Calculators to Teach Trigonometry
	10	Calculators in the Classroom
Dick Holmes	11	Kids 'n Calculators
David Morgan	22	Do It the Easy Way
Henry Enns and Jack Schellenberg	23	Christmas Math Songs
Dave Ellis	24	Fun with Holiday Facts and Figures
2AMT Journal	25	Your Christmas Package
	32	Problem-Solving Contest in The Mathematics Student

Mathematics Council Executive 1978-79
 $123456789123456789123456 / 89123456 / 89$;23456789 123456/89 123456/89 123456/89 123456/89123456/89 123456/89

Edmonton T5H OZ8

President
Robert Holt 4255-74 Street Edmonton T6K OW1

Past President
Dr. K. Allen Neufeld
Res 436-0571 Bus 432-4188 University of Alberta Edmonton, T6G 2G5

Vice President
Richard J. Kopan Res 271-5240
23 Lake Crimson Close SE Bus 286-5156
Calgary T2J 3K8
Secretary
Dr. Arthur Jorgensen
Box 2069
Edson TOE OPO
Treasurer
Donald H. Hinde
Box 741
Lacombe TOC ISO
Res 462-1847
Bus 434-0464

Res 723-5370
Bus 723-3815

Res 782-6849
Bus 782-3212

ATA Representative
C.E. Connors

Barnett House Bus 453-2411
11010 - 142 Street
Edmonton T5N 2R1

Directors
Audrey Brattberg Res 428-6394
Dickinsfield Jr. H.S. Bus 476-4646
14320 - 88A Street
Edmonton T5E 6B6
Lyle Pagnucco
Res 271-0259
Forest Lawn H.S.
1304 - 44 Street SE
Calgary T2A 1M8
Dr. Joan E. Kirkpatrick Res 434-0756
\#1505, 10615-47 Ave. Bus 432-4153
Edmonton T 6 H OB2
Bill R. Gooliaf6 Res 938-7222
R.R. \#2 Bus 246-0771

Okotoks TOL 1 TO

Gary R. Hill Res 327-5601
1626 Lakeside Road
Bus 328-5153
Lethbridge T1K 3G8
Matt Pawluk
Res 469-6813
Director and NCTM Rep. Bus 429-5621
Edmonton Pub. School Bd. ext. 264
To Be Appointed ext. 283

Bus 272-6665

University of Calgary Math Dept. Rep.

Res 843-6138
Bus 843-6528
$\begin{array}{lll}\text { John Percevault } & \text { Res } & 328-1259 \\ \text { Faculty of Education } & \text { Bus } & 329-2111 \\ \text { University of Lethbridge } & & \text { ext. } 257\end{array}$
$\begin{array}{lll}\text { John Percevault } & \text { Res } & 328-1259 \\ \text { Faculty of Education } & \text { Bus } & 329-2111 \\ \text { University of Lethbridge } & & \text { ext. } 257\end{array}$
$\begin{array}{lrl}\text { John Percevault } & \text { Res } & 328-1259 \\ \text { Faculty of Education } & \text { Bus } & 329-2111 \\ \text { University of Lethbridge } & & \text { ext. } 257\end{array}$

Department of Educ. Rep.
Bruce Stonell Res 346-7814
Regional Office of Ed. Bus 343-5262
4 th Floor, 4814 Ross St. Red Deer T4N 1X4
DeZta-K Editor \& Publicity Chairman
Ed Carriger
R.R. \#1, Site 2, Box 3

Bluffton TOC OMO
Faculty of Educ. Rep. and
Monograph Editor

Lethbridge TlK 3M4

The Editor's Page

Another successful conference is history. Held in Red Deer on October 13 and 14, the annual meeting featured an address by Dr. Jesse A. Rudnick, entitled "Beyond Skills and Concepts." Dr. Rudnick challenged teachers to go "beyond skills and concepts" when teaching math, emphasizing that teachers must not only know why they are teaching math, but be prepared to show students how to apply the subject.

Although we may call it "problemsolving" or "application," how often does math teaching result in the student transferring this knowledge to everyday life problems? This is the challenge for us, as we go "beyond skills and concepts," to teach students to apply math skills in reallife situations.

I have a tape of Dr. Rudnick's speech available for anyone interested. Requests must be made before January 1, 1979, however, as the original
tape will be sent to another party at that time.

The conference's program planners saw the need to stress Dr. Rudnick's ideas, so the speakers in the Saturday sessions also focused on "Beyond Skills and Concepts."

During the luncheon program, Dr. Richard Guy of the University of Calgary attempted to teach us some new games to use as learning-aids. For a better understanding of the games, write to Dr. Guy for his forthcoming publication, which promises challenges for teachers and students alike.

Remember that in 1979 we host an NCTM "name-of-site" meeting in conjunction with our regular annual meeting. We are moving our location to Calgary for this one year, since Red Deer facilities are inadequate for such a large conference.

Ed Carriger
Editor

Notes from around Canada

The editor of Plus +++ supplied us with the following material and encouraged us to include it in Delta-K. He hopes to tell us about important events, research, curriculum development and items of national interest. For this, he needs your help in sending information. Letters and material to the editor are welcome, and should be sent (in either French or English) to:

E. J. Barbeau, Editor
University College, B201
University of Toronto
Toronto, Ontario, MSS 1A1

The Canadian Mathematics Education Study Group

Twice, in September, 1977 and in June, 1978, a group of mathematics educators, mostly from university mathematics departments and faculties of education, were invited to participate in conferences on the state of mathematical education research and teacher training in Canada. The proceedings of the first conference, Educating Teachers of Mathematics: The Universities' Responsibility, published by the Science Council, has appeared recently. This includes the texts of addresses by T.E. Kieren (University of Alberta), C. Gaulin (University of Laval), and A.J. Coleman (Queen's University) as well as the deliberations of the working groups.

