(An activity sponsored by The NCTM-1980 Seattle Meeting)

Use the digits $1,9,8,0$ in sequence to make true sentences.
Example: $1+9+8+0=18$
Fill in the \square with + , -, or x to solve these. You will need to use ().

1. $1 \square 9 \square 8 \square 0=11$
2. $1 \square 9 \square 8 \square 0=2$
3. $1 \square 9 \square 8 \square 0=10$
4. $1 \square 9 \square 8 \square 0=17$
5. $1 \square 9 \square 8 \square 0=80$
6. $1 \square 9 \square 8 \square 0=72$

Now use,,$+- x$ and \div with digits in any way:
Examples:
$81 \div 9+0=9$
$19+8-0=27$
What numbers can you make?

$+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+$ $1980=2 \times 2 \times 3 \times 3 \times 5 \times 11$

Using these factors of 1980 , cross out the numbers in each row so that the product of the remaining factors is equal to the product on the right.

Product
Example:

	2	3	3	5^{\prime}	11	198	(See that $2 \times 3 \times 3 \times 11=198$)
2	2	3	3	5	11	60	
2	2	3	3	5	11	99	
2	2	3	3	5	11	330	
2	2	3	3	5	11	180	
2	2	3	3	5	11	132	
2	2	3	3	5	11	220	

$+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+-\mathrm{x} \div+$
The National Council of Teachers of Mathematics (NCTM) unveils "The Curriculum of the 1980s" at the 58th Annual Meeting - April 16-19, 1980, The Seattle Center, Seattle, Washington.
$+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+-x \div+$ No copyright; please plagiarize - in fact, "CTYHC" (Copy To Your Heart's Content)!