At the second conference, besides invited addresses by G. Noelting (Quebec), G. Rising (Buffalo) and I. Weinzweig (Chicago), there were workshops at which discussions begun at the first conference on teaching, training, mathematization, and educational research were carried further.

In order to maintain the momentum of discussion and to keep the participants in touch, it was decided to form the Canadian Mathematics Education Study Group, a loose organiza-
tion that will function through local, regional and national initiatives.

Further information can be obtained from the organizers: Professor A.J. Coleman (Mathematics Department, Queen's University, Kingston, Ontario K7L 3N6), Professor W. Higginson (Faculty of Education, Queen's University) or Professor D. Wheeler (Mathematics Department, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, P.Q. H3G 1M8). The address of the Science Council is 150 Kent Street, 7th floor, Ottawa, Ontario K1P 5P4.

PERMAMA: Inservice Teacher Training

In 1972, an innovative inservice teacher training programme, "PERfectionnement des MAîtres en MAthematique," (PERMAMA), was established by Téléuniversité du Québec, a branch of the University of Quebec. Intended for high school mathematics teachers, it is a credit programme leading to a certificate. Participants register for courses in one of 97 local or regional centres. They work through prepared modules and meet regularly for discussions directed by a "moniteur-animateur" at the centre. About 60 modules are currently available.

A fuller account is found in the Science Council of Canada report, Educating Teachers of Mathematics: The Universities' Responsibility or may be obtained from Professor Claude Gaulin, Faculté des Sciences de l'Education, Université Laval, Québec, P.Q. GIK 7P4.

Survey of
 Educational Research in Canada

Dr. D.R. Drost, Department of Curriculum and Instruction, Memorial University, St. John's Nfld. A1B 3X8, is compiling a catalogue of Canadian research related to mathematics education. Please send a list of studies currently in progress or completed in the last five years, including name of researchers, title of study, grade level, and date. These might be graduate theses, personal published reports, both internal and external, or assessment studies. This is the first step of the research subgroup of the Canadian Mathematics Education Study Group toward making knowledge of the work of Canadian researchers more widespread.

Crux Mathematicorum

Crux Mathematicorum is a problems journal edited by Léo Sauvé and published ten times annually by Algon-
quin College under the sponsorship of the Carleton-Ottawa Mathematics Association (affiliated with O.A.M.E.). Besides some delightful problems contributed by readers, most of which are suitable for high school teachers and lively students, there are brief articles, many on elementary topics in geometry and number theory. The managing editor is F.G.B. Maskell, Mathematics Department, Algonquin College, 200 Lees Avenue, Ottawa, Ontario K1S OC5, to whom requests for subscriptions, sample copies, or further information may be sent. Bound-back volumes are available (Vol. I-II, \$10; Vol. III, \$10).

Canadian Mathematical Society Education Committee

The Canadian Mathematical Society, the national organization of university mathematicians and sponsor of the Canadian Mathematical Olympiad, has recently re-established its standing education committee. It is chaired by Professor George Bluman of the Mathematics Department of the University of British Columbia. The committee is interested in determining the current state of mathematical education in schools across Canada and exploring avenues of cooperation between teachers, mathematical educators and research mathematicians.
...an interesting mathematics-in-the-social-sciences topic can be found on pages 304-332 of the 1968 volume of the Villanova Law Review? There a lawyer, J. F. Banzhaf III, argued by means of permutations, combinations, and the computer that in the 1960 presidential election, a voter in New York State had 3.312 times the Dower of a voter in the District of Columbia. Banzhaf's measure of "power" just made its first appearance in a commerical textbook (M. L. Bittinger and J. C. Crown, Finite Mathematics, Addison-Wesley, 1977).

New York State Mathematics Teachers' Journal, Spring/Summer 1978

Using Calculators to Teach Trigonometry

Walter Szetela

University of British Columbia
Robert Compbell, secondary mathematics coordinator, McRoberts Junior Secondary School, Richmond, B.C.

Reprinted from Vector, June 1978.

Consider the plight of the ungifted mathematics students learning about trigonometric ratios for the first time. Typically, they are given some textbook diagrams indicating the measures of sides of a right triangle together with a definition of the tangent ratio. Soon after, similar diagrams and definitions are given for the sine and cosine ratios. Usually there is too little opportunity given for students to assimilate the concept of trigonometric ratios as constants with respect to particular angles. Perhaps the most demoralizing attribute of this kind of instruction is the very early introduction of the table of trigonometric ratios usually given to three or four decimal places. Students are given the typical flagpole and ladder problems to solve using the tables, but even when students do find solutions correctly, they are still very limited in their understanding of the table and trigonometric ratios.

The availability of inexpensive hand-held calculators makes feasible methods of instruction that can provide greater opportunity for understanding many mathematical concepts. This article describes one such method and our experiences in teaching by it. In the Report of the Conference on Needed Research and Development on Hand-held Calculators in School Mathematics (1976), Recommendation 6 states:

Materials should be developed to exploit the calculator as a teaching tool at every point in the curriculum, to test a variety of ideas and possibilities pending emergence of calculatorintegrated curriculums.

Agreeing with the recommendation, we constructed materials to use in an experiment to determine the effectiveness of hand-held calculators in learning trigonometric ratios. The materials:

1. Sets of four similar right triangles having acute angles that were multiples of 10 degrees from 10 to 80 degrees. (A1though a right triangle with a 10-degree angle contains an angle of 80 degrees, a different set of four similar right triangles was constructed for each angle.)
2. Two large posters, one for each of the classrooms used, to provide a quick visual image of the opposite and adjacent sides of a right triangle and the hypotenuse.
3. A large poster for each of the eight groups taught, for them to develop their own short table of trigonometric ratios for acute angles that are multiples of 10 degrees.
4. Worksheets for recording data from measurements of sides and
angles of right triangles, for use in calculating trigonometric ratios and worksheets to help establish a clear concept of ratio and later to enable students to make applications and generalizations from their constructed tables.

The materials were used with four classes in a one-quarter mathematics course for Grade IX and X students recommended for students not planning to take Grade XI academic mathematics. We taught the students over a period of 18 school days during which each class met 13 times. Students in each of the four classes were randomly assigned to two groups, one group using the materials with the calcula-tors and the other group using the materials without the calculators. In turn, the groups were randomly assigned for instruction so that each instructor had two calculator groups and two noncalculator groups. Instruction took place during the regular mathematics period in the regular mathematics room and in a nearby room. There were 131 students, and each of the eight groups contained 15 to 18 students.

All students satisfactorily measured angles and sides. The calculator groups calculated the trigonometric ratios quickly. However, the noncalculator groups, which had to work out ratios by pencil and paper long division, felt considerable frustration, and so did the teachers. This occurred despite the students' (in the noncalculator groups) working in groups of four and sharing the measurements and computation.

Whereas each student in the calculator group measured and calculated ratios for all four triangles in the set of four similar right triangles, students in the noncalculator groups measured one triangle, calculated
the three ratios for one angle, and the four students in each group shared their results so that every student recorded and observed four computed ratios for the sine, cosine, and tangent of one angle. Every student then found the average of the four ratios after confirming that there were no gross errors in measurement or computation. The resulting average ratio was then placed prominently on a large poster on the wall.

The procedure was repeated for another angle that was a multiple of 10 degrees. With four groups in each class, this was sufficient to complete the class table of trigonometric ratios from 10 to 80 degrees in multiples of 10 degrees.

The posters were put up during each class so that students could see their tables developing and later, when the tables were completed, they could easily observe patterns the ratios exhibited.

In all groups, the ratios obtained were remarkably accurate. A comparison of the ratios on the posters with the correct trigonometric ratios rounded to two decimal places showed that, of the 192 ratios calculated by the 8 groups, 148 ratios were within .01 of the correct ratios, and 44 ratios were off by more than .01 . Of these 44 larger errors, 27 were made with the tangent ratio: 19 for angles of 60, 70, and 80 degrees. The largest single error was a result of 5.37 instead of 5.67 for the tangent of 80 degrees. This result did not reduce the ability of the particular class to observe patterns from the table. Following are two of the tables, one prepared by a calculator group and one by a noncalculator group during the same period of instruction. Entries with an asterisk signify results in error by more than . 01.

CALCULATOR GROUP B			
Angle	sin	cos	tan
10°	. 18	. 99	. 11
20°	. 35	. 95	. 37
30°	. 50	. 87	. 58
40°	. 65	. 77	. 85
50°	. 77	. 65	1.18
60°	. 87	. 50	1.73
70°	. 94	. 35	2.68*
80°	. 99	. 18	5.49*
Table 1			
NONCALCULATOR GROUP B			
Angle	sin	cos	\tan
10°	. 19	.96*	. 18
20°	. 36	. 93	. 37
30°	. 49	. 86	. 57
40°	. 64	. 76	. 84
50°	. 75 *	. 64	1.17*
60°	. 86	. 50	1.70*
70°	.92*	. 34	2.69*
80°	. 98	. 17	5.70*
Table 2			

Calculator Group B represented in Table 1 had the "best" results with four ratios off by more than . 01 . A calculator group also had the "worst" results with nine ratios off by more than .01. Altogether, for 96 ratios, the calculator groups were off by more than .0118 times, while the noncalculator groups were off by . 01 26 times.

The large well-spaced, uncluttered tables made the following generalizations easy to observe:

The sine and tangent ratios increased as the angle measure increased.
Contrastingly, the cosine ratio decreased as the angle increased.
The tangent ratio and the sine ratio were about the same for angles of 10 and 20 degrees.

At some point, the tangent ratio began to increase much faster than did the sine ratio.

The cosine ratio appeared to be the sine ratio "upside down."
When the angle was doubled, the corresponding ratios were not doubled.

The table was also used to motivate the students to think about the following questions:

Could one make reasonable estimates for angles that were multiples of five degrees?
What would the ratios be for angles of 0 and 90 degrees?
Students comprehended the first question clearly and suggested averaging two successive ratios. The second question was much more difficult and was not satisfactorily settled in most groups.

In a subsequent lesson, students obtained the estimated ratios for angles that were multiples of five degrees. This was done easily in both calculator and noncalculator groups. In another lesson, students calculated the quotients for the sine ratio divided by the cosine ratio. This was rapidly done in the calculator groups for all eight angles in the tables. Because of the time and tedium of long division in the noncalculator groups, the students shared the labor, each student performing one long division and contributing the result to the class set of quotients. They compared results with the tangent ratios in their tables. Unfortunately, in these students, little excitement was aroused by the close agreement of the quotients with the tangent ratios.

As stated earlier, these students were not planning to take Grade XI
college preparatory mathematics, and many extremely weak students presented great challenges to the instructors. For many of them, it was difficult to grasp the concept of opposite and adjacent sides of an angle. However, the greatest difficulty and frustration for students and teachers occurred with long division. In one class, 13 students were given an exercise involving measurement of two sides of a triangle and conversion of the ratio of two sides from a fraction to a decimal. Only three students worked the division correctly. Five students reversed the dividend and divisor, while the other five made various errors such as incorrect subtractions and failure to place a zero in the quotient.

Despite such difficulties, all groups constructed the short table of trigonometric ratios satisfactorily. The tables were used after to solve problems and to continue to note patterns. When the conventional complete trigonometric table was distributed with entries to three-place decimals, there appeared to be a natural acceptance with an understanding that the three-place decimals represented ratios with which the students were now familiar.

As for performance differences between the calculator and noncalculator groups, on a quiz one week before the final test, the calculator groups did show some superiority. On a 16 -point quiz, the mean of the calculator students was 11.8 ; the mean of the noncalculator students was 9.9. The difference was significant at the . 05 level. However, on the posttest with 20 items, the calculator-instructed students had a mean of 9.90; the noncalculatorinstructed students had a mean of 8.85. The difference was not significant at the . 05 level. On a test of attitude focused on the instruction and topics taught during the
experiment, there were no significant differences.

The materials and methods of instruction thus seemed to have no markedly different results in terms of achievement and attitude. However, both instructors worked much harder in the noncalculator groups. There were the long division difficulties, and more effort and planning was necessary to control the activities of the groups of four so that results could be shared efficiently. Errors in long division sometimes complicated the sharing of results. Too much time was spent on long division and too little on more interesting activities. The calculator groups were able to measure four times as many triangles as the noncalculator groups.

One may ask why the noncalculator groups used the materials and methods instead of the conventional textbook methods, which did not require as many computations. We decided that despite the computations, the students would attain better understanding of trigonometric ratios than with ordinary text materials not requiring actual measurements of similar right triangles. We also felt that the calculator groups had an advantage already and that the disadvantage in the noncalculator groups would be compounded if the students did not also have measurement activities enabling them to build their own tables.

Summary

This article presented a method of instruction on trigonometric ratios that seems appropriate where hand-hald calculators are available. The method worked about as well, in terms of achievement and attitude, where hand-held calculators
were not used, but the wear and tear on the teachers, if not the students, was greater. Clearly, with calculators it is feasible to obtain inductively the well-known trigonometric generalizations. For example, the calculator-equipped students were able to divide quickly the eight sine ratios in their tables by the corresponding cosine ratios so that they could compare them with the tangent ratios. Similarly, using measurements and calculators, it would not be dif-
ficult to compute the sum of the squares of the sine and cosine ratios and discover that the sum is about 1. A fine opportunity to discover the law of sines is made possible with measurements and calculators. While most students may not be surprised and delighted by the coincidence of almost identical quotients for such unlikely mates as sines of angles and measures of opposite sides, the calculator at least makes it feasible to make the discovery.

REFERENCE

Bell, Max and Marilyn Suydam. In Edward Esty and Joseph Payne (eds.) Report of the Conference on Needed Research and Development of Hand-Held Calculators in School Mathematics. Washington, D.C.: National Insititute of Education, 1976.

Calculators in the Classroom

The National Council of Teachers of Mathematics, recognizing the potential contribution of the calculator as a valuable instructional aid in the classroom, has adopted the following position statement:

The National Council of Teachers of Mathematics encourages the use of calculators in the classroom as instructional aids and computational tools. Calculators give mathematics educators new opportunities to help their students learn mathematics and solve contemporary problems. The use of calculators, however, will not replace the necessity for learning computational skills.

As instructional aids, calculators can support the development and discovery of mathematical concepts. As computational tools, they reduce the time needed to solve problems, thereby allowing the consideration of a wider variety of applications. Furthermore, the use of calculators requires students to focus on the analysis of problems and the selection of appropriate operations. The effective use of calculators can improve student attitudes toward, and increase interest in, mathematics.

Other electronic devices, programmed to generate questions and activities and provide immediate feedback to students, are not to be confused with calculators or computers. These devices can be used to reinforce computational skills through drill.

Kids 'n Calculators

by Dick Holmes
Mathematics Consultant
Calgary Board of Education

Illustrations by Mrs. Bev Hubert Calgary Board of Education

Introduction of the Calculator

Schools and teachers will hove to answer these among other questions before introducing the colculator in the classroom.

1. What is the purpose of the calculator in the classroom?
2. Who will use the calculators?
3. To what extent will the calculators be used?
4. What new things can be done or what things can be done more effectively with the addition of calculators?

5. What pitfalls will possibly occur because of the use of the mochine?
6. What security problems require attention?
7. What considerations need be given in selecting a calculator?
8. What public relations work needs to be done with parents before introducing the calculators?

Classroom Uses

Some of the ways in which electronic calculators moy be beneficial in the classroom include:

1. Immediate reinforcement for checking.
2. Accuracy of computation.
3. Analyze computational steps.
4. Develop and reinforce estimation skills.
5. Learning resource for self-discovery and exploration.
6. Explore potterns of numbers.
7. Molivalion and success.
8. Iniroduce order of operotions and use of porentheses.
9. Approximate and find square roots.
10. Study statistics, exponents, consumer topics.
11. Compute perimeter, area and volume.
12. Round decimals and find percent.
13. Colculations in problem solving.

Selection of a Suitable Calculator

In selecting a colculator for classroam use, some considerations should include.

1. What functions are needed?
2. Has the calculator a flooting decimal point?
3. Does the mochine hove a constant key or a key which performs this function?

4. Is an adaptor available for the machine?
5. Is the display clear and large?

Care of the Calculator

1. Check to ensure the switch is off when the calculator is not in use.
2. Use a finger to push the keys not a pen or pencil.

Before Using the Calculator

When exploring the calculatar before use, check to see.

1. That all display lights are working (a row of 8 's uses all the lights.)
2. That the calculator is functioning correctly (do ofew large multiplication questions for which the answer is known).
3. What the calculator daes when division by zero occurs.
4. How the machine indicates on overflow.
5. If the calculator is programmed to round or truncate decimals.

Multiplication

You may use your calculator to find the product of numbers in a number of different ways.
Find the answer to the following questions by putting the numbers directly into the display and using the multiplication key.

$$
\begin{array}{r}
23 \times 46= \\
16 \times 54= \\
256 \times 4569=
\end{array}
$$

Another method of multiplying with the calculator is finding partial products and then finding the sum of the ports. Can you see where all the numbers come from in these examples? (Note the place holding positions of each multiplicand.)

23
$\times \quad 46$
18
12
12
8
1058

1243	
1656	
2408	
672	(56×43)
688	(56×12)
192	(16×43)
2058408	(16×12)

This method of multiplying will be very useful when the product of two numbers is too large for the calculator display. It will be possible to find the answer using o calculator.

Find the product of each of the following:
o. 12345×67809
b. 246813×135792
c. 473625×694537

Estimation

Estimation is an important skill in mathematics. Use rounding skills to help you select the largest number in each row. Use your calculator to check your answers.

38×52	12×88	29×61
$502-347$	$651-459$	$298-147$
$352 \div 23$	$82 \div 6$	$1468 \div 72$

Large Numbers

Find the value of these expressions:
$6^{3}=$
$5^{5}=\quad(2+1)^{5}-(12-8)^{3}$
$71=$
$10^{\prime}=$

$$
\frac{0.000006 \times 0.00033 \times 17000000}{0.0034 \times 1100000000 \times 0.00004}
$$

(Scientific Notation)

Which of the following are Pythogorean Triples?
10, 24, 25
16, 24, 30
$6,8,10$
423, 1064, 1145

Unit Price

Find the amount soved by buying the larger size.
2 kg for $68 \mathrm{c} ; 5 \mathrm{~kg}$ for 51.39
3 m for S 12.48 ; 10 m for 535.99
12 cc for $79 \mathrm{c} ; 39 \mathrm{cc}$ for 52.50
Which is the better buy?
156 g for $45 \mathrm{c} ; 392 \mathrm{~g}$ for 87 c
10 kg for $52.99 ; 25 \mathrm{~kg}$ for 57.45
180 ml for $12 \mathrm{c} ; 500 \mathrm{ml}$ for 38 c

Fractions to Decimals

Use your calculator to find the decimal expression for these fractions:

$\frac{1}{3}=$	$\frac{1}{5}=$	$\frac{1}{9}=$
$\frac{2}{3}=$	$\frac{2}{5}=$	$\frac{2}{9}=$
$\frac{3}{7}=$	$\frac{3}{5}=$	$\frac{3}{9}=$
$\frac{1}{2}=$	$\frac{4}{5}=$	$\frac{4}{9}=$

Order of Operations

Use your calculator to perform the indicated operotions. Enter the numbers and operations in the order in which they oppear.
$4+5+3 \div 3=$
$4+4 \times 6 \div 4=$
$12-4 \div 2+3=$
$7-3 \times 6 \div 3=$
Use your calculator to find the value of each expression. Keep in mind the correct order of performing operations. Rewrite each question using parentheses to indicate the correct order of performance.
$4+5+3 \div 3=$
$4+4 \times 6 \div 4=$
$12-4 \div 2+3=$
$7-3 \times 6 \div 3=$
Put signs $(t,-, x, \div)$ in the blanks indicating the operation to be performed to make true statements. If parentheses are required, show them. Use your calculator to show your work.
4 \qquad 5 \qquad 3 \qquad $3=29$
4 \qquad 4 \qquad 6 $4=2$
12 \qquad 4 \qquad 2 \qquad $3=18$
7 \qquad 3 \qquad 6 \qquad $3=2$

Percent

The manager of Ace Hardware recently announced price increases for a number of articles. The original and new prices are given. Find the amount of the increase in dollars and percent.

Original	New	Amount of Increose	Percent Increase
S 40	S 45		
S348.26	S696.56		

A local store odvertised a month-end clearance sale by listing the percentage reduction of various articles. Find the amount of the reduction and the sale price.

Original	Percent Reduction	Amount of Reduction	Sole Price
565	20\%		
599	$331 / 3 \%$		
S1256.89	10\%		
S 175.20	25\%		

Change the following percents to decimal fractions.

$$
\begin{aligned}
& 34 \%= \\
& 67.3 \%= \\
& 0.06 \%= \\
& 132 \%=
\end{aligned}
$$

Functions

Use a calculator to complete the following tobles:

(x, y)	$2 x+3 y+4$	(x, y)	$x+x x y$
$(2,3)$		$(3,2)$	
$(0,0)$		$(5,3)$	
$(4,1)$		$(1,1)$	
$(-1,3)$			

Equivalent Expressions

Mark the expressions that are equivalent to the goal expression. Use your calculator to check your onswers.

$$
\begin{aligned}
& 48 \times 24 \\
& 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2 \times 3 \\
& 24(40+8) \\
& 20 \times 52 \\
& a(b+c) \\
& a c+a b \\
& (c+b) a
\end{aligned}
$$

Rules for Divisibility

All even numbers are divisible by 2 with no remainder. It is possible to state a rule for divisibility by 2 which has no exceptions. The rule can be stated as fallows:

Rule: A number is divisible by 2 if it is on even number.
Another rule that most people are familiar with is the rule for numbers that are divisible by 5. Try these on your calculator. Answer yes or no as to whether or not the numbers are divisible by 5 .

200 \qquad 56 \qquad 14685 \qquad 280 \qquad
Con you state the rule?
Rule: A number is divisible by 5 if it
Now try these!
Con you find a rule for numbers that are divisible by 9? Use your calculator to help you answer yes or no as to whether ar not these numbers are divisible by 9 .

123 \qquad 126 \qquad 18 \qquad 270 \qquad 234 \qquad
Find more numbers which are divisible by 9 .

Examine carefully those numbers which are divisible by 9. Can you state the rule?
Rule:
It is possible to state rules far divisibility by $3,4,6,8,7$ (this one is difficult). How many rules can you find?

Square Root

Some cal culators have a square root key. However, it is very easy to find the square root of a number using your calculator without using a square root key.

Let us find the square root of 320 .

1. Guess a number which you think will be clase to the square root of 320. (e.g. 16)
2. Divide 320 by the number you selected.

1e.g. $\frac{320}{16}=20$
If your guess is the some as the square root of the number, the quotient should be the some as your guess.
If the number and the quotient ore not the some:
3. Add the quotient and your guess and divide by 2. (e.9. $\frac{20+16}{2}=18$)
4. Divide 320 by the new numbers.

1e.9. $\frac{320}{18}=17.777$

If the divisor and quotient are the same number, you have found the square root. If they ore not the some:
5. Add the quotient and the divisor and divide by 2. (e.g. $\frac{18+17.777}{2}=17.888$
6. Divide 320 by the result.
7. Continue this pottern until the desired accuracy hos been obtained.

This method of finding the square root of a number was developed by Isooc Newton, hence, the nome "Newton's Method" of finding the square root. Use "Newton's Method" to find the square root of the following:
b. $\sqrt{29.63}$
c. $\sqrt{.3456}$
d. $\sqrt{90}$
o. $\sqrt{850}$

Cube Root

It is possible to find the cube root of a number using a method very simitor to the one used for finding the square root of a number.

Let us find the cube root of 320 .

1. Guess a number which you think will be close to the cube root of 320. (e.9. 5)
2. The number \div guess \div guess + guess $\div 3$.
(e.g. $320 \div 5 \div 5+5+5 \div 3=7.6$)

If your guess is the some as the cube root of the number, then the onswer from step 2 cubed will equal the number.
(e.g. $7.6^{3} \neq 320$)

If your guess was not the cube root, then:
3. Repeat step 2 using the result from step as your new guess.
(e.g. $320 \div 7.6 \div 7.6+7.6+7.6 \div 3=6.91$)

4. Continue this pattern until the desired accurocy has been obtoined.

Find the cube root of each of the following:
b. 65456
c. 515
d. 3003
o. 2197

Number Patterns

Many interesting number patterns can be examined quickly with the use of your calculator. Try these. Use your colculator to find the first three or four answers; then complete the pattern without doing any actual calculation. When you hove finished, use your calculator to check your answers.

$1 \times 1=$	$66 \times 66=$
$11 \times 11=$	$666 \times 666=$
$111 \times 111=$	$6666 \times 6666=$
$1111 \times 1111=$	$66666 \times 66666=$
$11111 \times 11111=$	$666666 \times 666666=$
$111111 \times 111111=$	$6666666 \times 666666=$
$111111 \times 111111=$	
$1111111 \times 11111=$	
1111111×1111110	

$37 \times 3=$	$37037 \times 3=$
$37 \times 6=$	$37037 \times 6=$
$37 \times 9=$	$37037 \times 9=$
$37 \times 12=$	$37037 \times 12=$
$37 \times 15=$	$37037 \times 15=$
$37 \times 18=$	$37037 \times 18=$
$37 \times 21=$	$37037 \times 21=$
$37 \times 24=$	$37037 \times 24=$

Find $n^{3}-n$ when $n=2,3,4,5,6,7$.
Can you state o rule for the highest common factor of the answers?
Rule: $n^{3}-n$ is olwoys a multiple of
Find $x^{2}+x+41$ when $x=0,1,2,3 \ldots$
Is the result alwoys a prime number? \qquad

Nimble Nine

The number nine is a fascinating number. Con you find the pattern for the following ofter doing only two or three on your colculator?
$123456789 \times 9=$
$\times 18=$

* $27=$
$\times 36=$
$\times 45=$
$\times 54=$
$\times 63=$
$\times 72=$
$\times 81=$
$99999 \times 1=$
$\times 2=$
$\times 3=$
$\times 4=$
* $5=$
$\times 6=$
$\times 7=$
$24691358 \times 9=$
$\times 18=$
$\times 27=$
$\times 36=$
$\times 45=$

$1-9=$
$2-9=$
$3-9=$
$4 \div 9=$
$5 \div 9=$
$6-9=$
$7 \div 9=$
$8 \div 9=$
$9 \div 9=$

$$
\begin{array}{r}
9 \times 9+7= \\
9 \times 98+6= \\
9 \times 987+5= \\
9 \times 9876+4= \\
9 \times 98765+3= \\
9 \times 987654+2= \\
9 \times 9876543+1=
\end{array}
$$

Motivation and Fun

Most numbers on the calculator, when looked at upside down, resemble letters of the alphabet. The letters represented ore:

1	3	4	5	7	8	9	0
I	E	h	5	L	B	G	O

Students can write problems for other students to solve; math skills can be reviewed, codes can be decoded, etc.

From Games. Iriaks and Puzzles for a Hand Calculator

What did the cannibals soy when they saw their dinner guest getting angry?

$$
\frac{228440}{4}-1.66=
$$

\qquad

What did Snoopy odd to his doghouse as o result of his dog-fights with the Red Boron?
$(3 \times 303+50) 7 \times 8=$ \qquad

What kind of a double doesn't a golfer want at the end of o round of golf?
$1956 \times 4+153 \times 4=$ \qquad

From The Calculator Book
A dingaling

$$
\frac{56^{2}+8^{3}+243968}{2^{5}}=
$$

\qquad

Good for travel in a winter wonderland

$$
\frac{25(18765+11115)}{4}+65^{3}
$$

Enter your age, then double it. Now add 5 and multiply by 50. Add the amount of change in your pocket, up to one dollar. Subtract the number of days in a year; add 115 ; divide by 100. Result - your age, then o decimal, then the amount of change.

Choose o number; odd 10; multiply by 2 ; divide by 4 ; subtract 5 ; multiply by 2.

Games with Calculators

A few games that can be used in the classroom and that will reinforce computational and estimation skills are cited here.

Nim

The original game of Nim was ployed with a pile of sticks. Players took turns taking one, two or three sticks from the pile until only one stick remained. The player hoving to take the lost stick lost the game.

A similar game can be played by two people using a calculator. The calculator should read 0 to begin the game. The first ployer pushes the 1, 2 or 3 key, followed by the +key and hands the machine to the second ployer. This player pushes the 1,2 or 3 key, followed by the + key and honds the calculator bock to the first player. This continues, players alternating turns and adding 1, 2 or 3 until 21 has been reached. The player making this total loses the game. A simple variation to this but changing the winning strategy would be to hove the player making 21 win the game.

To moke the game more difficult or for variety in strategy, use other keys and o different goal number, e.g. Use 1, 2, 3, 4, 5, 6 with goal number 50

Use 1, 4, 7 with goal number 50

One Only

Eoch player uses his own calculator. Select a number and using only the selected number key and any of the functionkeys $(t,-, x, \div$ or \Rightarrow get the calculator to read some pre-selected goal number.

$$
\text { Example: number } 4 \text {; goal } 13 \quad(4 \times 4+4 \div 4+4+4)
$$

There will usually be a number of ways to get the goal number. A possible variation would be to achieve the goal in as few moves as possible.

Zero

A game to develop estimating skills and number awareness can be ployed by one persan using a calculator. Select any six-digit number and put is in the display. Using any operation ($+, \ldots, \ldots,=1$ and any two-digit numbers get the calculator to display 0 in four moves. A move consists of one operation with one two-digit number. Multiplication and division by 0 are not allowed.

To make the game more difficult do not allow any two digits in the six-digit number to be the some.

One Hundred

The object of the game is to use each of the number keys once with any combination of the function keys ($+,-, x, \ldots, \Rightarrow$) to get the calculator to read 100.

Many variations of this gome can be played.
Example: use the number keys in ony order use the number keys in order from smallest to largest use the number keys in order from largest to smallest

LESSON PLANS

Do It the Easy Way contributed by david morgan carson graham senior secondary school, north vancouver

Reprinted from Vector, Volume 19, Number 2, December 1977
We wish to divide an $81 / 2^{\prime \prime}$ wide piece of paper into three equal parts. (Sorry for not going metric.) Using arithmetic this is a mess. Calculation gives $35 / 6^{\prime \prime}$ divisions, which does not appear on my ruler, so forget it

Thert is an easier way. Place a ruler obliquely across the page so that $0^{\prime \prime}$ is at one edge and $9^{\prime \prime}$ is at the other edge. (See diagram.) Mark the paper at $3^{\prime \prime}$ and 6." These marks divide the page neatly into thirds. Another set of marks can be made elsewhere on the page and lines can be ruled.

I have used this procedure several times in preparing dittos and doing carpentry. It can be used to divide something into thirds, quarters, sevenths or what have you. I use a metric rule, but I still use this trick.

It is interesting that I was taught how to trisect lines in school, but it took an old welder to show me a practical application.

Christmas Math Songs contributed by henry enns [port coquitlam) and jack schellenberg (winston churchill) vancouver

Reprinted from Vector, Volume 19, Number 2, December 1977

TUNE - Santa Claus Is Coming To Town

Oh, you'd better take care completing the square; you'd better not try dividing by y !
Math cevams are coming to town.
We're making a list, don't shake in your boots; Just watch out for extrancous roots -
Math exams are coming to town.
You know you'll halle quadratics
And exponentials too
You rationalize denomi
Nators like the root of two.
So, you'd better be-lright and calculate right
You'dicteer check roots for the one that suits;
Math exalms are coming to town.

TUNE - Jingle Bells

A day or two ago, I tried to solve for c;
When all the time, you know, I should have solved for b.
But after many trics, and sessions after school,
I uttered loud and joyful cries when I found out this rule:
Oh, a and b, b and c-write them on the page:
sometimes put down \and y - they seem to be the rage
Don't give up - play it cool - make a guess or two.
And keep the paper neat and clean, and there's a pass for you.

TUNE - I'm Dreaming of a White Christmas

l'm dreaming of a quadratic, just like the one in our textbook.
Where solutions caper across the paper,
And make me thinh that 1 am smart.
I'm dreaming of a quadratic - And to myself each night I write:
:May quadratice glve you no tright - And May all the answers be right.

TUNE - Rudolph the Red-Nosed Reindeer

\%.cro, th.at funm sipher has a shape that looks like "()."
And it you want to use it, there are things you need to know.
Never divide by erero: if you do, you will be sad. (ietting a cras answer, making your report look bad. But treat icero as your friend - use him carcfully'Safe to multiply or to add' - That's the rulc for zero, lad! Z.ero, that screwball number wants to be a comrade true. But never divide by: zero, or you'll be getting zero, too!

TUNE - O Tannenbaum

() (;iometry, geometry, I am fearful about thee! (icometry, my bugaboo, a subject I will ne'er let through. Sou kecep my brain in dizzy whirls
lou're tough for boys and tough for girls;
(th Ciometry, geometry, what Satan's imp invented thec?

Fun with Holiday Facts and Figures contributed by dave ellis, on exchange in edinburgh, scotland

Reprinted from Vector, Voluome 19, Number 2, December 1977

1. Start with the number of the day in December upon which Christmas falls.
2. To this figure add the number of wise men who came bearing gifts to the infant Jesus.
3. Divide your score by the total number of carolers in the following group: A trio of tenors. an alto and a pair of sopranos and a solitary basso.
4. Multiply your score next by the number of e's in this sentence.
5. Careful now. Subtract from your score the grand total of the four numbers spoken in the following rhyme:

Said Mrs. Claus to Mr. Claus while they ate on a November night,
'It's time to start your diet, dear, for you'll not fit the chimneys right.'
6. Add next the number of ornaments in two boxes of ornaments if each box contains a dozen and a half.

7 If 0 . Henry wrote the Christmas story, 'The Gift of the Magi,' divide your score by 4; if he did not, divide your score by 3.
8. Next: Add to your score the number of people seated at this holiday table:

Mom and Dad were at opposite ends of the table and my brother and I and his girlfriend sat across from her cousin and his wife and son.
9. In Charles Dickens' 'A Christmas Carol,' the story ends with the much quoted cry, 'God bless us, every one!' Which character utters this cry, Bob Cratchit, Tiny Tim, or Ebenezer Scrooge? Subtract from your score the number of

10. Divide your score by the number of misspelled words in the following group: EVERGREEN

RESOLUTION
MISTLETOW
HOLLY
RAINDEER
11. Irving Berlin wrote the song 'White Christmas.' If this statement is not false, subtract 6 from your score; if this statement is not true, subtract 5 from your score.
12. Our answer is the number of the day in January that is New Year's Day. IS YOURS?

Your Christmas Package

Reprinted from QAMT Journa1, Volume 1, Number 2, Christmas 1977
The following pages contain an assortment of puzales you can use in your classroom(s) during Christmas week. The Santa Claus puzzle is intended for Kindergarten and was created by Susan Jeannotte. The first "secret message" puzzle was put together by Gayle Legault and Susan Jeannotte, and can be used by grades 1-3. Gundie Robertson created the next "secret message," and suggests it ke used by grades 4-6. The final puzzle is the handiwork of Jack Benoit, and is intended for junior high school math students. So use your school's copying equipment and make a stencil of the appropriate puzzle for your class(es).

Solve each puzzle and you will get a letter.
Put the letters together and find the secret message,

Color all the squares RED.
Color all the rectangles YELLOW
Color all the triangles GREEN.
Color all the odd shaped figures BLUE.

Solve all equations.
Color answers of ... 8 yellow 10 green 6 blue

9 red
What letter did you find?

Start at 9.
Follow the oddnumbered dots in order.

Solve each puzzle and you will get a letter. When you have finished, put the letters together. They will be scrambled. Unscramble them to read the message.

$(2,2)(6,2)(2,2)(2,6)(5,6)(2,6)$
$(2,10)(6,10)$
Directions: Join the points in order. You will find a letter.

START

THESE PAGES CONTAIN 4 PUZZLES WHICH MUST BE SOLVED TO GET CERTAIN LETTERS. GET THE 14 LETTERS, UNSCRAMBLE THEM, AND DISCOVER THE SECRET MESSAGE.

In the accompanying diagram, USE $a=1, b=2, c=-1, d=0$, and blacken each area whose value is l. The result should form a letter. There are three of this letter in the secret message. ANSWER: \qquad

GIVEN: $A=\{a, b, c, d, e\}$

$$
\begin{aligned}
& B=\{a, c\} \\
& C=\{b, d\} \\
& D=\{a, d\} \\
& E=\{c, e\}
\end{aligned}
$$

EVALUATE:

$$
B \cap[(A \cap E) \cup(D \cap C)]
$$

ANSWER: \qquad .

 ANSWER: \qquad
 SECRET MESSAGE - TWO WORDS:

Problem-Solving Contest in The Mathematics Student

Beginning with the October, 1978 issue, The Mathematics Student will feature a "Competition Corner" (formerly "Problem Section"), which will include a continuous problem-solving contest. Each of the eight issues published during the school year will contain five problems of varying difficulty; each successful solution will carry a credit of 2-5 points. At the end of the school year, winners will be declared on the basis of cumulative scores and prizes will be awarded at each grade level. The overall winner of the contest will receive "The Polya Prize for Problem-Solving" as a special recognition.

Please encourage your student to take part in this highly educational endeavor. For further information, write to David Logothetti (Department of Mathematics, The University of Santa Clara, Santa Clara, CA 95053) or to George Berzsenyi (Department of Mathematics, Lamar University, Beaumont, TX. 77710). Subscription information and sample copies of The Mathematics Student are available from the NCTM Headquarters.

